1
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2024:10.1007/s12035-024-04246-w. [PMID: 38816676 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
2
|
Ben-Zion Z, Korem N, Fine NB, Katz S, Siddhanta M, Funaro MC, Duek O, Spiller TR, Danböck SK, Levy I, Harpaz-Rotem I. Structural Neuroimaging of Hippocampus and Amygdala Subregions in Posttraumatic Stress Disorder: A Scoping Review. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:120-134. [PMID: 38298789 PMCID: PMC10829655 DOI: 10.1016/j.bpsgos.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 02/02/2024] Open
Abstract
Numerous studies have explored the relationship between posttraumatic stress disorder (PTSD) and the hippocampus and the amygdala because both regions are implicated in the disorder's pathogenesis and pathophysiology. Nevertheless, those key limbic regions consist of functionally and cytoarchitecturally distinct substructures that may play different roles in the etiology of PTSD. Spurred by the availability of automatic segmentation software, structural neuroimaging studies of human hippocampal and amygdala subregions have proliferated in recent years. Here, we present a preregistered scoping review of the existing structural neuroimaging studies of the hippocampus and amygdala subregions in adults diagnosed with PTSD. A total of 3513 studies assessing subregion volumes were identified, 1689 of which were screened, and 21 studies were eligible for this review (total N = 2876 individuals). Most studies examined hippocampal subregions and reported decreased CA1, CA3, dentate gyrus, and subiculum volumes in PTSD. Fewer studies investigated amygdala subregions and reported altered lateral, basal, and central nuclei volumes in PTSD. This review further highlights the conceptual and methodological limitations of the current literature and identifies future directions to increase understanding of the distinct roles of hippocampal and amygdalar subregions in posttraumatic psychopathology.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Nachshon Korem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Naomi B. Fine
- Sagol Brain Institute Tel-Aviv, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Social Sciences, School of Psychological Science, Tel Aviv University, Tel Aviv, Israel
| | - Sophia Katz
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Megha Siddhanta
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Melissa C. Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut
| | - Or Duek
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Epidemiology, Biostatistics and Community Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tobias R. Spiller
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Sarah K. Danböck
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris London University of Salzburg, Salzburg, Austria
| | - Ifat Levy
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Ilan Harpaz-Rotem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| |
Collapse
|
3
|
Madrigal M, Martín P, Lamus F, Fernandez JM, Gato A, Alonso MI. Embryonic cerebrospinal fluid influence in the subependymal neurogenic niche in adult mouse hippocampus. Tissue Cell 2023; 82:102120. [PMID: 37285750 DOI: 10.1016/j.tice.2023.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
The adult mouse hippocampal neurogenic niche is a complex structure which is not completely understood. It has mainly been related to the Subgranular layer of the dentate gyrus; however, as a result of differential neural stem cell populations reported in the subventricular zone of the lateral ventricle and associated with the hippocampus, the possibility remains of a multifocal niche reproducing developmental stages. Here, using a set of molecular markers for neural precursors, we describe in the adult mouse brain hippocampus the existence of a disperse population of neural precursors in the Subependymal Zone, the Dentate Migratory Stream and the hilus; these display dynamic behaviour compatible with neurogenesis. This supports the idea that the adult hippocampal niche cannot be restricted to the dentate gyrus subgranular layer. In other neurogenic niches such as the Subventricular Zone, a functional periventricular dependence has been shown due to the ability to respond to embryonic cerebro-spinal fluid. In this study, we demonstrate that neural precursors from the three areas studied (Sub-ependymal Zone, Dentate Migratory Stream and hilus) are able to modify their behaviour by increasing neurogenesis in a locally differential manner. Our results are compatible with the persistence in the adult mouse hippocampus of a neurogenic niche with the same spatial structure as that seen during development and early postnatal stages.
Collapse
Affiliation(s)
- M Madrigal
- Facultad de Medicina, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain; Departamento de Anatomía y Radiología, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain
| | - P Martín
- Facultad de Medicina, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain; Departamento de Anatomía y Radiología, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain
| | - F Lamus
- Facultad de Medicina, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain; Departamento de Anatomía y Radiología, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain
| | - J M Fernandez
- Facultad de Medicina, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain; Departamento de Biología Celular, Histología y Farmacología, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain
| | - A Gato
- Facultad de Medicina, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain; Departamento de Anatomía y Radiología, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain; Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Valladolid, Valladolid, Spain.
| | - M I Alonso
- Facultad de Medicina, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain; Departamento de Anatomía y Radiología, Universidad de Valladolid, C/ Ramón y Cajal 7, 47005 Valladolid, Spain; Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
4
|
Redina OE, Babenko VN, Smagin DA, Kovalenko IL, Galyamina AG, Efimov VM, Kudryavtseva NN. Effects of Positive Fighting Experience and Its Subsequent Deprivation on the Expression Profile of Mouse Hippocampal Genes Associated with Neurogenesis. Int J Mol Sci 2023; 24:3040. [PMID: 36769363 PMCID: PMC9918130 DOI: 10.3390/ijms24033040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The hippocampus is known as the brain region implicated in visuospatial processes and processes associated with learning and short- and long-term memory. An important functional characteristic of the hippocampus is lifelong neurogenesis. A decrease or increase in adult hippocampal neurogenesis is associated with a wide range of neurological diseases. We have previously shown that in adult male mice with a chronic positive fighting experience in daily agonistic interactions, there is an increase in the proliferation of progenitor neurons and the production of young neurons in the dentate gyrus (in hippocampus), and these neurogenesis parameters remain modified during 2 weeks of deprivation of further fights. The aim of the present work was to identify hippocampal genes associated with neurogenesis and involved in the formation of behavioral features in mice with the chronic experience of wins in aggressive confrontations, as well as during the subsequent 2-week deprivation of agonistic interactions. Hippocampal gene expression profiles were compared among three groups of adult male mice: chronically winning for 20 days in the agonistic interactions, chronically victorious for 20 days followed by the 2-week deprivation of fights, and intact (control) mice. Neurogenesis-associated genes were identified whose transcription levels changed during the social confrontations and in the subsequent period of deprivation of fights. In the experimental males, some of these genes are associated with behavioral traits, including abnormal aggression-related behavior, an abnormal anxiety-related response, and others. Two genes encoding transcription factors (Nr1d1 and Fmr1) were likely to contribute the most to the between-group differences. It can be concluded that the chronic experience of wins in agonistic interactions alters hippocampal levels of transcription of multiple genes in adult male mice. The transcriptome changes get reversed only partially after the 2-week period of deprivation of fights. The identified differentially expressed genes associated with neurogenesis and involved in the control of a behavior/neurological phenotype can be used in further studies to identify targets for therapeutic correction of the neurological disturbances that develop in winners under the conditions of chronic social confrontations.
Collapse
Affiliation(s)
- Olga E. Redina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Vladimir N. Babenko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Dmitry A. Smagin
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Irina L. Kovalenko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna G. Galyamina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Vadim M. Efimov
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Natalia N. Kudryavtseva
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg 199034, Russia
| |
Collapse
|
5
|
Azeez IA, Awogbindin IO, Olayinka JN, Folarin RO, Adamu AS, Ior LD, Shehu AM, Mukhtar AI, Ajeigbe OF, Emokpae AO, Usende IL, Babatunde BR, Yusha'u Y, Olateju OI, Kamoga R, Benson AIO, Oparaji KC, Owemidu IO, Iliyasu MO, Imam MI, Olopade JO. Neural stem cell research in Africa: current realities and future prospects. Biol Open 2022; 11:280534. [PMID: 36326097 PMCID: PMC9641530 DOI: 10.1242/bio.059574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neural stem cells (NSCs) are immature progenitor cells that are found in developing and adult brains that have the potential of dividing actively and renewing themselves, with a complex form of gene expression. The generation of new brain cells in adult individuals was initially considered impossible, however, the landmark discovery of human neural stem cells in the hippocampus has been followed by further discoveries in other discreet regions of the brain. Investigation into the current state in Africa of the research and use of NSCs shows relatively limited activities on the continent. Information on the African application of NSCs for modelling disease mechanisms, drug discovery, and therapeutics is still limited. The International Brain Research Organization (IBRO)-African Regional Committee (ARC), with support from the Company of Biologists, and the Movement Disorder Society, sponsored the first African Basic School on NSC in Ibadan, Nigeria, with the vision of bringing together young neuroscientists and physicians across different fields in neuroscience to learn from leaders who have applied NSCs in stem cell research, the pathophysiology of neurodegenerative diseases, neuroanatomy, and neurotherapeutics. Twenty early-career researchers in academic institutions at junior and senior faculty cadres were selected from South Africa, Uganda and Nigeria. The students and organizer of the school, who wrote this review on the state of NSCs research in Africa, recommended the following: (1) other African countries can take a cue from South Africa and Nigeria in probing the phenomena of adult neurogenesis in unique animal species on the continent; (2) Africa should leverage the expertise and facilities of South African scientists and international collaborators in scaling up NSC research into these unique species and (3) Centers of Excellence should be established on the continent to serve as research hubs for training postgraduate students, and facilities for African scientists who trained overseas on NSCs.
