1
|
Liu C, Du J, Yang J, Li J, Zhou T, Yu J, Wang X, Lin J, Liang Y, Shi R, Luo R, Shen X, Wang Y, Zhang L, Shu Z. Research on the mechanism of buyang huanwu decoction in the amelioration of age-associated memory impairment based on the "co-occurrence network regulation of intestinal microecology-host metabolism-immune function". JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118819. [PMID: 39303964 DOI: 10.1016/j.jep.2024.118819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Brain aging can promote neuronal damage, contributing to aging-related diseases like memory dysfunction. Buyang Huanwu Decoction (BYHWD), a traditional Chinese medicine formula known for tonifying qi and activating blood circulation, shows neuroprotective properties. Despite this, the specific mechanism by which BYHWD improves age-associated memory impairment (AAMI) has not been explored in existing literature. AIM OF THE STUDY This study aimed to investigate the mechanism of BYHWD in the improvement of AAMI based on the "co-occurrence network regulation of intestinal microecology-host metabolism-immune function". MATERIALS AND METHODS Firstly, D-galactose was performed to induce a rat model of AAMI. Learning and memory deficits was assessed by the Morris water maze test. H&E and Nissl staining were used to observe the pathological changes in neurons in the hippocampus of rats. Meanwhile, the levels of pro-inflammatory cytokines and the activation of antioxidant enzymes in rat serum were measured using ELISA. Finally, an integrated pharmacological approach was applied to explore the potential mechanism of BYHWD in improving AAMI. RESULTS Our results indicated that BYHWD significantly mitigated the pathological structure of the hippocampus, reversed the levels of IL-6, TNF-α, GSH, and CAT in the serum, and improved learning and memory in aging rats. Transcriptomics combined with network pharmacology showed that energy metabolism and the inflammatory response were the key biological pathways for BYHWD to ameliorate AAMI. Integrative analysis of the microbiome and metabolomics revealed that BYHWD has the potential to restore the balance of abundance between probiotics and harmful bacteria, and ameliorate the reprogramming of energy metabolism caused by aging in the brain. The co-occurrence network analysis demonstrated that a strong correlation between the treatment of AAMI and the stability of intestinal microecology, host metabolism, and immune network. CONCLUSION The findings of this study collectively support the notion that BYHWD has a superior therapeutic effect in an AAMI rat model. The mechanism involves regulating the "intestinal microecology-metabolism-immune function co-occurrence network" system to restore the composition of gut microbiota and metabolites. This further improves the metabolic phenotype of brain tissue and maintains the homeostasis of central nervous system's immunity, leading to an improvement in AAMI. Consequently, this study offers a unique perspective on the prevention and treatment of AAMI. And, BYHWD is also considered to be a promising preclinical treatment for improving AAMI.
Collapse
Affiliation(s)
- Caiyan Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jieyong Du
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Ji Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianhua Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tong Zhou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiaming Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiazi Lin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yefang Liang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruixiang Shi
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Rongfeng Luo
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xuejuan Shen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Zunpeng Shu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China.
