1
|
Sharma V, Sharma P, Singh TG. Wnt signalling pathways as mediators of neuroprotective mechanisms: therapeutic implications in stroke. Mol Biol Rep 2024; 51:247. [PMID: 38300425 DOI: 10.1007/s11033-023-09202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
A stroke is a complicated neurological illness that occurs when there is a disruption in the blood flow to the brain. This disruption results in the damage of neurons, which then leads to functional abnormalities. The Wnt signalling pathway, which is already well-known for its important function in development and tissue homeostasis, has recently been recognised as a critical factor in the pathophysiology of stroke. Recent studies have shown the Wnt pathway's roles in stroke-related events. The complex-interactions between the Wnt pathway and stroke emphasising the pathway's contributions to neuro-protection and synaptic plasticity. The Wnt pathway's influence on neuro-genesis and synaptic plasticity underscores its potential for driving stroke recovery and rehabilitation strategies. The current review discusses about the Wnt signalling pathway in brain pathophysiology and stroke with special emphasis on the various pathways involved in the positive and negative modulation of Wnt pathway namely Phosphoinositide 3-kinase (PI3-K), Glycogen synthase kinase-3β (GSK-3β), Mitogen-activated protein kinase (MAPK) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathway.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
2
|
Wang G, Li Z, Lin P, Zhang H, Wang Y, Zhang T, Wang H, Li H, Lin L, Zhao Y, Jia L, Chen Y, Ji H, Zhao W, Fu Z, Zhong Z. Knockdown of Smox protects the integrity of the blood-brain barrier through antioxidant effect and Nrf2 pathway activation in stroke. Int Immunopharmacol 2024; 126:111183. [PMID: 37984250 DOI: 10.1016/j.intimp.2023.111183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Once an ischemic stroke occurs, reactive oxygen species (ROS) and oxidative stress degrade the tight connections between cerebral endothelial cells resulting in their damage. The expression of antioxidant genes may be enhanced, and ROS formation may be reduced following Nrf2 activation, which is associated with protection against ischemic stroke. Overexpression of spermine oxidase (Smox) in the neocortex led to increased H2O2 production. However, how Smox impacts the regulation of the blood-brain barrier (BBB) through antioxidants has not been examined yet. We conducted experiments both in the cell level and in the transient middle cerebral artery occlusion (tMCAO) model to evaluate the effect of Smox siRNA lentivirus (si-Smox) knockdown on BBB protection against ischemic stroke. Mice treated with si-Smox showed remarkably decreased BBB breakdown and reduced endothelial inflammation following stroke. The treatment with si-Smox significantly elevated the Bcl-2 to Bax ratio and decreased the production of cleaved caspase-3 in the tMCAO model. Further investigation revealed that the neuroprotective effect was the result of the antioxidant properties of si-Smox, which reduced oxidative stress and enhanced CD31+ cells in the peri-infarct cortical areas. Of significance, si-Smox activated Nrf2 in both bEnd.3 cells and tMCAO animals, and blocking Nrf2 with brusatol diminished the protective effects of si-Smox. The study findings suggest that si-Smox exerts neuroprotective effects and promotes angiogenesis by activating the Nrf2 pathway, thus decreasing oxidative stress and apoptosis caused by tMCAO. As a result, si-Smox may hold potential as a therapeutic candidate for preserving BBB integrity while treating ischemic stroke.