Collapse
Affiliation(s)
- Idris A. Azeez
- Department of Veterinary Anatomy, University of Jos 1 , Jos, 930001 Nigeria
| | | | - Juliet N. Olayinka
- Department of Pharmacology and Therapeutics, Afe Babalola University 3 , Ado-Ekiti, 360001 Nigeria
| | - Royhaan O. Folarin
- Department of Anatomy, Olabisi Onabanjo University 4 , Ago-Iwoye, 120107 Nigeria
| | - Abubakar S. Adamu
- Department of Human Anatomy, Ahmadu Bello University 5 , Zaria, 810107 , Nigeria
| | - Lydia D. Ior
- Department of Pharmacology, University of Jos 6 , Jos, 930001 , Nigeria
| | - Asmau M. Shehu
- Department of Human Anatomy, Federal University Dutse 7 , Dutse, 720223 , Nigeria
- School of Anatomical Sciences, University of the Witwatersrand 8 , Johannesburg, Wits 2050 , South Africa
| | - Abubakar I. Mukhtar
- Department of Human Anatomy, Ahmadu Bello University 5 , Zaria, 810107 , Nigeria
| | - Olufunke F. Ajeigbe
- Elizade University, Ilara-Mokin, 340112 9 Department of Physical and Chemical Sciences, Biochemistry Programme , , Nigeria
| | | | - Ifukibot L. Usende
- Department of Veterinary Anatomy, University of Abuja 11 , Abuja, 900105 , Nigeria
| | | | - Yusuf Yusha'u
- Department of Human Physiology, Ahmadu Bello University 12 , Zaria, 810107 , Nigeria
| | - Oladiran I. Olateju
- School of Anatomical Sciences, University of the Witwatersrand 8 , Johannesburg, Wits 2050 , South Africa
| | - Ronald Kamoga
- Department of Pharmacology and Therapeutics, Mbarara University of Science and Technology 13 , Mbarara P.O. Box 1410 , Uganda
| | - Ayoola I. O. Benson
- Department of Human Anatomy, Elizade University, Ilara-Mokin 14 , Abakaliki, 482131 Nigeria
| | - Kenneth C. Oparaji
- Department of Physiology, Alex Ekwueme Federal University Ndufu-Alike 15 , Abakaliki, 482131 , Nigeria
| | - Idowu O. Owemidu
- Department of Physiology, Kogi State University 16 , Anyigba, 272102 , Nigeria
| | - Musa O. Iliyasu
- Department of Anatomy, Kogi State University 17 , Anyigba, 272102 , Nigeria
| | - Maryam I. Imam
- Department of Human Physiology, Ahmadu Bello University 12 , Zaria, 810107 , Nigeria
| | - James O. Olopade
- Department of Veterinary Anatomy, University of Ibadan 18 , Ibadan, 200005 , Nigeria
| |
Collapse
|
6
|
Cutuli D, Sampedro-Piquero P. BDNF and its Role in the Alcohol Abuse Initiated During Early Adolescence: Evidence from Preclinical and Clinical Studies. Curr Neuropharmacol 2022; 20:2202-2220. [PMID: 35748555 PMCID: PMC9886842 DOI: 10.2174/1570159x20666220624111855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a crucial brain signaling protein that is integral to many signaling pathways. This neurotrophin has shown to be highly involved in brain plastic processes such as neurogenesis, synaptic plasticity, axonal growth, and neurotransmission, among others. In the first part of this review, we revise the role of BDNF in different neuroplastic processes within the central nervous system. On the other hand, its deficiency in key neural circuits is associated with the development of psychiatric disorders, including alcohol abuse disorder. Many people begin to drink alcohol during adolescence, and it seems that changes in BDNF are evident after the adolescent regularly consumes alcohol. Therefore, the second part of this manuscript addresses the involvement of BDNF during adolescent brain maturation and how this process can be negatively affected by alcohol abuse. Finally, we propose different BNDF enhancers, both behavioral and pharmacological, which should be considered in the treatment of problematic alcohol consumption initiated during the adolescence.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Medicine and Psychology Faculty, University Sapienza of Rome, Rome, Italy; ,I.R.C.C.S. Fondazione Santa Lucia, Laboratorio di Neurofisiologia Sperimentale e del Comportamento, Via del Fosso di Fiorano 64, 00143 Roma, Italy; ,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| | - Piquero Sampedro-Piquero
- Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| |
Collapse
|
7
|
Abstract
Neurogenesis encompasses the formation and development of neurons in the mammalian brain, mainly occurring in hippocampus and the olfactory system. This process is rapid, accurate, and very sensitive to the external stressors including environment, diet, age, anxiety, stress, depression, diet, and hormones. The range of stressors is big and directly impacts the generation, maturation and migration, efficacy, and myelination of the neuronal cells. The field of regenerative medicine focuses on combating the direct or indirect effects of these stressors on the process of neurogenesis, and ensures increased general and neuronal communications and functioning. Understanding the deep secrets of brain signaling and devising ways to increase drug availability is tough, considering the complexity and intricate details of the neuronal networks and signaling in the CNS. It is imperative to understand this complexity and introduce potent and efficacious ways to combat diseases. This perspective offers an insight into how neurogenesis could be aided by nanotechnology and what plausible nanomaterials are available to culminate neurogenesis-related neurological disorders. The nanomaterials are promising as they are minute, robust, and effective and help in diagnostics and therapeutics such as drug delivery, maturation and neuroprotection, neurogenesis, imaging, and neurosurgery.
Collapse
|
8
|
Al Mamun A, Matsuzaki K, Islam R, Hossain S, Hossain ME, Katakura M, Arai H, Shido O, Hashimoto M. Chronic Administration of Thymoquinone Enhances Adult Hippocampal Neurogenesis and Improves Memory in Rats Via Regulating the BDNF Signaling Pathway. Neurochem Res 2021; 47:933-951. [PMID: 34855048 DOI: 10.1007/s11064-021-03495-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 02/01/2023]
Abstract
Thymoquinone is a pharmacologically active component of Nigella sativa Linn. seeds. Despite the diverse neuropharmacological attributes of TQ, limited reports related to adult neurogenesis and memory research are available. In this study, we investigated the effects of TQ on the proliferation and neural differentiation of cultured neural stem/progenitor cells (NSCs/NPCs). We also investigated the effect of TQ chronic administration on neurogenesis and memory in adult rats. Under proliferation conditions, TQ (0.05-0.3 μM) significantly increased NSCs/NPCs viability, neurosphere diameter, and cell count. TQ treatment under differentiation conditions increased the proportion of cells positive for Tuj1 (a neuronal marker). Furthermore, chronic oral administration of TQ (25 mg/kg/day for 12 weeks) to adult rats increased the number of bromodeoxyuridine (BrdU)-immunopositive cells double-stained with a mature neuronal marker, neuronal nuclei (NeuN), and a proliferation marker, doublecortin (Dcx), in the dentate gyrus of the hippocampus. TQ-administered rats showed a profound beneficial effect on avoidance-related learning ability, associated with an increase in the hippocampal mRNA and protein levels of brain-derived neurotrophic factor (BDNF), as measured by both real-time PCR and ELISA. Western blot analysis revealed that TQ stimulates the phosphorylation of cAMP-response element-binding protein (CREB), the upstream signaling molecule in the BDNF pathway. Furthermore, chronic administration of TQ decreased lipid peroxide and reactive oxygen species levels in the hippocampus. Taken together, our results suggest that TQ plays a role in memory improvement in adult rats and that the CREB/BDNF signaling pathways are involved in mediating the actions of TQ in hippocampal neurogenesis.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Japan.,Department of Neurology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA
| | - Kentaro Matsuzaki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Japan
| | - Rafiad Islam
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Japan.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Shahdat Hossain
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Japan.,Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Emon Hossain
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Japan.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Masanori Katakura
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Japan.,Department of Nutritional Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, 350-0295, Japan
| | - Hiroyuki Arai
- Department of Geriatrics & Gerontology Division of Brain Science Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Osamu Shido
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Japan
| | - Michio Hashimoto
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Japan.