| |
Collapse
|
2
|
Dong L, He H, Chen Z, Wang X, Li Y, Lü G, Wang B, Kuang L. Pharmacological Network Analysis of the Functions and Mechanism of Quercetin From Jisuikang (JSK) in Spinal Cord Injury (SCI). J Cell Mol Med 2024; 28:e70269. [PMID: 39679746 DOI: 10.1111/jcmm.70269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 10/17/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Neuroinflammation, especially microglia/macrophage activation, is a hallmark of spinal cord injury (SCI). Jisuikang (JSK) is a clinical experiential Chinese herbal formula for SCI therapy containing Huangqi (Astragali Radix), Danggui (Angelica sinensis Radix), Chishao (Paeoniae Radix Rubra), Dilong (earthworm, Pheretima aspergillum), Chuanxiong (Chuanxiong Rhizoma), Taoren (Persicae Seman) and Honghua (Carthami Flos). Eighteen active ingredients in 6 herbs of JSK were found to be correlated with inflammation, spinal injury and other diseases. These 18 active ingredients target 5464 genes according to the PubChem database. Through comparing differentially expressed genes between SCI and normal samples using GSE datasets, 50 hub genes were identified. These hub-genes were enriched in oxidative stress response and inflammation response. The herb-compound-target, herb-compound-signalling and compound-target-signalling networks were generated and quercetin was identified as the hub compound. A concentration of 25 μM quercetin showed no cytotoxicity but significantly protected microglial cells from LPS-induced inhibition of cell viability. LPS stimulation elevated the levels of iNOS, IL-1β and TNF-α but decreased IL-10 levels, whereas quercetin significantly attenuated LPS-induced alterations in these factors. Moreover, quercetin targeted gene, IL1R1 was reduced by quercetin as predicted. Overexpression of IL1R1 further increased LPS-induced inflammation, which could be partly reversed by quercetin treatment. In vivo, quercetin improved histopathological alterations, inflammation and promoted M2 macrophage polarisation post-injury, whereas IL1R1 overexpression partially attenuated the beneficial effects of quercetin on the rat SCI model. Collectively, quercetin, the main ingredient compound of JSK, protects against LPS-induced cell viability inhibition and cellular inflammation, which could be partially attenuated by IL1R1 overexpression.
Collapse
Affiliation(s)
- Lini Dong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyu He
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zejun Chen
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxiao Wang
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunchao Li
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guohua Lü
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bing Wang
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Kuang
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
He Z, Yang S, Tan Y, Liao Y, Song S. Efficacy and safety of Buyang Huanwu Decoction in patients with spinal cord injury: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2024; 103:e37865. [PMID: 38640259 PMCID: PMC11030014 DOI: 10.1097/md.0000000000037865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND There has been growing interest in using the traditional Chinese herb Buyang Huanwu Decoction (BHD) as a potential treatment for spinal cord injury (SCI), owing to its long-used treatment for SCI in China. However, the efficacy and safety of BHD treatment for SCI remain widely skeptical. This meta-analysis aims to assess the safety and efficacy of BHD in managing SCI. METHOD A comprehensive literature search was conducted across several databases, including PubMed, EMBASE, Cochrane Library, CNKI, Wanfang, VIP, and Sinomed, up to January 1, 2024. Randomized controlled clinical trials evaluating the safety or efficacy of BHD in SCI treatment were included. The analysis focused on 8 critical endpoints: Patient-perceived total clinical effective rate, American Spinal Cord Injury Association (ASIA) sensory score, ASIA motor score, somatosensory evoked potential, motor evoked potential, visual analog scale pain score, Japanese Orthopaedic Association score, and adverse events. RESULTS Thirteen studies comprising 815 participants met the inclusion criteria. No significant heterogeneity or publication bias was observed across the trials. The findings revealed significant improvements in the patient-perceived total clinical effective rate (OR = 3.77; 95% confidence interval [CI] = [2.43, 5.86]; P < .001), ASIA sensory score (mean difference [MD] = 8.22; 95% CI = [5.87, 10.56]; P < .001), ASIA motor score (MD = 7.16; 95% CI = [5.15, 9.18]; P < .001), somatosensory evoked potential (MD = 0.25; 95% CI = [0.03, 0.48]; P = .02), motor evoked potential (MD = 0.30; 95% CI = [0.14, 0.46]; P = .0002), and Japanese Orthopaedic Association score (MD = 1.99; 95% CI = [0.39, 3.58]; P = .01) in the BHD combination group compared to the control group. Additionally, there was a significant reduction in visual analog scale pain scores (MD = -0.81; 95% CI = [-1.52, -0.11]; P = .02) with BHD combination treatment, without a significant increase in adverse effects (OR = 0.68; 95% CI = [0.33, 1.41]; P = .3). CONCLUSION The current evidence suggests that BHD is effective and safe in treating SCI, warranting consideration as a complementary and alternative therapy. However, given the low methodological quality of the included studies, further rigorous research is warranted to validate these findings.
