1
|
de Assis ACC, Reis ALS, Nunes LV, Ferreira LFR, Bilal M, Iqbal HMN, Soriano RN. Stem Cells and Tissue Engineering-Based Therapeutic Interventions: Promising Strategies to Improve Peripheral Nerve Regeneration. Cell Mol Neurobiol 2023; 43:433-454. [PMID: 35107689 DOI: 10.1007/s10571-022-01199-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/21/2022] [Indexed: 02/05/2023]
Abstract
Unlike the central nervous system, the peripheral one has the ability to regenerate itself after injury; however, this natural regeneration process is not always successful. In fact, even with some treatments, the prognosis is poor, and patients consequently suffer with the functional loss caused by injured nerves, generating several impacts on their quality of life. In the present review we aimed to address two strategies that may considerably potentiate peripheral nerve regeneration: stem cells and tissue engineering. In vitro studies have shown that pluripotent cells associated with neural scaffolds elaborated by tissue engineering can increase functional recovery, revascularization, remyelination, neurotrophin expression and reduce muscle atrophy. Although these results are very promising, it is important to note that there are some barriers to be circumvented: the host's immune response, the oncogenic properties attributed to stem cells and the duration of the pro-regenerative effects. After all, more studies are still needed to overcome the limitations of these treatments; those that address techniques for manipulating the lesion microenvironment combining different therapies seem to be the most promising and proactive ones.
Collapse
Affiliation(s)
- Ana Carolina Correa de Assis
- Department of Medicine, Federal University of Juiz de Fora (UFJF-GV), 241 Manoel Byrro St., Governador Valadares, MG, 35032-620, Brazil
| | - Amanda Luiza Silva Reis
- Department of Medicine, Federal University of Juiz de Fora (UFJF-GV), 241 Manoel Byrro St., Governador Valadares, MG, 35032-620, Brazil
| | - Leonardo Vieira Nunes
- School of Medicine, Federal University of Juiz de Fora (UFJF-JF), Eugênio do Nascimento Avenue, Juiz de Fora, MG, 36038-330, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), 300 Murilo Dantas Ave., Aracaju, SE, 49032-490, Brazil
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), 300 Murilo Dantas Ave., Aracaju, SE, 49032-490, Brazil
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL , Mexico
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora (UFJF-GV), 1167 Moacir Paleta Ave., Governador Valadares, MG, 35020-360, Brazil.
| |
Collapse
|
2
|
Shabbirahmed AM, Sekar R, Gomez LA, Sekhar MR, Hiruthyaswamy SP, Basavegowda N, Somu P. Recent Developments of Silk-Based Scaffolds for Tissue Engineering and Regenerative Medicine Applications: A Special Focus on the Advancement of 3D Printing. Biomimetics (Basel) 2023; 8:16. [PMID: 36648802 PMCID: PMC9844467 DOI: 10.3390/biomimetics8010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Regenerative medicine has received potential attention around the globe, with improving cell performances, one of the necessary ideas for the advancements of regenerative medicine. It is crucial to enhance cell performances in the physiological system for drug release studies because the variation in cell environments between in vitro and in vivo develops a loop in drug estimation. On the other hand, tissue engineering is a potential path to integrate cells with scaffold biomaterials and produce growth factors to regenerate organs. Scaffold biomaterials are a prototype for tissue production and perform vital functions in tissue engineering. Silk fibroin is a natural fibrous polymer with significant usage in regenerative medicine because of the growing interest in leftovers for silk biomaterials in tissue engineering. Among various natural biopolymer-based biomaterials, silk fibroin-based biomaterials have attracted significant attention due to their outstanding mechanical properties, biocompatibility, hemocompatibility, and biodegradability for regenerative medicine and scaffold applications. This review article focused on highlighting the recent advancements of 3D printing in silk fibroin scaffold technologies for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Asma Musfira Shabbirahmed
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, Tamil Nadu, India
| | - Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Chengalpattu 603308, Tamil Nadu, India
| | - Levin Anbu Gomez
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, Tamil Nadu, India
| | - Medidi Raja Sekhar
- Department of Chemistry, College of Natural Sciences, Kebri Dehar University, Korahe Zone, Somali Region, Kebri Dehar 3060, Ethiopia
| | | | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Prathap Somu
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai 600124, Tamil Nadu, India
| |
Collapse
|
3
|