| |
Collapse
|
9
|
Osuntokun OS, Olayiwola G, Adekomi DA, Oyeyipo IP, Ayoka AO. Proanthocyanidin from Vitis vinifera attenuates memory impairment due to convulsive status epilepticus. Epilepsy Behav 2021; 124:108333. [PMID: 34619539 DOI: 10.1016/j.yebeh.2021.108333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022]
Abstract
This study investigated the effects of proanthocyanidin-rich fraction (PRF) of Vitis vinifera seed extract on the markers of hippocampal-dependent memory in convulsive status epilepticus (CSE) rat model. One hundred juvenile Wistar rats were randomized into 6 groups. Group 1 (n = 10) received propylene glycol (PG 0.1 ml/100 g) intraperitoneally (i.p), while convulsion was induced in groups 2-6 (n = 18 each) using lithium (127 mg/kg i.p) and pilocarpine hydrochloride (40 mg/kg i.p). The established CSE rats in groups 2-6 received a daily treatment of PG (0.1 ml i.p), PRF (30 mg/kg i.p), PRF (20 mg/kg BW i.p), PRF (10 mg/kg BW i.p) or diazepam (5 mg/kg BW i.p) for seven days. Thereafter, they were kept untreated but with access to feed and water for 21 days. The control and CSE-treated rats were subjected to behavioral tests, while the biochemical and histomorphological evaluations of the hippocampus were done after the sacrifice. The results were presented as mean ± SEM in graphs or tables. The level of significance was considered when p < 0.05. There was significant decrease in the hippocampal-dependent memory, hippocampal weight and an increased malondialdehyde concentration following CSE. The activities of acetylcholinesterase decreased significantly in the PRF-treated CSE rats. The hippocampal glial cells and granule count increased significantly following CSE, with various neurodegenerative features in the CA1 of the hippocampus. These derangements were attenuated significantly following PRF treatment. Memory impairment following CSE may be attenuated with the administration of PRF from V. vinifera seed in rats.
Collapse
Affiliation(s)
- Opeyemi Samson Osuntokun
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria; Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.
| | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | | | - Ibukun Peter Oyeyipo
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria
| | - Abiodun Oladele Ayoka
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
10
|
Wan L, Huang RJ, Luo ZH, Gong JE, Pan A, Manavis J, Yan XX, Xiao B. Reproduction-Associated Hormones and Adult Hippocampal Neurogenesis. Neural Plast 2021; 2021:3651735. [PMID: 34539776 PMCID: PMC8448607 DOI: 10.1155/2021/3651735] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
The levels of reproduction-associated hormones in females, such as estrogen, progesterone, prolactin, and oxytocin, change dramatically during pregnancy and postpartum. Reproduction-associated hormones can affect adult hippocampal neurogenesis (AHN), thereby regulating mothers' behavior after delivery. In this review, we first briefly introduce the overall functional significance of AHN and the methods commonly used to explore this front. Then, we attempt to reconcile the changes of reproduction-associated hormones during pregnancy. We further update the findings on how reproduction-related hormones influence adult hippocampal neurogenesis. This review is aimed at emphasizing a potential role of AHN in reproduction-related brain plasticity and its neurobiological relevance to motherhood behavior.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rou-Jie Huang
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao-e Gong
- Department of Neurology, Hunan Children's Hospital, Changsha 410007, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia 5000
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
11
|
Avchalumov Y, Mandyam CD. Plasticity in the Hippocampus, Neurogenesis and Drugs of Abuse. Brain Sci 2021; 11:404. [PMID: 33810204 PMCID: PMC8004884 DOI: 10.3390/brainsci11030404] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Synaptic plasticity in the hippocampus assists with consolidation and storage of long-lasting memories. Decades of research has provided substantial information on the cellular and molecular mechanisms underlying synaptic plasticity in the hippocampus, and this review discusses these mechanisms in brief. Addiction is a chronic relapsing disorder with loss of control over drug taking and drug seeking that is caused by long-lasting memories of drug experience. Relapse to drug use is caused by exposure to context and cues associated with the drug experience, and is a major clinical problem that contributes to the persistence of addiction. This review also briefly discusses some evidence that drugs of abuse alter plasticity in the hippocampus, and that development of novel treatment strategies that reverse or prevent drug-induced synaptic alterations in the hippocampus may reduce relapse behaviors associated with addiction.
Collapse
Affiliation(s)
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA;
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
12
|
Kim MS, Kim DH, Kang HK, Kook MG, Choi SW, Kang KS. Modeling of Hypoxic Brain Injury through 3D Human Neural Organoids. Cells 2021; 10:cells10020234. [PMID: 33504071 PMCID: PMC7911731 DOI: 10.3390/cells10020234] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 01/04/2023] Open
Abstract
Brain organoids have emerged as a novel model system for neural development, neurodegenerative diseases, and human-based drug screening. However, the heterogeneous nature and immature neuronal development of brain organoids generated from pluripotent stem cells pose challenges. Moreover, there are no previous reports of a three-dimensional (3D) hypoxic brain injury model generated from neural stem cells. Here, we generated self-organized 3D human neural organoids from adult dermal fibroblast-derived neural stem cells. Radial glial cells in these human neural organoids exhibited characteristics of the human cerebral cortex trend, including an inner (ventricular zone) and an outer layer (early and late cortical plate zones). These data suggest that neural organoids reflect the distinctive radial organization of the human cerebral cortex and allow for the study of neuronal proliferation and maturation. To utilize this 3D model, we subjected our neural organoids to hypoxic injury. We investigated neuronal damage and regeneration after hypoxic injury and reoxygenation. Interestingly, after hypoxic injury, reoxygenation restored neuronal cell proliferation but not neuronal maturation. This study suggests that human neural organoids generated from neural stem cells provide new opportunities for the development of drug screening platforms and personalized modeling of neurodegenerative diseases, including hypoxic brain injury.
Collapse
Affiliation(s)
| | | | | | | | - Soon Won Choi
- Correspondence: (S.W.C.); (K.-S.K.); Tel.: +82-2-880-1298 (S.W.C.); +82-2-880-1246 (K.-S.K.)
| | - Kyung-Sun Kang
- Correspondence: (S.W.C.); (K.-S.K.); Tel.: +82-2-880-1298 (S.W.C.); +82-2-880-1246 (K.-S.K.)
| |
Collapse
|
13
|
Li P, Quan W, Wang Z, Chen Y, Zhang H, Zhou Y. AD7c-NTP Impairs Adult Striatal Neurogenesis by Affecting the Biological Function of MeCP2 in APP/PSl Transgenic Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2021; 12:616614. [PMID: 33551790 PMCID: PMC7855712 DOI: 10.3389/fnagi.2020.616614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
The processes by which neural stem cells (NSCs) and neural precursor cells (NPCs) transform into the characteristic lineages observed in Alzheimer's disease (AD) are poorly characterized. Understanding these processes is of critical importance due to the increased prevalence of AD and the lack of effective AD strategies. Here, we used immunohistochemistry and Western blot to find out if MeCP2 was phosphorylated at a specific amino acid residue, Serine 421 (S421), and activated in response to AD-induced damage in amyloid precursor protein (APP)/PSl transgenic mice, altering its nuclear to cytoplasmic shuttling. Epigenetic examinations combined with chromatin immunoprecipitation and methylated DNA immunoprecipitation revealed that the translocation of MeCP2 from the nucleus to cytoplasm led to the loss of lineage-specific gene promoters (such as Gfap, Nestin, and Dcx), decreased transcriptional repression, and the activation of gene expression. Immunofluorescence data demonstrated that neurogenic progenitors with high levels of active phosphorylated MeCP2 at S421 (MeCP2 pS421) possessed a high probability of development into doublecortin (DCX)-expressing cells. AD7c-NTP will control neurogenic progenitor regeneration through its effects on MeCP2 pS421, leading to altered lineage-specific gene expression. This adds to the growing list of biological effects of AD7c-NTP in the brain and highlights MeCP2 as relevant to the plasticity of neural cells in the AD mice striatum.