Collapse
Affiliation(s)
- Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Peng Lin
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Huishu Zhang
- Teaching Center of Biotechnology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanyan Wang
- Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Tongshuai Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hui Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Heming Li
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Lexun Lin
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yuehui Zhao
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Lina Jia
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yang Chen
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hong Ji
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Wenran Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zhongqiu Fu
- Department of Neonatology, Zhuhai Women and Children's Hospital, Zhuhai, Guangdong 519000, China.
| | - Zhaohua Zhong
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
3
|
Kuo HC, Chen KD, Li PC. Molecular Hydrogen: Emerging Treatment for Stroke Management. Chem Res Toxicol 2023; 36:1864-1871. [PMID: 37988743 DOI: 10.1021/acs.chemrestox.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Ischemic stroke is a major cause of death and disability worldwide. However, only intravenous thrombolysis using mechanical thrombectomy or tissue plasminogen activator is considered an effective and approved treatment. Molecular hydrogen is an emerging therapeutic agent and has recently become a research focus. Molecular hydrogen is involved in antioxidative, anti-inflammatory, and antiapoptotic functions in normal physical processes and may play an important role in stroke management; it has been evaluated in numerous preclinical and clinical studies in several administration formats, including inhalation of hydrogen gas, intravenous or intraperitoneal injection of hydrogen-enriched solution, or drinking of hydrogen-enriched water. In addition to investigation of the underlying mechanisms, the safety and efficacy of using molecular hydrogen have been carefully evaluated, and favorable outcomes have been achieved. All available evidence indicates that molecular hydrogen may be a promising treatment option for stroke management in the future. This review aimed to provide an overview of the role of molecular hydrogen in the management of stroke and possible further modifications of treatment conditions and procedures in terms of dose, duration, and administration route.
Collapse
Affiliation(s)
- Ho-Chang Kuo
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Taiwan Association for the Promotion of Molecular Hydrogen, Kaohsiung 83302, Taiwan
| | - Kuang-Den Chen
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Liver Transplantation Center and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Taiwan Association for the Promotion of Molecular Hydrogen, Kaohsiung 83302, Taiwan
| | - Ping-Chia Li
- Department of Occupational Therapy, I-Shou University, Yanchao District, Kaohsiung 82445, Taiwan
- Taiwan Association for the Promotion of Molecular Hydrogen, Kaohsiung 83302, Taiwan
| |
Collapse
|
4
|
Liao B, Geng L, Zhang F, Shu L, Wei L, Yeung PKK, Lam KSL, Chung SK, Chang J, Vanhoutte PM, Xu A, Wang K, Hoo RLC. Adipocyte fatty acid-binding protein exacerbates cerebral ischaemia injury by disrupting the blood-brain barrier. Eur Heart J 2021; 41:3169-3180. [PMID: 32350521 PMCID: PMC7556749 DOI: 10.1093/eurheartj/ehaa207] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/12/2019] [Accepted: 03/11/2020] [Indexed: 01/06/2023] Open
Abstract
Aims Adipocyte fatty acid-binding protein (A-FABP) is an adipokine implicating in various metabolic diseases. Elevated circulating levels of A-FABP correlate positively with poor prognosis in ischaemic stroke (IS) patients. No information is available concerning the role of A-FABP in the pathogenesis of IS. Experiments were designed to determine whether or not A-FABP mediates blood–brain barrier (BBB) disruption, and if so, to explore the molecular mechanisms underlying this deleterious effects. Methods and results Circulating A-FABP and its cerebral expression were increased in mice after middle cerebral artery occlusion. Genetic deletion and pharmacological inhibition of A-FABP alleviated cerebral ischaemia injury with reduced infarction volume, cerebral oedema, neurological deficits, and neuronal apoptosis; BBB disruption was attenuated and accompanied by reduced degradation of tight junction proteins and induction of matrix metalloproteinases-9 (MMP-9). In patients with acute IS, elevated circulating A-FABP levels positively correlated with those of MMP-9 and cerebral infarct volume. Mechanistically, ischaemia-induced elevation of A-FABP selectively in peripheral blood monocyte-derived macrophages and cerebral resident microglia promoted MMP-9 transactivation by potentiating JNK/c-Jun signalling, enhancing degradation of tight junction proteins and BBB leakage. The detrimental effects of A-FABP were prevented by pharmacological inhibition of MMP-9. Conclusion A-FABP is a key mediator of cerebral ischaemia injury promoting MMP-9-mediated BBB disruption. Inhibition of A-FABP is a potential strategy to improve IS outcome. ![]()