Collapse
Affiliation(s)
- Zhongcheng He
- Department of Orthopaedic, Panzhihua Central Hospital, Panzhihua, Sichuan Province, China
| | - Silin Yang
- Department of Orthopaedic, Panzhihua Central Hospital, Panzhihua, Sichuan Province, China
| | - Yuxi Tan
- Department of Orthopaedic, Panzhihua Central Hospital, Panzhihua, Sichuan Province, China
| | - Yulin Liao
- Department of Orthopaedic, Panzhihua Central Hospital, Panzhihua, Sichuan Province, China
| | - Shigang Song
- Department of Orthopaedic, Panzhihua Central Hospital, Panzhihua, Sichuan Province, China
| |
Collapse
|
4
|
Bu H, Wang B, Wu Y, Li P, Cui Y, Jiang X, Yu X, Liu B, Tang M. Curcumin strengthens a spontaneous self-protective mechanism-SP1/PRDX6 pathway, against di-n-butyl phthalate-induced testicular ferroptosis damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122165-122181. [PMID: 37966654 DOI: 10.1007/s11356-023-30962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023]
Abstract
As one of the common plasticizers, di-n-butyl phthalate (DBP) has been using in various daily consumer products worldwide. Since it is easily released from products and exists in the environment for a long time, it has a lasting impact on human health, especially male reproductive health. However, the detailed mechanism of testicular damage from DBP and the protection strategy are still not clear enough. In this study, we found that DBP could induce dose-dependent ferroptosis in testicular tissue. Mechanism dissection indicates that DBP can upregulate SP1 expression, which could directly transcriptionally upregulate PRDX6, a negative regulator of ferroptosis. Overexpression of PRDX6 or adding SP1 agonist curcumin could suppress the DBP-induced ferroptosis on testicular cells. In vivo, rats were given 500 mg/kg/day DBP orally for 3 weeks; elevated levels of ferroptosis were detected in testicular tissue. When the above-mentioned doses of DBP and curcumin at a dose of 300 mg/kg/day were administered intragastrically simultaneously, the testicular ferroptosis induced by DBP was alleviated. Immunohistochemistry and quantitative real-time PCR of testis tissue showed that the expression of PRDX6 was upregulated under the action of DBP and curcumin. These findings suggest a spontaneous self-protection mechanism of testicular tissue from DBP damage by upregulating SP1 and PRDX6. However, it is not strong enough to resist the DBP-induced ferroptosis. Curcumin can strengthen this self-protection mechanism and weaken the level of ferroptosis induced by DBP. This study may help us to develop a novel therapeutic option with curcumin to protect the testicular tissue from ferroptosis and function impairment by DBP.
Collapse
Affiliation(s)
- Hengtao Bu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Bao Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Yulin Wu
- Jiangsu Health Development Research Center, Nanjing, 210036, Jiangsu, China
- National Health and Family Planning Commission Contraceptives Adverse Reaction Surveillance Center, Nanjing, 210036, Jiangsu, China
| | - Pu Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Yankang Cui
- Department of Urology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xuping Jiang
- Department of Urology, Yixing People's Hospital, Yixing, 214200, China
| | - Xiaowen Yu
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210100, Jiangsu, China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Min Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
5
|
Tan W, Qi L, Hu X, Tan Z. Research progress in traditional Chinese medicine in the treatment of Alzheimer's disease and related dementias. Front Pharmacol 2022; 13:921794. [PMID: 36506569 PMCID: PMC9729772 DOI: 10.3389/fphar.2022.921794] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is the world's leading cause of dementia and has become a huge economic burden on nations and families. However, the exact etiology of AD is still unknown, and there are no efficient medicines or methods to prevent the deterioration of cognition. Traditional Chinese medicine (TCM) has made important contributions in the battle against AD based on the characteristics of multiple targets of TCM. This study reviewed the treatment strategies and new discoveries of traditional Chinese medicine in current research, which may be beneficial to new drug researchers.