Khodabukus A, Guyer T, Moore AC, Stevens MM, Guldberg RE, Bursac N. Translating musculoskeletal bioengineering into tissue regeneration therapies. Sci Transl Med 2022; 14:eabn9074. [PMID: 36223445 PMCID: PMC7614064 DOI: 10.1126/scitranslmed.abn9074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Musculoskeletal injuries and disorders are the leading cause of physical disability worldwide and a considerable socioeconomic burden. The lack of effective therapies has driven the development of novel bioengineering approaches that have recently started to gain clinical approvals. In this review, we first discuss the self-repair capacity of the musculoskeletal tissues and describe causes of musculoskeletal dysfunction. We then review the development of novel biomaterial, immunomodulatory, cellular, and gene therapies to treat musculoskeletal disorders. Last, we consider the recent regulatory changes and future areas of technological progress that can accelerate translation of these therapies to clinical practice.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University; Durham, NC, 27708 USA
| | - Tyler Guyer
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403 USA
| | - Axel C. Moore
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London; London, SW7 2AZ UK
- Department of Biomedical Engineering, University of Delaware; Newark, DE, 19716 USA
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London; London, SW7 2AZ UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institute; Stockholm, 17177 SE
| | - Robert E. Guldberg
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403 USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University; Durham, NC, 27708 USA
| |
Collapse
|
4
|
Wachs RA, Wellman SM, Porvasnik SL, Lakes EH, Cornelison RC, Song YH, Allen KD, Schmidt CE. Apoptosis-Decellularized Peripheral Nerve Scaffold Allows Regeneration across Nerve Gap. Cells Tissues Organs 2022; 212:512-522. [PMID: 36030771 DOI: 10.1159/000525704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/15/2022] [Indexed: 12/18/2023] Open
Abstract
Peripheral nerve injury results in loss of motor and sensory function distal to the nerve injury and is often permanent in nerve gaps longer than 5 cm. Autologous nerve grafts (nerve autografts) utilize patients' own nerve tissue from another part of their body to repair the defect and are the gold standard in care. However, there is a limited autologous tissue supply, size mismatch between donor nerve and injured nerve, and morbidity at the site of nerve donation. Decellularized cadaveric nerve tissue alleviates some of these limitations and has demonstrated success clinically. We previously developed an alternative apoptosis-assisted decellularization process for nerve tissue. This new process may result in an ideal scaffold for peripheral nerve regeneration by gently removing cells and antigens while preserving delicate topographical cues. In addition, the apoptosis-assisted process requires less active processing time and is inexpensive. This study examines the utility of apoptosis-decellularized peripheral nerve scaffolds compared to detergent-decellularized peripheral nerve scaffolds and isograft controls in a rat nerve gap model. Results indicate that, at 8 weeks post-injury, apoptosis-decellularized peripheral nerve scaffolds perform similarly to detergent-decellularized and isograft controls in both functional (muscle weight recovery, gait analysis) and histological measures (neurofilament staining, macrophage infiltration). These new apoptosis-decellularized scaffolds hold great promise to provide a less expensive scaffold for nerve injury repair, with the potential to improve nerve regeneration and functional outcomes compared to current detergent-decellularized scaffolds.
Collapse
Affiliation(s)
- Rebecca A Wachs
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, Lincoln, Nebraska, USA
| | - Steven M Wellman
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Stacy L Porvasnik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Emily H Lakes
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - R Chase Cornelison
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Li A, Pereira C, Hill EE, Vukcevich O, Wang A. In vitro, In vivo and Ex vivo Models for Peripheral Nerve Injury and Regeneration. Curr Neuropharmacol 2021; 20:344-361. [PMID: 33827409 PMCID: PMC9413794 DOI: 10.2174/1570159x19666210407155543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022] Open
Abstract
Peripheral Nerve Injuries (PNI) frequently occur secondary to traumatic injuries. Recovery from these injuries can be expectedly poor, especially in proximal injuries. In order to study and improve peripheral nerve regeneration, scientists rely on peripheral nerve models to identify and test therapeutic interventions. In this review, we discuss the best described and most commonly used peripheral nerve models that scientists have and continue to use to study peripheral nerve physiology and function.