Collapse
Affiliation(s)
- Boya Liao
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107, Yanjiang Road West, Guangzhou 510120, China
| | - Lingling Shu
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ling Wei
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory on Cognition and Neuropsychiatric Disorders, No. 218, Jixi Road, Hefei, Anhui Province 230022, China
| | - Patrick K K Yeung
- Department of Anatomy, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Karen S L Lam
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sookja K Chung
- Department of Anatomy, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.,Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau, China
| | - Junlei Chang
- Centre for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, No. 1068, Xueyuan Blvd, Xili Nanshan, Shenzhen 518055, China
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory on Cognition and Neuropsychiatric Disorders, No. 218, Jixi Road, Hefei, Anhui Province 230022, China
| | - Ruby L C Hoo
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
5
|
Cao H, Seto SW, Bhuyan DJ, Chan HH, Song W. Effects of Thrombin on the Neurovascular Unit in Cerebral Ischemia. Cell Mol Neurobiol 2021; 42:973-984. [PMID: 33392917 DOI: 10.1007/s10571-020-01019-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia is a cerebrovascular disease with high morbidity and mortality that poses a significant burden on society and the economy. About 60% of cerebral ischemia is caused by thrombus, and the formation of thrombus proceeds from insoluble fibrin, following its transformation from liquid fibrinogen. In thrombus-induced ischemia, increased permeability of the blood-brain barrier (BBB), followed by the extravasation of blood components into the brain results in an altered brain microenvironment. Changes in the brain microenvironment affect brain function and the neurovascular unit (NVU), the working unit of the brain. Recent studies have reported that coagulation factors interact with the NVU and its components, but the specific function of this interaction is highly speculative and warrants further investigations. In this article, we reviewed the role of coagulation factors in cerebral ischemia and the role of coagulation factors in thrombosis. Additionally, the influence of thrombin on the NVU is introduced, as well as in the function of NVU, which may help to explore part of brain injury mechanism during ischemia. Lastly, we propose some novel therapeutic approaches on ischemic stroke by reducing the risk of coagulation.
Collapse
Affiliation(s)
- Hui Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, 100091, China
| | - Sai Wang Seto
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China.,NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Hoi Huen Chan
- Hong Kong Community College, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wenting Song
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, 100091, China.
| |
Collapse
|
6
|
Wiciński M, Wódkiewicz E, Górski K, Walczak M, Malinowski B. Perspective of SGLT2 Inhibition in Treatment of Conditions Connected to Neuronal Loss: Focus on Alzheimer's Disease and Ischemia-Related Brain Injury. Pharmaceuticals (Basel) 2020; 13:ph13110379. [PMID: 33187206 PMCID: PMC7697611 DOI: 10.3390/ph13110379] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are oral anti-hyperglycemic agents approved for the treatment of type 2 diabetes mellitus. Some reports suggest their presence in the central nervous system and possible neuroprotective properties. SGLT2 inhibition by empagliflozin has shown to reduce amyloid burden in cortical regions of APP/PS1xd/db mice. The same effect was noticed regarding tau pathology and brain atrophy volume. Empagliflozin presented beneficial effect on cognitive function, which may be connected to an increase in cerebral brain-derived neurotrophic factor. Canagliflozin and dapagliflozin may possess acetylcholinesterase inhibiting activity, resembling in this matter Alzheimer’s disease-registered therapies. SGLT2 inhibitors may prove to impact risk factors of atherosclerosis and pathways participating both in acute and late stage of stroke. Their mechanism of action can be related to induction in hepatocyte nuclear factor-1α, vascular endothelial growth factor-A, and proinflammatory factors limitation. Empagliflozin may have a positive effect on preservation of neurovascular unit in diabetic mice, preventing its aberrant remodeling. Canagliflozin seems to present some cytostatic properties by limiting both human and mice endothelial cells proliferation. The paper presents potential mechanisms of SGLT-2 inhibitors in conditions connected with neuronal damage, with special emphasis on Alzheimer’s disease and cerebral ischemia.