Collapse
Affiliation(s)
- Pan Li
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin, China
| | - Wei Quan
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Zengguang Wang
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Yuan Chen
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin, China
| | - Huihong Zhang
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin, China
| |
Collapse
|
14
|
Goda JS, Dutta D, Krishna U, Goswami S, Kothavade V, Kannan S, Maitre M, Bano N, Gupta T, Jalali R. Hippocampal radiotherapy dose constraints for predicting long-term neurocognitive outcomes: mature data from a prospective trial in young patients with brain tumors. Neuro Oncol 2020; 22:1677-1685. [PMID: 32227185 PMCID: PMC7690355 DOI: 10.1093/neuonc/noaa076] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hippocampus is considered to be the seat for neurocognitive functions. Avoidance of hippocampus during radiotherapy to brain may serve to preserve various domains of neurocognition. We aimed to derive radiotherapy dose constraints to hippocampi for preserving neurocognition in young patients with brain tumors by measuring various neurocognitive parameters. METHODS Forty-eight patients with residual/progressive benign or low-grade brain tumors treated with stereotactic conformal radiotherapy (SCRT) to a dose of 54 Gy in 30 fractions underwent prospective neuropsychological assessments at baseline before SCRT and at 6 months and 2, 3, 4, and 5 years. Hippocampi were drawn as per the Radiation Therapy Oncology Group atlas. Longitudinal change in intelligence quotient scores was correlated with hippocampal doses. RESULTS Mean volume of bilateral hippocampi was 4.35 cc (range: 2.12-8.41 cc). Craniopharyngioma was the commonest histologic subtype. A drop of >10% in mean full-scale intelligence quotient (FSIQ) scores at 3 and 5 years post SCRT was observed in patients in whom left hippocampus received a mean dose of 30.7 Gy (P = 0.04) and 31 Gy (P = 0.04), respectively. Mean performance quotient (PQ) scores dropped > 10% at 5 years when the left hippocampus received a dose of > 32 Gy (P = 0.03). There was no significant correlation of radiotherapy doses with verbal quotient, or with doses received by the right hippocampus. Multivariate analysis revealed young age (<13 y) and left hippocampus dose predicted for clinically relevant decline in certain neurocognitive domains. CONCLUSIONS A mean dose of ≤30 Gy to the left hippocampus as a dose constraint for preserving intelligence quotient is suggested. KEY POINTS 1. Children and young adults with benign and low-grade gliomas survive long after therapy.2. Higher dose to the hippocampi may result in long-term neurocognitive impairment.3. Mean dose of <30 Gy to left hippocampus could be used as a pragmatic dose constraint to prevent long-term neurocognitive decline.
Collapse
Affiliation(s)
- Jayant S Goda
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Parel, Mumbai, India
- Homi Bhaba National Institute, Mumbai, India
| | - Debnarayan Dutta
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Parel, Mumbai, India
- Homi Bhaba National Institute, Mumbai, India
| | - Uday Krishna
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Parel, Mumbai, India
- Homi Bhaba National Institute, Mumbai, India
| | - Savita Goswami
- Homi Bhaba National Institute, Mumbai, India
- Clinical Psychology, Tata Memorial Centre, Parel, Mumbai, India
| | - Vikas Kothavade
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Parel, Mumbai, India
| | - Sadhna Kannan
- Homi Bhaba National Institute, Mumbai, India
- Clinical Research Secretariat, Tata Memorial Centre Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, India
| | - Madan Maitre
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Parel, Mumbai, India
- Homi Bhaba National Institute, Mumbai, India
| | - Nazia Bano
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Parel, Mumbai, India
- Homi Bhaba National Institute, Mumbai, India
| | - Tejpal Gupta
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Parel, Mumbai, India
| | - Rakesh Jalali
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Parel, Mumbai, India
- Homi Bhaba National Institute, Mumbai, India
| |
Collapse
|
15
|
Giricz Z, Pertich Á, Őze A, Puszta A, Fehér Á, Eördegh G, Kóbor J, Bihari K, Pálinkás É, Braunitzer G, Nagy A. Visually guided associative learning in pediatric and adult migraine without aura. Cephalalgia 2020; 41:176-184. [PMID: 32954816 DOI: 10.1177/0333102420958388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The Rutgers Acquired Equivalence Test is a visually guided equivalence learning paradigm that involves rule acquisition and generalization. Earlier we found impaired performance in this paradigm among adult migraine patients without aura. The aim of the study was to investigate if similar impairments can be found already in the pediatric form of the disease and to compare the performance of the pediatric study population with that of an adult study population. We hypothesized that the deficits observed in adults would be observable already in the pediatric population. METHODS Twenty-seven children and adolescents newly diagnosed with migraine without aura and 27 age- and sex-matched healthy controls were tested with the Rutgers Acquired Equivalence Test. Their performance data were compared to each other and those of an earlier adult study population involving 22 patients and 22 age- and sex-matched healthy controls. Four parameters characterizing performance in the two main phases of the paradigm were calculated for each of the four groups. Performance parameters were compared with Mann-Whitney U test. RESULTS In contrast to the decreased performance of the adult patients in the Rutgers Acquired Equivalence Test, no significant difference was found between pediatric patients and controls in any phase of the paradigm. CONCLUSION Children living with migraine without aura do not exhibit the same cognitive deficits in the Rutgers Acquired Equivalence Test as their adult counterparts. It can be hypothesized that the deficit of equivalence learning is not an inherent feature of the migrainous cognitive profile, rather the result of the interference of the disease with normal development.
Collapse
Affiliation(s)
- Zsófia Giricz
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Ákos Pertich
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Attila Őze
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - András Puszta
- Department of Physiology, University of Szeged, Szeged, Hungary.,Department of Neuropsychology, Helgelandssykehuset, Mosjøen, Norway.,Department of Psychology, University of Oslo, Norway
| | - Ágnes Fehér
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Gabriella Eördegh
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Jenő Kóbor
- Department of Pediatrics and Pediatric Health Center, University of Szeged, Szeged, Hungary
| | - Katalin Bihari
- Neurology and Stroke Department, Bács-Kiskun County Hospital, Kecskemét, Hungary
| | - Éva Pálinkás
- Neurology and Stroke Department, Bács-Kiskun County Hospital, Kecskemét, Hungary
| | - Gábor Braunitzer
- Laboratory for Perception & Cognition and Clinical Neuroscience, Nyírő Gyula Hospital, Budapest, Hungary
| | - Attila Nagy
- Department of Physiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
16
|
Mazengenya P, Bhagwandin A, Ihunwo AO. Putative adult neurogenesis in palaeognathous birds: The common ostrich (Struthio camelus) and emu (Dromaius novaehollandiae). Int J Dev Neurosci 2020; 80:613-635. [PMID: 32767787 DOI: 10.1002/jdn.10057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022] Open
Abstract
In the current study, we examined adult neurogenesis throughout the brain of the common ostrich (Struthio camelus) and emu (Dromaius novaehollandiae) using immunohistochemistry for the endogenous markers PCNA which labels proliferating cells, and DCX, which stains immature and migrating neurons. The distribution of PCNA and DCX labelled cells was widespread throughout the brain of both species. The highest density of cells immunoreactive to both markers was observed in the olfactory bulbs and the telencephalon, especially the subventricular zone of the lateral ventricle. Proliferative hot spots, identified with strong PCNA and DCX immunolabelling, were identified in the dorsal and ventral poles of the rostral aspects of the lateral ventricles. The density of PCNA immunoreactive cells was less in the telencephalon of the emu compared to the common ostrich. Substantial numbers of PCNA immunoreactive cells were observed in the diencephalon and brainstem, but DCX immunoreactivity was weaker in these regions, preferentially staining axons and dendrites over cell bodies, except in the medial regions of the hypothalamus where distinct DCX immunoreactive cells and fibres were observed. PCNA and DCX immunoreactive cells were readily observed in moderate density in the cortical layers of the cerebellum of both species. The distribution of putative proliferating cells and immature neurons in the brain of the common ostrich and the emu is widespread, far more so than in mammals, and compares with the neognathous birds, and suggests that brain plasticity and neuronal turnover is an important aspect of cognitive brain functions in these birds.