Collapse
Affiliation(s)
- Wanying Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingjun Qi
- Sichuan Academy of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenghuai Tan
- Sichuan Academy of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Wang Y, Chen H, Wang J, Chen X, Chen L. Exploring the mechanism of Buyang Huanwu Decoction in the treatment of spinal cord injury based on network pharmacology and molecular docking. Medicine (Baltimore) 2022; 101:e31023. [PMID: 36221378 PMCID: PMC9542821 DOI: 10.1097/md.0000000000031023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Buyang Huanwu Decoction, a traditional Chinese medicine decoction, is widely used to treat spinal cord injury in China. However, the underlying mechanism of this decoction in treating spinal cord injury is unclear. This study used network pharmacology and molecular docking to examine the pharmacological mechanism of Buyang Huanwu Decoction in prevention and treatment of spinal cord injury. The active compounds and target genes of Buyang Huanwu Decoction were collected from the Traditional Chinese Medicine Systems Pharmacology and the SwissTargetPrediction Database. The network diagram of "traditional Chinese medicine compound target" was constructed by Cytoscape software. Genetic data of spinal cord injury were obtained by GeneCards database. According to the intersection of Buyang Huanwu Decoction's targets and disease targets, the core targets were searched. The protein-protein interaction network were constructed using the STRING and BisoGenet platforms. Meanwhile, gene ontology enrichment and Kyoto encyclopedia of genes, and genome pathway were performed on the intersection targets by Metascape. Molecular docking technology was adopted to verify the combination of main components and core targets. A total of 109 active compounds and 5440 prediction targets were screened from 7 Chinese herbal medicines of Buyang Huanwu Decoction, with 98 active components and 49 related prediction targets being strongly linked to Spinal Cord Injury. By studying protein-protein interaction network, a total of 8 core proteins were identified, primarily interleukin-6, tumor protein P53, epidermal growth factor receptor, and others. Positive regulation of kinase activity regulation of reaction to inorganic chemicals are the basic biological processes. Buyang Huanwu Decoction cures Spinal Cord Injury primarily by moderating immunological inflammation, apoptosis, and oxidative stress, which involves the cancer pathway, the HIF-1 signaling pathway, the p53 signaling pathway, the MAPK signaling pathway, and so on. The results of molecular docking demonstrated that the primary components could attach to the target protein effectively. Finally, the mechanism of Buyang Huanwu Decoction in the treatment of spinal cord injury through multicomponent, multitarget, and multichannel was deeply explored. And it offers new ideas and directions for future research on the mechanism of the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Ying Wang
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Haixu Chen
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Junwei Wang
- Department of Pediatric Surgery and Vascular Surgery, Zigong Fourth People’s Hospital, Zigong, China
| | - Xin Chen
- Department of Integrated Traditional Chinese and Western Medicine for Pulmonary Disease, Zigong First People’s Hospital, Zigong, China
| | - Lan Chen
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
- * Correspondence: Lan Chen, Department of basic medicine, Sichuan Vocational College of Health and Rehabilitation, East New Town, Yantan District, Zigong City, Sichuan Province 643000, China (e-mail: )
| |
Collapse
|
7
|
Deciphering Pharmacological Mechanism of Buyang Huanwu Decoction for Spinal Cord Injury by Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9921534. [PMID: 33976706 PMCID: PMC8087484 DOI: 10.1155/2021/9921534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Objective The purpose of this study was to investigate the mechanism of action of the Chinese herbal formula Buyang Huanwu Decoction (BYHWD), which is commonly used to treat nerve injuries, in the treatment of spinal cord injury (SCI) using a network pharmacology method. Methods BYHWD-related targets were obtained by mining the TCMSP and BATMAN-TCM databases, and SCI-related targets were obtained by mining the DisGeNET, TTD, CTD, GeneCards, and MalaCards databases. The overlapping targets of the abovementioned targets may be potential therapeutic targets for BYHWD anti-SCI. Subsequently, we performed protein-protein interaction (PPI) analysis, screened the hub genes using Cytoscape software, performed Gene Ontology (GO) annotation and KEGG pathway enrichment analysis, and finally achieved molecular docking between the hub proteins and key active compounds. Results The 189 potential therapeutic targets for BYHWD anti-SCI were overlapping targets of 744 BYHWD-related targets and 923 SCI-related targets. The top 10 genes obtained subsequently included AKT1, IL6, MAPK1, TNF, TP53, VEGFA, CASP3, ALB, MAPK8, and JUN. Fifteen signaling pathways were also screened out after enrichment analysis and literature search. The results of molecular docking of key active compounds and hub target proteins showed a good binding affinity for both. Conclusion This study shows that BYHWD anti-SCI is characterized by a multicomponent, multitarget, and multipathway synergy and provides new insights to explore the specific mechanisms of BYHWD against SCI.