Collapse
Affiliation(s)
- Andrew Li
- University of California Davis Ringgold standard institution - Hand and Upper Extremity Surgery, Division of Plastic Surgery, Department of Surgery Sacramento, California. United States
| | - Clifford Pereira
- University of California Davis Ringgold standard institution - Hand and Upper Extremity Surgery, Division of Plastic Surgery, Department of Surgery Sacramento, California. United States
| | - Elise Eleanor Hill
- University of California Davis Ringgold standard institution - Department of Surgery Sacramento, California. United States
| | - Olivia Vukcevich
- University of California Davis Ringgold standard institution - Surgery & Biomedical Engineering Sacramento, California. United States
| | - Aijun Wang
- University of California Davis - Surgery & Biomedical Engineering 4625 2nd Ave., Suite 3005 Sacramento Sacramento California 95817. United States
| |
Collapse
|
6
|
Khodabukus A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front Physiol 2021; 12:619710. [PMID: 33716768 PMCID: PMC7952620 DOI: 10.3389/fphys.2021.619710] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle possesses remarkable plasticity that permits functional adaptations to a wide range of signals such as motor input, exercise, and disease. Small animal models have been pivotal in elucidating the molecular mechanisms regulating skeletal muscle adaptation and plasticity. However, these small animal models fail to accurately model human muscle disease resulting in poor clinical success of therapies. Here, we review the potential of in vitro three-dimensional tissue-engineered skeletal muscle models to study muscle function, plasticity, and disease. First, we discuss the generation and function of in vitro skeletal muscle models. We then discuss the genetic, neural, and hormonal factors regulating skeletal muscle fiber-type in vivo and the ability of current in vitro models to study muscle fiber-type regulation. We also evaluate the potential of these systems to be utilized in a patient-specific manner to accurately model and gain novel insights into diseases such as Duchenne muscular dystrophy (DMD) and volumetric muscle loss. We conclude with a discussion on future developments required for tissue-engineered skeletal muscle models to become more mature, biomimetic, and widely utilized for studying muscle physiology, disease, and clinical use.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
7
|
Optimizing the electrical conductivity of polyacrylonitrile/polyaniline with nickel nanoparticles for the enhanced electrostimulation of Schwann cells proliferation. Bioelectrochemistry 2021; 140:107750. [PMID: 33578301 DOI: 10.1016/j.bioelechem.2021.107750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/09/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022]
Abstract
Tissue engineering scaffolds made of biocompatible polymers are promising alternatives for nerve reparation. For this application, cell proliferation will be speeded up by electrostimulation, which required electrically-conductive materials. Here, a biomimicking scaffold with optimized conductivity was developed from electrospun polyacrylonitrile/electrically-conductive polyaniline (PAN/PANI) nanofibers doped with Ni nanoparticles. PAN/PANI/Ni was biocompatible for Schwann cells and exhibited a suitable tensile strength and wettability for cell proliferation. When compared with unmodified PAN/PANI, the electrical conductivity of PAN/PANI/Ni was 6.4 fold higher. Without electrostimulation, PAN/PANI and PAN/PANI/Ni exhibited similar Schwann cells' proliferation rates. Upon electrostimulation at 100 mV cm-1 for one hour per day over five days, PAN/PANI/Ni accelerated Schwann cells' proliferation 2.1 times compared to PAN/PANI. These results demonstrate the importance of expanding the electrical conductivity of the tissue engineering scaffold to ensure optimal electrostimulation of nerve cell growth. Additionally, this study describes a straightforward approach to modulate the electrical conductivity of polymeric materials via the addition of Ni nanoparticles that can be applied to different biomimicking scaffolds for nerve healing.