Collapse
Affiliation(s)
- Pedzisai Mazengenya
- College of Medicine, Ajman University, Ajman, United Arab Emirates.,School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Rondebosch, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
17
|
Sobel RA, Eaton MJ, Jaju PD, Lowry E, Hinojoza JR. Anti-Myelin Proteolipid Protein Peptide Monoclonal Antibodies Recognize Cell Surface Proteins on Developing Neurons and Inhibit Their Differentiation. J Neuropathol Exp Neurol 2020; 78:819-843. [PMID: 31400116 PMCID: PMC6703999 DOI: 10.1093/jnen/nlz058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/30/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
Using a panel of monoclonal antibodies (mAbs) to myelin proteolipid protein (PLP) peptides, we found that in addition to CNS myelin, mAbs to external face but not cytoplasmic face epitopes immunostained neurons in immature human CNS tissues and in adult hippocampal dentate gyrus and olfactory bulbs, that is neural stem cell niches (NSCN). To explore the pathobiological significance of these observations, we assessed the mAb effects on neurodifferentiation in vitro. The mAbs to PLP 50-69 (IgG1κ and IgG2aκ), and 178-191 and 200-219 (both IgG1κ) immunostained live cell surfaces and inhibited neurite outgrowth of E18 rat hippocampal precursor cells and of PC12 cells, which do not express PLP. Proteins immunoprecipitated from PC12 cell extracts and captured by mAb-coated magnetic beads were identified by GeLC-MS/MS. Each neurite outgrowth-inhibiting mAb captured a distinct set of neurodifferentiation molecules including sequence-similar M6 proteins and other unrelated membrane and extracellular matrix proteins, for example integrins, Eph receptors, NCAM-1, and protocadherins. These molecules are expressed in adult human NSCN and are implicated in the pathogenesis of many chronic CNS disease processes. Thus, diverse anti-PLP epitope autoantibodies may inhibit neuronal precursor cell differentiation via multispecific recognition of cell surface molecules thereby potentially impeding endogenous neuroregeneration in NSCN and in vivo differentiation of exogenous neural stem cells.
Collapse
Affiliation(s)
- Raymond A Sobel
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Mary Jane Eaton
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Prajakta Dilip Jaju
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Eugene Lowry
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Julian R Hinojoza
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
18
|
Fotuhi SN, Khalaj-Kondori M, Feizi MAH, Talebi M. Memory-related process in physiological status and alzheimer's disease. Mol Biol Rep 2020; 47:4651-4657. [PMID: 32279208 DOI: 10.1007/s11033-020-05438-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/03/2019] [Indexed: 12/27/2022]
Abstract
Rejecting central dogma around static status of adult mammalian brain, CNS has the nascent neurons generated in subgranular zone of dentate gyrus in hippocampus which develop to novel glutamatergic granule cells, with the innate feature of transmuting to memory disks. Structural plasticity proceeds with synaptic plasticity to process all the developing stages required to successful maturation and functional integration, whereby the memory context is ready to leave the hippocampus toward cortex network through consolidation process, for being installed and run the memory disk forever. However, in Alzheimer's disease, brain deal with subtle deadly progressive loss of synapsis, neuronal dysfunction and ultimately network failure, resulting in memory decay and cognitive decline-concluding that AD destroys memory formation related-pathways.
Collapse
Affiliation(s)
- Seyedeh Nahid Fotuhi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | | | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Spritzer MD, Roy EA. Testosterone and Adult Neurogenesis. Biomolecules 2020; 10:biom10020225. [PMID: 32028656 PMCID: PMC7072323 DOI: 10.3390/biom10020225] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
It is now well established that neurogenesis occurs throughout adulthood in select brain regions, but the functional significance of adult neurogenesis remains unclear. There is considerable evidence that steroid hormones modulate various stages of adult neurogenesis, and this review provides a focused summary of the effects of testosterone on adult neurogenesis. Initial evidence came from field studies with birds and wild rodent populations. Subsequent experiments with laboratory rodents have tested the effects of testosterone and its steroid metabolites upon adult neurogenesis, as well as the functional consequences of induced changes in neurogenesis. These experiments have provided clear evidence that testosterone increases adult neurogenesis within the dentate gyrus region of the hippocampus through an androgen-dependent pathway. Most evidence indicates that androgens selectively enhance the survival of newly generated neurons, while having little effect on cell proliferation. Whether this is a result of androgens acting directly on receptors of new neurons remains unclear, and indirect routes involving brain-derived neurotrophic factor (BDNF) and glucocorticoids may be involved. In vitro experiments suggest that testosterone has broad-ranging neuroprotective effects, which will be briefly reviewed. A better understanding of the effects of testosterone upon adult neurogenesis could shed light on neurological diseases that show sex differences.
Collapse
Affiliation(s)
- Mark D. Spritzer
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
- Correspondence: ; Tel.: 802-443-5676
| | - Ethan A. Roy
- Graduate School of Education, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
20
|
Analysis of proliferating neuronal progenitors and immature neurons in the human hippocampus surgically removed from control and epileptic patients. Sci Rep 2019; 9:18194. [PMID: 31796832 PMCID: PMC6890740 DOI: 10.1038/s41598-019-54684-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
Adult neurogenesis in the mammalian hippocampus is a well-known phenomenon. However, it remains controversial as to what extent adult neurogenesis actually occurs in the adult human hippocampus, and how brain diseases, such as epilepsy, affect human adult neurogenesis. To address these questions, we analyzed immature neuronal marker-expressing (PSA-NCAM+) cells and proliferating neuronal progenitor (Ki67+/HuB+/DCX+) cells in the surgically removed hippocampus of epileptic patients. In control patients, a substantial number of PSA-NCAM+ cells were distributed densely below the granule cell layer. In epileptic patients with granule cell dispersion, the number of PSA-NCAM+ cells was reduced, and aberrant PSA-NCAM+ cells were found. However, the numbers of Ki67+/HuB+/DCX+ cells were very low in both control and epileptic patients. The large number of PSA-NCAM+ cells and few DCX+/HuB+/Ki-67+ cells observed in the controls suggest that immature-type neurons are not recently generated neurons, and that the level of hippocampal neuronal production in adult humans is low. These results also suggest that PSA-NCAM is a useful marker for analyzing the pathology of epilepsy, but different interpretations of the immunohistochemical results between humans and rodents are required.