Collapse
|
8
|
Zheng Y, Qi S, Wu F, Hu J, Zhong R, Hua C, Jiang D, Quan R. Chinese Herbal Medicine in Treatment of Spinal Cord Injury: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1593-1616. [DOI: 10.1142/s0192415x20500792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Spinal cord injury (SCI) is a catastrophic disease associated with damaged neurological structures and has become a significant social and economic burden for the health care system and patients’ families. The use of Chinese Herbal Medicine (CHM) to treat SCI has been increasing in recent years. This meta-analysis aimed to investigate the effectiveness of CHM for patients with SCI. Therefore, we included randomized controlled trials (RCTs) of CHM for SCI in seven databases. A total of 26 studies involving 1961 participants were included in this study. No serious heterogeneity or publication bias was observed across each study. The results showed that significant improvements of the American Spinal Injury Association (ASIA)-grading improvement rate ([Formula: see text], [Formula: see text]), clinical effective rate ([Formula: see text], [Formula: see text]), ASIA motor score ([Formula: see text], [Formula: see text]), ASIA sensory score (total) ([Formula: see text], [Formula: see text]), ASIA sensory score (light touch) ([Formula: see text], [Formula: see text]), ASIA sensory score (pinprick) ([Formula: see text], [Formula: see text]), and activities of daily living (ADL) score ([Formula: see text], [Formula: see text]) in CHM group compared with the control group. Among the CHM groups, Buyang Huanwu decoction was the most frequently prescribed herbal formula, while Astragalus membranaceus was the most commonly used single herb. In addition, there were no serious and permanent adverse effects in the two groups. The methodological quality of the most included RCTs was poor and the quality of evidence for the main outcomes was from very low to moderate according to the GRADE system. Current evidence suggests that CHM is an effective and safe treatment for SCI and could be treated as a complementary and alternative option with few side effects. However, considering the low quality, small size, and high risk of the studies identified in this meta-analysis, higher methodological quality, rigorously designed RCTs with large sample sizes are needed to confirm the results.