Collapse
|
7
|
Menet R, Lecordier S, ElAli A. Wnt Pathway: An Emerging Player in Vascular and Traumatic Mediated Brain Injuries. Front Physiol 2020; 11:565667. [PMID: 33071819 PMCID: PMC7530281 DOI: 10.3389/fphys.2020.565667] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
The Wnt pathway, which comprises the canonical and non-canonical pathways, is an evolutionarily conserved mechanism that regulates crucial biological aspects throughout the development and adulthood. Emergence and patterning of the nervous and vascular systems are intimately coordinated, a process in which Wnt pathway plays particularly important roles. In the brain, Wnt ligands activate a cell-specific surface receptor complex to induce intracellular signaling cascades regulating neurogenesis, synaptogenesis, neuronal plasticity, synaptic plasticity, angiogenesis, vascular stabilization, and inflammation. The Wnt pathway is tightly regulated in the adult brain to maintain neurovascular functions. Historically, research in neuroscience has emphasized essentially on investigating the pathway in neurodegenerative disorders. Nonetheless, emerging findings have demonstrated that the pathway is deregulated in vascular- and traumatic-mediated brain injuries. These findings are suggesting that the pathway constitutes a promising target for the development of novel therapeutic protective and restorative interventions. Yet, targeting a complex multifunctional signal transduction pathway remains a major challenge. The review aims to summarize the current knowledge regarding the implication of Wnt pathway in the pathobiology of ischemic and hemorrhagic stroke, as well as traumatic brain injury (TBI). Furthermore, the review will present the strategies used so far to manipulate the pathway for therapeutic purposes as to highlight potential future directions.
Collapse
Affiliation(s)
- Romain Menet
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
8
|
Wang F, Li R, Tu P, Chen J, Zeng K, Jiang Y. Total Glycosides of Cistanche deserticola Promote Neurological Function Recovery by Inducing Neurovascular Regeneration via Nrf-2/Keap-1 Pathway in MCAO/R Rats. Front Pharmacol 2020; 11:236. [PMID: 32256351 PMCID: PMC7089931 DOI: 10.3389/fphar.2020.00236] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background The traditional Chinese medicine Cistanche deserticola has been reported to be valid for cardiovascular and cerebrovascular diseases. However, its active components for the protection of ischemic stroke are not clear. We aimed to explore the active components of C. deserticola against ischemic stroke as well as its potential mechanisms. Methods We investigated the brain protective effects of extracts from C. deserticola, total glycosides (TGs), polysaccharides (PSs), and oligosaccharides (OSs) in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining was used to assess the cerebral infarction volume, and Evans blue assay was adopted to assess the blood-brain barrier (BBB) permeability. Then, the expressions CD31, α-SMA, PDGFRβ, SYN, PSD95, MAP-2, ZO-1, claudin-5, occludin, Keap-1, and Nrf-2 were analyzed using western blotting or immunofluorescence, and the activities MDA, SOD, CAT, and GSH-Px were analyzed using kits. Results TGs treatment remarkably decreased neurological deficit scores and infarction volumes, promoted angiogenesis and neural remodeling, and effectively maintained blood-brain-barrier integrity compared with the model group. Furthermore, TGs significantly decreased MDA levels and increased antioxidant activities (SOD, CAT, and GSH-Px) in brains. Meanwhile, TGs remarkably downregulated Keap-1 expression and facilitated Nrf-2 nuclear translocation. On the contrary, no protective effects were observed for PSs and OSs groups. Conclusion TGs are the main active components of C. deserticola against MCAO/R-induced cerebral injury, and protection is mainly via the Nrf-2/Keap-1 pathway.