Collapse
|
21
|
Nemirovich-Danchenko NM, Khodanovich MY. New Neurons in the Post-ischemic and Injured Brain: Migrating or Resident? Front Neurosci 2019; 13:588. [PMID: 31275097 PMCID: PMC6591486 DOI: 10.3389/fnins.2019.00588] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/23/2019] [Indexed: 12/11/2022] Open
Abstract
The endogenous potential of adult neurogenesis is of particular interest for the development of new strategies for recovery after stroke and traumatic brain injury. These pathological conditions affect endogenous neurogenesis in two aspects. On the one hand, injury usually initiates the migration of neuronal precursors (NPCs) to the lesion area from the already existing, in physiological conditions, neurogenic niche - the ventricular-subventricular zone (V-SVZ) near the lateral ventricles. On the other hand, recent studies have convincingly demonstrated the local generation of new neurons near lesion areas in different brain locations. The striatum, cortex, and hippocampal CA1 region are considered to be locations of such new neurogenic zones in the damaged brain. This review focuses on the relative contribution of two types of NPCs of different origin, resident population in new neurogenic zones and cells migrating from the lateral ventricles, to post-stroke or post-traumatic enhancement of neurogenesis. The migratory pathways of NPCs have also been considered. In addition, the review highlights the advantages and limitations of different methodological approaches to the definition of NPC location and tracking of new neurons. In general, we suggest that despite the considerable number of studies, we still lack a comprehensive understanding of neurogenesis in the damaged brain. We believe that the advancement of methods for in vivo visualization and longitudinal observation of neurogenesis in the brain could fundamentally change the current situation in this field.
Collapse
Affiliation(s)
| | - Marina Yu. Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russia
| |
Collapse
|
22
|
Geran R, Uecker FC, Prüss H, Haeusler KG, Paul F, Ruprecht K, Harms L, Schmidt FA. Olfactory and Gustatory Dysfunction in Patients With Autoimmune Encephalitis. Front Neurol 2019; 10:480. [PMID: 31156532 PMCID: PMC6528690 DOI: 10.3389/fneur.2019.00480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
Objective: To test the hypothesis that olfactory (OF) and gustatory function (GF) is disturbed in patients with autoimmune encephalitides (AE). Methods: The orthonasal OF was tested in 32 patients with AE and 32 age- and sex-matched healthy controls (HC) with the standardized Threshold Discrimination Identification (TDI) score. This validated olfactory testing method yields individual scores for olfactory threshold (T), odor discrimination (D), and identification (I), along with a composite TDI score. The GF was determined by the Taste Strip Test (TST). Results: Overall, 24/32 (75%) of patients with AE, but none of 32 HC (p < 0.001) had olfactory dysfunction in TDI testing. The results of the threshold, discrimination and identification subtests were significantly reduced in patients with AE compared to HC (all p < 0.001). Assessed by TST, 5/19 (26.3%) of patients with AE, but none of 19 HC presented a significant limitation in GF (p < 0.001). The TDI score was correlated with the subjective estimation of the olfactory capacity on a visual analog scale (VAS; rs = 0.475, p = 0.008). Neither age, sex, modified Rankin Scale nor disease duration were associated with the composite TDI score. Conclusions: This is the first study investigating OF and GF in AE patients. According to unblinded assessment, patients with AE have a reduced olfactory and gustatory capacity compared to HC, suggesting that olfactory and gustatory dysfunction are hitherto unrecognized symptoms in AE. Further studies with larger number of AE patients would be of interest to verify our results.
Collapse
Affiliation(s)
- Rohat Geran
- Department of Neurology, Clinical and Experimental Multiple Sclerosis Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Florian C Uecker
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Harald Prüss
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | | | - Friedemann Paul
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Clinical and Experimental Multiple Sclerosis Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lutz Harms
- Department of Neurology, Clinical and Experimental Multiple Sclerosis Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Felix A Schmidt
- Department of Neurology, Clinical and Experimental Multiple Sclerosis Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
23
|
Zhang X, Wu JZ, Lin ZX, Yuan QJ, Li YC, Liang JL, Zhan JYX, Xie YL, Su ZR, Liu YH. Ameliorative effect of supercritical fluid extract of Chrysanthemum indicum Linnén against D-galactose induced brain and liver injury in senescent mice via suppression of oxidative stress, inflammation and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2019; 234:44-56. [PMID: 30610932 DOI: 10.1016/j.jep.2018.12.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 12/28/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chrysanthemum indicum Linne (C. indicum), a healthy food and folk medicine in China for thousands of years, has been reported to exert heat-clearing and detoxifying effects and extensively applied to treat various symptoms such as inflammation diseases, hepatitis and headache. AIM OF THIS STUDY The purpose of the present study was to investigate the protective effect of the supercritical carbon dioxide fluid extract from flowers and buds of C. indicum (CISCFE) on D-galactose-induced brain and liver damage during aging process and to illuminate the underlying mechanisms. MATERIALS AND METHODS Mice were orally administrated with CISCFE (100, 150 and 300 mg/kg) after injection with D-galactose. 24 h after the last administration, the blood samples, whole brain and liver tissues were collected for biochemical analysis, histological examination and western blot analysis. The body weight, spleen and thymus indexes, alanine transaminase (ALT), aspartate transaminase (AST), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA) in brain and liver, interleukin-1β (IL-1β), interleukin-6 (IL-6), and necrosis factor-α (TNF-α) were detected. Besides, the expressions of Bax, Bcl-2 and cleaved caspase-3 were determined by western blot assay. RESULTS The results indicated that CISCFE effectively increased the suppressed body weight, attenuated the decline of thymus and spleen indexes, and reduced the elevated levels of ALT and AST induced by D-gal. Furthermore, CISCFE might notably alleviate D-gal-induced abnormal alterations in structure and function of brain and liver dose-dependently via renewing normal antioxidant enzymes activities (SOD, CAT, GSH-Px), reducing MDA accumulation, decreasing inflammatory cytokines productions (IL-1β, IL-6, TNF-α), as well as attenuating the increase of Bax/Bcl-2 ratio and cleaved caspase-3 activation in the liver and brain. CONCLUSIONS Taken together, our present results suggested that CISCFE treatment could effectively mitigate the D-gal-induced hepatic and cerebral injury, and the underlying mechanism might be tightly related to the decreased oxidative stress, inflammation and apoptosis, indicating CISCFE might be an alternative and promising agent for the treatment of aging and age-associated brain and liver diseases.
Collapse
Affiliation(s)
- Xie Zhang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Jia-Zhen Wu
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Qiu-Ju Yuan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Yu-Cui Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Jia-Li Liang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Janis Ya-Xian Zhan
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - You-Liang Xie
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| | - Zi-Ren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| | - Yu-Hong Liu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
24
|
Cannabinoid signalling in embryonic and adult neurogenesis: possible implications for psychiatric and neurological disorders. Acta Neuropsychiatr 2019; 31:1-16. [PMID: 29764526 DOI: 10.1017/neu.2018.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cannabinoid signalling modulates several aspects of brain function, including the generation and survival of neurons during embryonic and adult periods. The present review intended to summarise evidence supporting a role for the endocannabinoid system on the control of neurogenesis and neurogenesis-dependent functions. Studies reporting participation of cannabinoids on the regulation of any step of neurogenesis and the effects of cannabinoid compounds on animal models possessing neurogenesis-dependent features were selected from Medline. Qualitative evaluation of the selected studies indicated that activation of cannabinoid receptors may change neurogenesis in embryonic or adult nervous systems alongside rescue of phenotypes in animal models of different psychiatric and neurological disorders. The text offers an overview on the effects of cannabinoids on central nervous system development and the possible links with psychiatric and neurological disorders such as anxiety, depression, schizophrenia, brain ischaemia/stroke and Alzheimer's disease. An understanding of the mechanisms by which cannabinoid signalling influences developmental and adult neurogenesis will help foster the development of new therapeutic strategies for neurodevelopmental, psychiatric and neurological disorders.
Collapse
|
25
|
Abstract
The development of regenerative medicine has provided new perspectives in many scientific fields, including psychiatry. Stem cell research is getting us closer to discovering the biological foundation of mental disorders. In this chapter, we consider the information relating to stem cells and factors involved in their trafficking in peripheral blood in some psychiatric disorders (major depressive disorder, bipolar disorder, schizophrenia, anxiety disorder, and alcohol dependence). The authors also include the implementation of current research regarding neurogenesis in adult brain and induced pluripotent stem cells in investigating concerns in etiopathogenesis of mental disorders as well as the implication of research for treatment of these disorders.