Collapse
Affiliation(s)
- Yang Zheng
- The Third Clinical Medical College, Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310051, P. R. China
| | - Shangfeng Qi
- Department of Orthopedics, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan 250014, P. R. China
| | - Fengqing Wu
- The Third Clinical Medical College, Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310051, P. R. China
| | - Jintao Hu
- The Third Clinical Medical College, Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310051, P. R. China
| | - Ronglin Zhong
- Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, P. R. China
| | - Cong Hua
- Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, P. R. China
| | - Dashuai Jiang
- Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, P. R. China
| | - Renfu Quan
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou 311200, P. R. China
| |
Collapse
|
9
|
Sodium Tanshinone IIA Silate Exerts Microcirculation Protective Effects against Spinal Cord Injury In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3949575. [PMID: 33101588 PMCID: PMC7568160 DOI: 10.1155/2020/3949575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/10/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Spinal cord microcirculation involves functioning endothelial cells at the blood spinal cord barrier (BSCB) and maintains normal functioning of spinal cord neurons, axons, and glial cells. Protection of both the function and integrity of endothelial cells as well as the prevention of BSCB disruption may be a strong strategy for the treatment of spinal cord injury (SCI) cases. Sodium Tanshinone IIA silate (STS) is used for the treatment of coronary heart disease and improves microcirculation. Whether STS exhibits protective effects for SCI microcirculation is not yet clear. The purpose of this study is to investigate the protective effects of STS on oxygen-glucose deprivation- (OGD-) induced injury of spinal cord endothelial cells (SCMECs) in vitro and to explore effects on BSCB and neurovascular protection in vivo. SCMECs were treated with various concentrations of STS (1 μM, 3 μM, and 10 μM) for 24 h with or without OGD-induction. Cell viability, tube formation, migration, and expression of Notch signaling pathway components were evaluated. Histopathological evaluation (H&E), Nissl staining, BSCB permeability, and the expression levels of von Willebrand Factor (vWF), CD31, NeuN, and Notch signaling pathway components were analyzed. STS was found to improve SCMEC functions and reduce inflammatory mediators after OGD. STS also relieved histopathological damage, increased zonula occludens-1 (ZO-1), inhibited BSCB permeability, rescued microvessels, protected motor neuromas, and improved functional recovery in a SCI model. Moreover, we uncovered that the Notch signaling pathway plays an important role during these processes. These results indicated that STS protects microcirculation in SCI, which may be used as a therapeutic strategy for SCI in the future.
Collapse
|
10
|
Lee YS, Woo SC, Kim SY, Park JY. Understanding the multi-herbal composition of Buyang Huanwu Decoction: A review for better clinical use. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112765. [PMID: 32171896 DOI: 10.1016/j.jep.2020.112765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/29/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu Decoction (BHD) is a multi-herbal composition commonly prescribed in the treatment of cerebrovascular diseases such as stroke. Although studies have been conducted at the cellular (in vitro), animal and human (in vivo) level, there was no detailed analysis on how the composition and proportion of BHD is modified according to target diseases. AIM OF STUDY The purpose of this study is to investigate the composition and proportion of each herb in BHD to summarize how the original BHD was modified according to the target disease. MATERIALS AND METHODS Electronic literature searches were performed in three databases, collecting sixty-eight studies for the final analysis. The studies were divided into three types: cell studies, animal experiments and clinical trial. In the analysis, the decoction formula including the composition and the weight proportion of the herbs in BHD used in the studies and the target diseases were examined. RESULTS The result showed that in cell studies, the targets were mostly cell differentiation, cell injury and immune activation. In animal studies, cerebrovascular diseases such as cerebral ischemia were the most identified target diseases followed by nervous system and cardiovascular diseases. While the proportions of the herbs in BHD used in these studies were in general similar to the original formula, some studies reduced the amount of Astragali Radix to half of the original amount. Modified BHDs were used in four studies for cerebrovascular and peripheral nerve diseases. However, no significant correlation has been observed between the target diseases and the change of the proportion of the herbs in BHD. CONCLUSIONS The most commonly used formula was the original composition of BHD, and modified BHDs were reported to be used to treat cerebrovascular and nervous diseases. Further studies about the effects of BHD by composition and proportion of herbs are needed in the future.
Collapse
Affiliation(s)
- Ye-Seul Lee
- College of Korean Medicine, Gachon University, Gyeonggi-do, 13120, South Korea.
| | - Seong-Cheon Woo
- College of Korean Medicine, Daejeon University, Daejeon, 34520, South Korea.
| | - Song-Yi Kim
- College of Korean Medicine, Gachon University, Gyeonggi-do, 13120, South Korea.
| | - Ji-Yeun Park
- College of Korean Medicine, Daejeon University, Daejeon, 34520, South Korea.