Collapse
|
8
|
Liang Y, Goh JCH. Polypyrrole-Incorporated Conducting Constructs for Tissue Engineering Applications: A Review. Bioelectricity 2020; 2:101-119. [PMID: 34471842 PMCID: PMC8370322 DOI: 10.1089/bioe.2020.0010] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Conductive polymers have recently attracted interest in biomedical applications because of their excellent intrinsic electrical conductivity and satisfactory biocompatibility. Polypyrrole (PPy) is one of the most popular among these conductive polymers due to its high conductivity under physiological conditions, and it can be chemically modified to allow biomolecules conjugation. PPy has been used in fabricating biocompatible stimulus-responsive scaffolds for tissue engineering applications, especially for repair and regeneration of electroactive tissues, such as the bone, neuron, and heart. This review provides a comprehensive overview of the basic properties and synthesis methods of PPy, as well as a summary of the materials that have been integrated with PPy. These composite scaffolds are comparatively evaluated with regard to their mechanical properties, biocompatibility, and usage in tissue engineering.
Collapse
Affiliation(s)
- Yeshi Liang
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - James Cho-Hong Goh
- Department of Biomedical Engineering, National University of Singapore, Singapore
- Department of Orthopedic Surgery, National University of Singapore, Singapore
| |
Collapse
|
9
|
Passipieri JA, Dienes J, Frank J, Glazier J, Portell A, Venkatesh KP, Bliley JM, Grybowski D, Schilling BK, Marra KG, Christ GJ. Adipose Stem Cells Enhance Nerve Regeneration and Muscle Function in a Peroneal Nerve Ablation Model. Tissue Eng Part A 2019; 27:297-310. [PMID: 30760135 DOI: 10.1089/ten.tea.2018.0244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Severe peripheral nerve injuries have devastating consequences on the quality of life in affected patients, and they represent a significant unmet medical need. Destruction of nerve fibers results in denervation of targeted muscles, which, subsequently, undergo progressive atrophy and loss of function. Timely restoration of neural innervation to muscle fibers is crucial to the preservation of muscle homeostasis and function. The goal of this study was to evaluate the impact of addition of adipose stem cells (ASCs) to polycaprolactone (PCL) nerve conduit guides on peripheral nerve repair and functional muscle recovery in the setting of a critical size nerve defect. To this end, peripheral nerve injury was created by surgically ablating 6 mm of the common peroneal nerve in a rat model. A PCL nerve guide, filled with ASCs and/or poloxamer hydrogel, was sutured to the nerve ends. Negative and positive controls included nerve ablation only (no repair), and reversed polarity autograft nerve implant, respectively. Tibialis anterior (TA) muscle function was assessed at 4, 8, and 12 weeks postinjury, and nerve and muscle tissue was retrieved at the 12-week terminal time point. Inclusion of ASCs in the PCL nerve guide elicited statistically significant time-dependent increases in functional recovery (contraction) after denervation; ∼25% higher than observed in acellular (poloxamer-filled) implants and indistinguishable from autograft implants, respectively, at 12 weeks postinjury (p < 0.05, n = 7-8 in each group). Analysis of single muscle fiber cross-sectional area (CSA) revealed that ASC-based treatment of nerve injury provided a better recapitulation of the overall distribution of muscle fiber CSAs observed in the contralateral TA muscle of uninjured limbs. In addition, the presence of ASCs was associated with improved features of re-innervation distal to the defect, with respect to neurofilament and S100 (Schwann cell marker) expression. In conclusion, these initial studies indicate significant benefits of inclusion of ASCs to the rate and magnitude of both peripheral nerve regeneration and functional recovery of muscle contraction, to levels equivalent to autograft implantation. These findings have important implications to improved nerve repair, and they provide input for future work directed to restoration of nerve and muscle function after polytraumatic injury. Impact Statement This works explores the application of adipose stem cells (ASCs) for peripheral nerve regeneration in a rat model. Herein, we demonstrate that the addition of ASCs in poloxamer-filled PCL nerve guide conduits impacts nerve regeneration and recovery of muscle function, to levels equivalent to autograft implantation, which is considered to be the current gold standard treatment. This study builds on the importance of a timely restoration of innervation to muscle fibers for preservation of muscle homeostasis, and it will provide input for future work aiming at restoring nerve and muscle function after polytraumatic injury.