Collapse
|
26
|
Colangelo AM, Cirillo G, Alberghina L, Papa M, Westerhoff HV. Neural plasticity and adult neurogenesis: the deep biology perspective. Neural Regen Res 2019; 14:201-205. [PMID: 30530998 PMCID: PMC6301164 DOI: 10.4103/1673-5374.244775] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The recognition that neurogenesis does not stop with adolescence has spun off research towards the reduction of brain disorders by enhancing brain regeneration. Adult neurogenesis is one of the tougher problems of developmental biology as it requires the generation of complex intracellular and pericellular anatomies, amidst the danger of neuroinflammation. We here review how a multitude of regulatory pathways optimized for early neurogenesis has to be revamped into a new choreography of time dependencies. Distinct pathways need to be regulated, ranging from neural growth factor induced differentiation to mitochondrial bioenergetics, reactive oxygen metabolism, and apoptosis. Requiring much Gibbs energy consumption, brain depends on aerobic energy metabolism, hence on mitochondrial activity. Mitochondrial fission and fusion, movement and perhaps even mitoptosis, thereby come into play. All these network processes are interlinked and involve a plethora of molecules. We recommend a deep thinking approach to adult neurobiology.
Collapse
Affiliation(s)
- Anna Maria Colangelo
- Laboratory of Neuroscience "R. Levi-Montalcini", Dept. of Biotechnology and Biosciences; SYSBIO Centre of Systems Biology; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Giovanni Cirillo
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Lilia Alberghina
- SYSBIO Centre of Systems Biology; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Michele Papa
- SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milano; Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Hans V Westerhoff
- Synthetic Systems Biology and Nuclear Organization, University of Amsterdam, Molecular Cell Physiology, VU University Amsterdam, and Infrastructure Systems Biology at NL (ISBE.NL), Amsterdam, NL, and Systems Biology, School for Chemical Engineering and Analytical Science, University of Manchester, UK
| |
Collapse
|
27
|
Smith K, Semënov MV. The impact of age on number and distribution of proliferating cells in subgranular zone in adult mouse brain. IBRO Rep 2018; 6:18-30. [PMID: 30582065 PMCID: PMC6297242 DOI: 10.1016/j.ibror.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/07/2018] [Indexed: 01/16/2023] Open
Abstract
The mouse brain retains an ability to produce hippocampal granule neurons during the mouse’s entire lifespan. The neurons are produced in the subgranular zone (SGZ) located on the inner surface of the granule cell layer in the dentate gyrus (DG). In our study, we used a point cloud approach to characterize how the production and distribution of neural precursors for new hippocampal neurons change in the mouse brain relative to age. We found that the production of neural precursors decreases 64 fold from the age of 30 days to the age of 2.5 years. Within the SGZ the decline of cell proliferation continues during entire mouse life. We reconstructed the distribution of proliferating cells along the longitudinal axis of the SGZ and found that the highest number of proliferating cells are located approximately 0.75 mm from the dorsomedial end of the SGZ that corresponds to the most dorsal part of the DG in the mouse brain. The distribution of proliferating cells in the SGZ showed no apparent aggregations, periodicity or any other readily identifiable spatial characteristics. Proliferating cells in the SGZ tended to be located separately from other proliferating cells. About two thirds of them have no closely located other proliferating cells, and the remaining third is located in small clusters comprised of 2 or 3 proliferating cells. Based on our measurements, we calculated that from the age of 30 days to the age of 2.5 years 1.5 million neural precursors are produced in the SGZ.
Collapse
Affiliation(s)
- Karen Smith
- New England Geriatric Research Education and Clinical Center, Bedford Division, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States
| | - Mikhail V Semënov
- New England Geriatric Research Education and Clinical Center, Bedford Division, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States.,The Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
28
|
Neuroimaging hippocampal subfields in schizophrenia and bipolar disorder: A systematic review and meta-analysis. J Psychiatr Res 2018; 104:217-226. [PMID: 30107268 DOI: 10.1016/j.jpsychires.2018.08.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 01/15/2023]
Abstract
The hippocampus is a complex structure consisting of subregions with specialized cytoarchitecture and functions. Magnetic resonance imaging (MRI) studies in psychotic disorders show hippocampal subfield abnormalities, but affected regions differ between studies. We here present an overview of hippocampal anatomy and function relevant to psychosis, and the first systematic review and meta-analysis of MRI studies of hippocampal subfield morphology in schizophrenia and bipolar disorder. Twenty-one MRI studies assessing hippocampal subfield volumes or shape in schizophrenia or bipolar disorder were included (n 15-887 subjects). Nine volumetric group comparison studies (total n = 2593) were included in random effects meta-analyses of group differences. The review showed mixed results, with volume reductions reported in most subfields in schizophrenia and bipolar disorder. Volumetric studies using ex-vivo based image analysis templates corresponded best with the shape studies, with CA1 as the most affected region. The meta-analyses showed volume reductions in all subfields in schizophrenia and bipolar disorder compared to healthy controls (all p < .005; schizophrenia: d = 0.28-0.49, bipolar disorder: d = 0.20-0.35), and smaller left CA2/3 and right subiculum in schizophrenia than bipolar disorder. In conclusion, the hippocampal subfields appear to be differently affected in psychotic disorders. However, due to the lack of control for putative confounders such as medication, alcohol and illicit substance use, and illness stage, the results from the meta-analysis should be interpreted with caution. Methodological subfield segmentation weaknesses should be addressed in future studies.
Collapse
|
29
|
Weiler M, Casseb RF, de Campos BM, de Ligo Teixeira CV, Carletti-Cassani AFMK, Vicentini JE, Magalhães TNC, de Almeira DQ, Talib LL, Forlenza OV, Balthazar MLF, Castellano G. Cognitive Reserve Relates to Functional Network Efficiency in Alzheimer's Disease. Front Aging Neurosci 2018; 10:255. [PMID: 30186154 PMCID: PMC6111617 DOI: 10.3389/fnagi.2018.00255] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, with no means of cure or prevention. The presence of abnormal disease-related proteins in the population is, in turn, much more common than the incidence of dementia. In this context, the cognitive reserve (CR) hypothesis has been proposed to explain the discontinuity between pathophysiological and clinical expression of AD, suggesting that CR mitigates the effects of pathology on clinical expression and cognition. fMRI studies of the human connectome have recently reported that AD patients present diminished functional efficiency in resting-state networks, leading to a loss in information flow and cognitive processing. No study has investigated, however, whether CR modifies the effects of the pathology in functional network efficiency in AD patients. We analyzed the relationship between CR, pathophysiology and network efficiency, and whether CR modifies the relationship between them. Fourteen mild AD, 28 amnestic mild cognitive impairment (aMCI) due to AD, and 28 controls were enrolled. We used education to measure CR, cerebrospinal fluid (CSF) biomarkers to evaluate pathophysiology, and graph metrics to measure network efficiency. We found no relationship between CR and CSF biomarkers; CR was related to higher network efficiency in all groups; and abnormal levels of CSF protein biomarkers were related to more efficient networks in the AD group. Education modified the effects of tau-related pathology in the aMCI and mild AD groups. Although higher CR might not protect individuals from developing AD pathophysiology, AD patients with higher CR are better able to cope with the effects of pathology—presenting more efficient networks despite pathology burden. The present study highlights that interventions focusing on cognitive stimulation might be useful to slow age-related cognitive decline or dementia and lengthen healthy aging.