| |
Collapse
|
11
|
Peng C, Zhang W, Dai C, Li W, Shen X, Yuan Y, Yan L, Zhang W, Yao M. Study of the aqueous extract of Aloe vera and its two active components on the Wnt/β-catenin and Notch signaling pathways in colorectal cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112092. [PMID: 31319122 DOI: 10.1016/j.jep.2019.112092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/02/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aloe vera (L.) Burm. f. (Aloe vera) is a common Traditional Chinese Medicine (TCM) recorded in Pharmacopoeia of the People's Republic of China (version 2015). It has been traditionally used for treatment of constipation. Aloe vera requires much attention for its safety evaluation because several studies have reported the association between oral consumption of Aloe vera and the development of colorectal cancer (CRC). However the material basis and molecular mechanism are.still less well elucidated. Although Wnt/β-catenin and Notch signaling pathway have been known to be closely related to the initiation and development of CRC, the impacts of Aloe vera on these cancerous pathways have not been completely determined yet. AIM OF THIS STUDY Hence, this study aimed to study the impacts of Aloe vera on the Wnt/β-catenin and Notch signaling pathway, as well as proliferation of CRC cells. MATERIALS AND METHODS Firstly, the effects of Aloe vera aqueous extract and its two active components (aloin and aloesin) on the Wnt/β-catenin and Notch signaling pathway were studied by luciferase reporter, RT-qPCR, western blotting and immunofluorescence assays, respectively. Furthermore, RNA sequencing analysis (RNA-seq) was then performed to verify their regulatory activities on the Wnt-related and Notch-related genes expression. Finally, their impacts on RKO cell proliferation and cell cycle phase were also evaluated via MTT assay and cell cycle analysis. RESULTS Our results indicate that the aqueous extract of Aloe vera and its active component aloin activated the Wnt/β-catenin pathway and inhibited the Notch signaling pathway only in the presence of Wnt3a. While aloesin was characterized to directly activate the Wnt/β-catenin pathway and inhibit the Notch pathway independent of Wnt3a. Within 24h, the Aloe vera extract and its two components were failed to affect the proliferation or cell cycle phase of RKO cells. Nevertheless, in the presence of Wnt3a, the aqueous extract of Aloe vera with the concentration of 33.3 μg/ml start to promote the cell proliferation of RKO cells after 48h incubation. CONCLUSION In conclusion, this study showed that Aloe vera extract and its active component aloin activated the Wnt/β-catenin pathway and inhibited the Notch pathway in the presence of Wnt3a. While another active component, aloesin, activated the Wnt/β-catenin pathway and inhibited the Notch signaling pathway independent of Wnt3a. Given that Wnt/β-catenin and Notch pathway are closely associated with the progression of CRC, these findings would be helpful to better understand the colonic carcinogenicity of Aloe vera.
Collapse
Affiliation(s)
- Chang Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - WeiJia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Cong Dai
- Guangdong Institute for Drug Control, 766 Shenzhen Road, Huangpu District, Guangzhou, China.
| | - Wa Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Xue Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - YueMei Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Li Yan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China.
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China.
| | - MeiCun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
12
|
Ruan W, Ning G, Feng S, Gao S, Hao Y. MicroRNA‑381/Hes1 is a potential therapeutic target for spinal cord injury. Int J Mol Med 2018; 42:1008-1017. [PMID: 29750292 DOI: 10.3892/ijmm.2018.3658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/17/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate whether microRNA‑381 is a potential therapeutic target for spinal cord injury (SCI) and its possible mechanism. Reverse transcription quantitative polymerase chain reaction (qPCR) for mRNA expression was used to analyze the changes of microRNA-381 expression. Cell viability and cell apoptosis were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. Caspase‑3 activity was measured using caspase‑3 activity kit, and western blot analysis was used to measure the protein expression of neurogenic locus notch homolog protein 1 (Notch1), notch 1 intracellular domain (NICD) and transcription factor HES-1 (Hes1). The data showed that microRNA‑381 expression of model SCI rats was downregulated compared with that of control rats. Overexpression of microRNA‑381 promoted cell proliferation, and inhibited apoptosis and caspase‑3 and apoptosis regulator BAX (Bax) protein expression in neurocytes. Overexpression of microRNA‑381 also increased Wnt and β‑catenin protein expression, and suppressed the protein expression of Notch1, NICD and Hes1 in neurocytes. Wnt inhibitor, Wnt‑C59 (1 µmol/l), inhibited cell proliferation, promoted apoptosis and caspase‑3 and Bax protein expression, suppressed β‑catenin protein expression and induced Hes1 protein expression in neurocytes following microRNA‑381 overexpression. Notch inhibitor, FLI‑06 (1 µmol/l), promoted cell proliferation, inhibited apoptosis and caspase‑3 and Bax protein expression, and suppressed NICD and Hes1 protein expression in neurocytes following microRNA‑381 overexpression. Thus, this study showed that overexpression of microRNA‑381 promotes cell proliferation of neurocytes in SCI via Hes1 expression, which may be a novel important mechanism for SCI in clinical applications.