Collapse
Affiliation(s)
- Fujiang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ruiyan Li
- Department of Pharmacology, Changzhi Medical College, Shanxi, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
9
|
Bell AH, Miller SL, Castillo-Melendez M, Malhotra A. The Neurovascular Unit: Effects of Brain Insults During the Perinatal Period. Front Neurosci 2020; 13:1452. [PMID: 32038147 PMCID: PMC6987380 DOI: 10.3389/fnins.2019.01452] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022] Open
Abstract
The neurovascular unit (NVU) is a relatively recent concept in neuroscience that broadly describes the relationship between brain cells and their blood vessels. The NVU incorporates cellular and extracellular components involved in regulating cerebral blood flow and blood-brain barrier function. The NVU within the adult brain has attracted strong research interest and its structure and function is well described, however, the NVU in the developing brain over the fetal and neonatal period remains much less well known. One area of particular interest in perinatal brain development is the impact of known neuropathological insults on the NVU. The aim of this review is to synthesize existing literature to describe structure and function of the NVU in the developing brain, with a particular emphasis on exploring the effects of perinatal insults. Accordingly, a brief overview of NVU components and function is provided, before discussion of NVU development and how this may be affected by perinatal pathologies. We have focused this discussion around three common perinatal insults: prematurity, acute hypoxia, and chronic hypoxia. A greater understanding of processes affecting the NVU in the perinatal period may enable application of targeted therapies, as well as providing a useful basis for research as it expands further into this area.
Collapse
Affiliation(s)
- Alexander H. Bell
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Srivastava A, Srivastava P, Verma R. Role of bone marrow-derived macrophages (BMDMs) in neurovascular interactions during stroke. Neurochem Int 2019; 129:104480. [DOI: 10.1016/j.neuint.2019.104480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
|
11
|
Yun CW, Lee SH. Enhancement of Functionality and Therapeutic Efficacy of Cell-Based Therapy Using Mesenchymal Stem Cells for Cardiovascular Disease. Int J Mol Sci 2019; 20:ijms20040982. [PMID: 30813471 PMCID: PMC6412804 DOI: 10.3390/ijms20040982] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease usually triggers coronary heart disease, stroke, and ischemic diseases, thus promoting the development of functional failure. Mesenchymal stem cells (MSCs) are cells that can be isolated from various human tissues, with multipotent and immunomodulatory characteristics to help damaged tissue repair and avoidance of immune responses. Much research has proved the feasibility, safety, and efficiency of MSC-based therapy for cardiovascular disease. Despite the fact that the precise mechanism of MSCs remains unclear, their therapeutic capability to treat ischemic diseases has been tested in phase I/II clinical trials. MSCs have the potential to become an effective therapeutic strategy for the treatment of ischemic and non-ischemic cardiovascular disorders. The molecular mechanism underlying the efficacy of MSCs in promoting engraftment and accelerating the functional recovery of injury sites is still unclear. It is hypothesized that the mechanisms of paracrine effects for the cardiac repair, optimization of the niche for cell survival, and cardiac remodeling by inflammatory control are involved in the interaction between MSCs and the damaged myocardial environment. This review focuses on recent experimental and clinical findings related to cardiovascular disease. We focus on MSCs, highlighting their roles in cardiovascular disease repair, differentiation, and MSC niche, and discuss their therapeutic efficacy and the current status of MSC-based cardiovascular disease therapies.
Collapse
Affiliation(s)
- Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea.
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea.