Collapse
Affiliation(s)
- Marina Weiler
- Neurophysics Group, Institute of Physics Gleb Wataghin, Cosmic Rays and Chronology Department, University of Campinas (UNICAMP), Campinas, Brazil.,Neuroimaging Laboratory, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Raphael Fernandes Casseb
- Neurophysics Group, Institute of Physics Gleb Wataghin, Cosmic Rays and Chronology Department, University of Campinas (UNICAMP), Campinas, Brazil.,Neuroimaging Laboratory, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Brunno Machado de Campos
- Neuroimaging Laboratory, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Jéssica Elias Vicentini
- Neuroimaging Laboratory, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Débora Queiroz de Almeira
- Neuroimaging Laboratory, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Leda Leme Talib
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Orestes Vicente Forlenza
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | | | - Gabriela Castellano
- Neurophysics Group, Institute of Physics Gleb Wataghin, Cosmic Rays and Chronology Department, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| |
Collapse
|
30
|
Fasemore TM, Patzke N, Kaswera-Kyamakya C, Gilissen E, Manger PR, Ihunwo AO. The Distribution of Ki-67 and Doublecortin-Immunopositive Cells in the Brains of Three Strepsirrhine Primates: Galago demidoff, Perodicticus potto, and Lemur catta. Neuroscience 2017; 372:46-57. [PMID: 29289719 DOI: 10.1016/j.neuroscience.2017.12.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/18/2022]
Abstract
This study investigated the pattern of adult neurogenesis throughout the brains of three prosimian primate species using immunohistochemical techniques for endogenous markers of this neural process. Two species, Galago demidoff and Perodicticus potto, were obtained from wild populations in the primary rainforest of central Africa, while one species, Lemur catta, was captive-bred. Two brains from each species, perfusion-fixed with 4% paraformaldehyde, were sectioned (50 µm section thickness) in sagittal and coronal planes. Using Ki-67 and doublecortin (DCX) antibodies, proliferating cells and immature neurons were identified in the two canonical neurogenic sites of mammals, the subventricular zone of the lateral ventricle (SVZ) giving rise to the rostral migratory stream (RMS), and the subgranular zone of the dentate gyrus of the hippocampus. In addition a temporal migratory stream (TMS), emerging from the temporal horn of the lateral ventricle to supply the piriform cortex and adjacent brain regions with new neurons, was also evident in the three prosimian species. While no Ki-67-immunoreactive cells were observed in the cerebellum, DCX-immunopositive cells were observed in the cerebellar cortex of all three species. These findings are discussed in a phylogenetic context.
Collapse
Affiliation(s)
- Thandi M Fasemore
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nina Patzke
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Institute for International Collaborations, Department of Biological Science, Hokkaido University, Sapporo, Japan
| | | | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium; Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels 1070, Belgium; Department of Anthropology, University of Arkansas, Fayetteville, AR, United States
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
31
|
Ginsenoside Rg1 Decreases Oxidative Stress and Down-Regulates Akt/mTOR Signalling to Attenuate Cognitive Impairment in Mice and Senescence of Neural Stem Cells Induced by D-Galactose. Neurochem Res 2017; 43:430-440. [PMID: 29147958 DOI: 10.1007/s11064-017-2438-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 02/03/2023]
Abstract
Adult hippocampal neurogenesis plays a pivotal role in learning and memory. The suppression of hippocampal neurogenesis induced by an increase of oxidative stress is closely related to cognitive impairment. Neural stem cells which persist in the adult vertebrate brain keep up the production of neurons over the lifespan. The balance between pro-oxidants and anti-oxidants is important for function and surviving of neural stem cells. Ginsenoside Rg1 is one of the most active components of Panax ginseng, and many studies suggest that ginsenosides have antioxidant properties. This research explored the effects and underlying mechanisms of ginsenoside Rg1 on protecting neural stem cells (NSCs) from oxidative stress. The sub-acute ageing of C57BL/6 mice was induced by subcutaneous injection of D-gal (120 mg kg-1 day-1) for 42 day. On the 14th day of D-gal injection, the mice were treated with ginsenoside Rg1 (20 mg kg-1 day-1, intraperitoneally) or normal saline for 28 days. The study monitored the effects of Rg1 on proliferation, senescence-associated and oxidative stress biomarkers, and Akt/mTOR signalling pathway in NSCs. Compared with the D-gal group, Rg1 improved cognitive impairment induced by D-galactose in mice by attenuating senescence of neural stem cells. Rg1 also decreased the level of oxidative stress, with increased the activity of superoxide dismutase and glutathione peroxidase in vivo and in vitro. Rg1 furthermore reduced the phosphorylation levels of protein kinase B (Akt) and the mechanistic target of rapamycin (mTOR) and down-regulated the levels of downstream p53, p16, p21 and Rb in D-gal treated NSCs. The results suggested that the protective effect of ginsenoside Rg1 on attenuating cognitive impairment in mice and senescence of NSCs induced by D-gal might be related to the reduction of oxidative stress and the down-regulation of Akt/mTOR signaling pathway.
Collapse
|
32
|
Cai M, Zhang W, Weng Z, Stetler RA, Jiang X, Shi Y, Gao Y, Chen J. Promoting Neurovascular Recovery in Aged Mice after Ischemic Stroke - Prophylactic Effect of Omega-3 Polyunsaturated Fatty Acids. Aging Dis 2017; 8:531-545. [PMID: 28966799 PMCID: PMC5614319 DOI: 10.14336/ad.2017.0520] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/20/2017] [Indexed: 12/17/2022] Open
Abstract
The aged population is among the highest at risk for ischemic stroke, yet most stroke patients of advanced ages (>80 years) are excluded from access to thrombolytic treatment by tissue plasminogen activator, the only FDA approved pharmacological therapy for stroke victims. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) robustly alleviate ischemic brain injury in young adult rodents, but have not yet been studied in aged animals. This study investigated whether chronic dietary supplementation of n-3 PUFAs protects aging brain against cerebral ischemia and improves long-term neurological outcomes. Aged (18-month-old) mice were administered n-3 PUFA-enriched fish oil in daily chow for 3 months before and up to 8 weeks after 45 minutes of transient middle cerebral artery occlusion (tMCAO). Sensorimotor outcomes were assessed by cylinder test and corner test up to 35 days and brain repair dynamics evaluated immunohistologically up to 56 days after tMCAO. Mice receiving dietary supplementation of n-3 PUFAs for 3 months showed significant increases in brain ratio of n-3/n-6 PUFA contents, and markedly reduced long-term sensorimotor deficits and chronic ischemic brain tissue loss after tMCAO. Mechanistically, n-3 PUFAs robustly promoted post-ischemic angiogenesis and neurogenesis, and enhanced white matter integrity after tMCAO. The Pearson linear regression analysis revealed that the enhancement of neurogenesis and white matter integrity both correlated positively with improved sensorimotor activities after tMCAO. This study demonstrates that prophylactic dietary supplementation of n-3 PUFAs effectively improves long-term stroke outcomes in aged mice, perhaps by promoting post-stroke brain repair processes such as angiogenesis, neurogenesis, and white matter restoration.
Collapse
Affiliation(s)
- Mengfei Cai
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China
| | - Wenting Zhang
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China
| | - Zhongfang Weng
- 2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - R Anne Stetler
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China.,2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,3Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xiaoyan Jiang
- 2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yejie Shi
- 2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,3Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Yanqin Gao
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China.,2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jun Chen
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China.,2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,3Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| |
Collapse
|
33
|
Potential Therapeutic Mechanisms and Tracking of Transplanted Stem Cells: Implications for Stroke Treatment. Stem Cells Int 2017; 2017:2707082. [PMID: 28904531 PMCID: PMC5585684 DOI: 10.1155/2017/2707082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/08/2017] [Accepted: 07/30/2017] [Indexed: 02/06/2023] Open
Abstract
Stem cell therapy is a promising potential therapeutic strategy to treat cerebral ischemia in preclinical and clinical trials. Currently proposed treatments for stroke employing stem cells include the replacement of lost neurons and integration into the existing host circuitry, the release of growth factors to support and promote endogenous repair processes, and the secretion of extracellular vesicles containing proteins, noncoding RNA, or DNA to regulate gene expression in recipient cells and achieve immunomodulation. Progress has been made to elucidate the precise mechanisms underlying stem cell therapy and the homing, migration, distribution, and differentiation of transplanted stem cells in vivo using various imaging modalities. Noninvasive and safe tracer agents with high sensitivity and image resolution must be combined with long-term monitoring using imaging technology to determine the optimal therapy for stroke in terms of administration route, dosage, and timing. This review discusses potential therapeutic mechanisms of stem cell transplantation for the treatment of stroke and the limitations of current therapies. Methods to label transplanted cells and existing imaging systems for stem cell labeling and in vivo tracking will also be discussed.
Collapse
|