Collapse
Affiliation(s)
- Wendong Ruan
- Department of Orthopedics, The General Hospital of Tianjin Medical University, Heping, Tianjin 300052, P.R. China
| | - Guangzhi Ning
- Department of Orthopedics, The General Hospital of Tianjin Medical University, Heping, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, The General Hospital of Tianjin Medical University, Heping, Tianjin 300052, P.R. China
| | - Shijie Gao
- Department of Orthopedics, The General Hospital of Tianjin Medical University, Heping, Tianjin 300052, P.R. China
| | - Yan Hao
- Department of Orthopedics, The General Hospital of Tianjin Medical University, Heping, Tianjin 300052, P.R. China
| |
Collapse
|
13
|
Zhou L, Huang Y, Xie H, Mei X. Buyang Huanwu Tang improves denervation-dependent muscle atrophy by increasing ANGPTL4, and increases NF-κB and MURF1 levels. Mol Med Rep 2017; 17:3674-3680. [PMID: 29257347 PMCID: PMC5802173 DOI: 10.3892/mmr.2017.8306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 07/13/2017] [Indexed: 11/06/2022] Open
Abstract
Denervated-dependent skeletal muscle atrophy (DSMA) is a disorder caused by the peripheral neuro‑disconnection of skeletal muscle. The current study aimed to investigate the molecular mechanism and potential therapeutic strategies for the DSMA. A DSMA rat model was established. A lentiviral vector expressing small interfering RNA (siRNA) targeting angiopoietin‑like protein 4 (ANGPTL4) was generated and injected into the rats that were also treated with Buyang Huanwu Tang (BYHWT). Reverse transcription‑quantitative polymerase chain reaction was performed to examine ANGPTL4 mRNA expression in anterior cervical muscle samples. Western blot assay was used to evaluate ANGPTL4, nuclear factor‑κB (NF‑κB) and muscle RING‑finger protein‑1 (MURF1) expression. The ultrastructure of muscle tissues was viewed using transmission electron microscopy. The cell apoptosis in muscle tissues was detected using the terminal deoxynucleotidyl transferase dUTP nick end labeling. The results indicated that BYHWT treatment increased ANGPTL4 mRNA and protein levels in muscle tissues. The suppression of ANGPTL4 using siRNA significantly increased inflammatory cells compared with the control siRNA group. BYHWT protected the ultrastructure muscle tissues and inhibited cell apoptosis in the DSMA model. The protective effect of BYHWT protected may be mediated by increased expression of NF‑κB p65 and MURF1. In conclusion, BYHWT may improve denervation‑dependent muscle atrophy by increasing ANGPTL4 expression, involving NF‑κB and MURF1 signaling.
Collapse
Affiliation(s)
- Lan Zhou
- Basic Theory of Traditional Chinese Medicine Staff Room, Basic Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yufang Huang
- Pathological Staff Room, Basic Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Hui Xie
- Pharmacological Staff Room, School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xiaoyun Mei
- Basic Theory of Traditional Chinese Medicine Staff Room, Basic Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|