Collapse
Affiliation(s)
- Juliana A Passipieri
- Biomedical Engineering Department, University of Virginia, Charlottesville, Virginia
| | - Jack Dienes
- Biomedical Engineering Department, University of Virginia, Charlottesville, Virginia
| | - Joseph Frank
- Biomedical Engineering Department, University of Virginia, Charlottesville, Virginia
| | - Joshua Glazier
- Biomedical Engineering Department, University of Virginia, Charlottesville, Virginia
| | - Andrew Portell
- Biomedical Engineering Department, University of Virginia, Charlottesville, Virginia
| | - Kaushik P Venkatesh
- Department of Bioengineering and University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jacqueline M Bliley
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Damian Grybowski
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Benjamin K Schilling
- Department of Bioengineering and University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kacey G Marra
- Department of Bioengineering and University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George J Christ
- Biomedical Engineering Department, University of Virginia, Charlottesville, Virginia.,Orthopaedics Department, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
10
|
Dixon AR, Jariwala SH, Bilis Z, Loverde JR, Pasquina PF, Alvarez LM. Bridging the gap in peripheral nerve repair with 3D printed and bioprinted conduits. Biomaterials 2018; 186:44-63. [DOI: 10.1016/j.biomaterials.2018.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/14/2023]
|
11
|
Zhao YH, Niu CM, Shi JQ, Wang YY, Yang YM, Wang HB. Novel conductive polypyrrole/silk fibroin scaffold for neural tissue repair. Neural Regen Res 2018; 13:1455-1464. [PMID: 30106059 PMCID: PMC6108196 DOI: 10.4103/1673-5374.235303] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
Abstract
Three dimensional (3D) bioprinting, which involves depositing bioinks (mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However, it remains challenging to prepare biomaterials with micro-nanostructures that accurately mimic the nanostructural features of natural tissues. A novel nanotechnological tool, electrospinning, permits the processing and modification of proper nanoscale biomaterials to enhance neural cell adhesion, migration, proliferation, differentiation, and subsequent nerve regeneration. The composite scaffold was prepared by combining 3D bioprinting with subsequent electrochemical deposition of polypyrrole and electrospinning of silk fibroin to form a composite polypyrrole/silk fibroin scaffold. Fourier transform infrared spectroscopy was used to analyze scaffold composition. The surface morphology of the scaffold was observed by light microscopy and scanning electron microscopy. A digital multimeter was used to measure the resistivity of prepared scaffolds. Light microscopy was applied to observe the surface morphology of scaffolds immersed in water or Dulbecco's Modified Eagle's Medium at 37°C for 30 days to assess stability. Results showed characteristic peaks of polypyrrole and silk fibroin in the synthesized conductive polypyrrole/silk fibroin scaffold, as well as the structure of the electrospun nanofiber layer on the surface. The electrical conductivity was 1 × 10-5-1 × 10-3 S/cm, while stability was 66.67%. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was employed to measure scaffold cytotoxicity in vitro. Fluorescence microscopy was used to observe EdU-labeled Schwann cells to quantify cell proliferation. Immunohistochemistry was utilized to detect S100β immunoreactivity, while scanning electron microscopy was applied to observe the morphology of adherent Schwann cells. Results demonstrated that the polypyrrole/silk fibroin scaffold was not cytotoxic and did not affect Schwann cell proliferation. Moreover, filopodia formed on the scaffold and Schwann cells were regularly arranged. Our findings verified that the composite polypyrrole/silk fibroin scaffold has good biocompatibility and may be a suitable material for neural tissue engineering.
Collapse
Affiliation(s)
- Ya-Hong Zhao
- Key Laboratory of Science and Technology of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Chang-Mei Niu
- Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Jia-Qi Shi
- Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Ying-Yu Wang
- Wen Zheng College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yu-Min Yang
- Key Laboratory of Science and Technology of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Hong-Bo Wang
- Key Laboratory of Science and Technology of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|