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 34538, Korea.
| |
Collapse
|
12
|
Guruswamy R, ElAli A. Complex Roles of Microglial Cells in Ischemic Stroke Pathobiology: New Insights and Future Directions. Int J Mol Sci 2017; 18:ijms18030496. [PMID: 28245599 PMCID: PMC5372512 DOI: 10.3390/ijms18030496] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke constitutes the major cause of death and disability in the industrialized world. The interest in microglia arose from the evidence outlining the role of neuroinflammation in ischemic stroke pathobiology. Microglia constitute the powerhouse of innate immunity in the brain. Microglial cells are highly ramified, and use these ramifications as sentinels to detect changes in brain homeostasis. Once a danger signal is recognized, cells become activated and mount specialized responses that range from eliminating cell debris to secreting inflammatory signals and trophic factors. Originally, it was suggested that microglia play essentially a detrimental role in ischemic stroke. However, recent reports are providing evidence that the role of these cells is more complex than what was originally thought. Although these cells play detrimental role in the acute phase, they are required for tissue regeneration in the post-acute phases. This complex role of microglia in ischemic stroke pathobiology constitutes a major challenge for the development of efficient immunomodulatory therapies. This review aims at providing an overview regarding the role of resident microglia and peripherally recruited macrophages in ischemic pathobiology. Furthermore, the review will highlight future directions towards the development of novel fine-tuning immunomodulatory therapeutic interventions.
Collapse
Affiliation(s)
- Revathy Guruswamy
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec City, QC G1V 4G2, Canada.
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada.
| | - Ayman ElAli
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec City, QC G1V 4G2, Canada.
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada.
| |
Collapse
|
13
|
Shi L, Cao HM, Li Y, Xu SX, Zhang Y, Zhang Y, Jin ZF. Electroacupuncture improves neurovascular unit reconstruction by promoting collateral circulation and angiogenesis. Neural Regen Res 2017; 12:2000-2006. [PMID: 29323038 PMCID: PMC5784347 DOI: 10.4103/1673-5374.221156] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Acupuncture at Shuigou (GV26) shows good clinical efficacy for treating stroke, but its mechanism remains poorly understood. In this study, a cerebral infarction model of ischemia/reperfusion injury received electroacupuncture at GV26 (15 Hz and 1 mA, continuous wave [biphasic pulses], for 5 minutes). Electroacupuncture effectively promoted regional cerebral blood flow on the infarct and non-infarct sides, increased infarct lesions, lectin, and number of blood vessels, upregulated von Willebrand factor and cell proliferation marker Ki67 expression, and diminished neurological severity score. These findings confirm that electroacupuncture at GV26 promotes establishment of collateral circulation and angiogenesis, and improves neurological function.
Collapse
Affiliation(s)
- Lei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong-Mei Cao
- National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Ying Li
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Shi-Xin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhe-Feng Jin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
14
|
Lapchak PA, Zhang JH. The High Cost of Stroke and Stroke Cytoprotection Research. Transl Stroke Res 2016; 8:307-317. [PMID: 28039575 DOI: 10.1007/s12975-016-0518-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Acute ischemic stroke is inadequately treated in the USA and worldwide due to a lengthy history of neuroprotective drug failures in clinical trials. The majority of victims must endure life-long disabilities that not only affect their livelihood, but also have an enormous societal economic impact. The rapid development of a neuroprotective or cytoprotective compound would allow future stroke victims to receive a treatment to reduce disabilities and further promote recovery of function. This opinion article reviews in detail the enormous costs associated with developing a small molecule to treat stroke, as well as providing a timely overview of the cell-death time-course and relationship to the ischemic cascade. Distinct temporal patterns of cell-death of neurovascular unit components provide opportunities to intervene and optimize new cytoprotective strategies. However, adequate research funding is mandatory to allow stroke researchers to develop and test their novel therapeutic approach to treat stroke victims.
Collapse
Affiliation(s)
- Paul A Lapchak
- Director of Translational Research, Department of Neurology & Neurosurgery, Advanced Health Sciences Pavilion, Suite 8305, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA, 90048, USA.
| | - John H Zhang
- Director, Center for Neuroscience Research, Loma Linda University School of Medicine, 11175 Campus St, Loma Linda, CA, 92350, USA
| |
Collapse
|