1
|
Yao X, Xue T, Chen B, Zhou X, Ji Y, Gao Z, Liu B, Yang J, Shen Y, Sun H, Gu X, Dai B. Advances in biomaterial-based tissue engineering for peripheral nerve injury repair. Bioact Mater 2025; 46:150-172. [PMID: 39760068 PMCID: PMC11699443 DOI: 10.1016/j.bioactmat.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Peripheral nerve injury is a common clinical disease. Effective post-injury nerve repair remains a challenge in neurosurgery, and clinical outcomes are often unsatisfactory, resulting in social and economic burden. Particularly, the repair of long-distance nerve defects remains a challenge. The existing nerve transplantation strategies show limitations, including donor site morbidity and immune rejection issues. The multiple studies have revealed the potential of tissue engineering strategies based on biomaterials in the repair of peripheral nerve injuries. We review the events of regeneration after peripheral nerve injury, evaluates the efficacy of existing nerve grafting strategies, and delves into the progress in the construction and application strategies of different nerve guidance conduits. A spotlight is cast on the materials, technologies, seed cells, and microenvironment within these conduits to facilitate optimal nerve regeneration. Further discussion was conducted on the approve of nerve guidance conduits and potential future research directions. This study anticipates and proposes potential avenues for future research, aiming to refine existing strategies and uncover innovative approaches in biomaterial-based nerve repair. This study endeavors to synthesize the collective insights from the fields of neuroscience, materials science, and regenerative medicine, offering a multifaceted perspective on the role of biomaterials in advancing the frontiers of peripheral nerve injury treatment.
Collapse
Affiliation(s)
- Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Tong Xue
- Department of Paediatrics and Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Bingqian Chen
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu Province, 215500, PR China
| | - Xinyang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Jiawen Yang
- Department of Paediatrics and Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
- Research and Development Center for E-Learning, Ministry of Education, Beijing, 100816, PR China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Bin Dai
- Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, 224500, PR China
| |
Collapse
|
2
|
Jin S, Jung H, Song J, Kim S, Yoon S, Kim JH, Lee JS, Kim YJ, Son D, Shin M. Adhesive and Conductive Fibrous Hydrogel Bandages for Effective Peripheral Nerve Regeneration. Adv Healthc Mater 2025:e2403722. [PMID: 39846266 DOI: 10.1002/adhm.202403722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Peripheral nerve injury is a common disease resulting in reversible and irreversible impairments of motor and sensory functions. In addition to conventional surgical interventions such as nerve grafting and neurorrhaphy, nerve guidance conduits are used to effectively support axonal growth without unexpected neuroma formation. However, there are still challenges to secure tissue-mimetic mechanical and electrophysiological properties of the conduit materials. Herein, the phenylborate-tethered hydrogel-assisted doping effect is elucidated on conductive polymers, enhancing peripheral nerve regeneration when used as a sutureless bandage on the injured nerve. The adhesive and conductive nerve bandage consists of biocompatible hyaluronic acid hydrogel microfibers produced by electrospinning, followed by in situ conductive polypyrrole polymerization on the fibrous mat. Particularly, phenylborate groups enable high adsorption of pyrrole without mechanical crack on the hydrogel network and allow tissue-like stretchability and on-nerve adhesiveness. In a rat crushed nerve injury model, the nerve bandage can effectively promote nerve regeneration through stable sutureless wrapping followed by great electrical transmission on the defect region, showing anatomical and functional recovery of the nerve tissues and preventing muscular atrophy. Such hydrogel fibrous bandages will be a promising surgical dressing to be combined with versatile biomedical devices/materials for peripheral nerve repair.
Collapse
Affiliation(s)
- Subin Jin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Hyunjin Jung
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihyang Song
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sumin Kim
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Subeen Yoon
- Department of Biomedical science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jung Hyun Kim
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jung Seung Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Donghee Son
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
3
|
Zhao H, Xiong T, Chu Y, Hao W, Zhao T, Sun X, Zhuang Y, Chen B, Zhao Y, Wang J, Chen Y, Dai J. Biomimetic Dual-Network Collagen Fibers with Porous and Mechanical Cues Reconstruct Neural Stem Cell Niche via AKT/YAP Mechanotransduction after Spinal Cord Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311456. [PMID: 38497893 DOI: 10.1002/smll.202311456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Indexed: 03/19/2024]
Abstract
Tissue engineering scaffolds can mediate the maneuverability of neural stem cell (NSC) niche to influence NSC behavior, such as cell self-renewal, proliferation, and differentiation direction, showing the promising application in spinal cord injury (SCI) repair. Here, dual-network porous collagen fibers (PCFS) are developed as neurogenesis scaffolds by employing biomimetic plasma ammonia oxidase catalysis and conventional amidation cross-linking. Following optimizing the mechanical parameters of PCFS, the well-matched Young's modulus and physiological dynamic adaptability of PCFS (4.0 wt%) have been identified as a neurogenetic exciter after SCI. Remarkably, porous topographies and curving wall-like protrusions are generated on the surface of PCFS by simple and non-toxic CO2 bubble-water replacement. As expected, PCFS with porous and matched mechanical properties can considerably activate the cadherin receptor of NSCs and induce a series of serine-threonine kinase/yes-associated protein mechanotransduction signal pathways, encouraging cellular orientation, neuron differentiation, and adhesion. In SCI rats, implanted PCFS with matched mechanical properties further integrated into the injured spinal cords, inhibited the inflammatory progression and decreased glial and fibrous scar formation. Wall-like protrusions of PCFS drive multiple neuron subtypes formation and even functional neural circuits, suggesting a viable therapeutic strategy for nerve regeneration and functional recovery after SCI.
Collapse
Affiliation(s)
- Haitao Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tiandi Xiong
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yun Chu
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Wangping Hao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tongtong Zhao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyue Sun
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Bing Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Yanyan Chen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
4
|
Jafari A, Behjat E, Malektaj H, Mobini F. Alignment behavior of nerve, vascular, muscle, and intestine cells in two- and three-dimensional strategies. WIREs Mech Dis 2023; 15:e1620. [PMID: 37392045 DOI: 10.1002/wsbm.1620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/28/2023] [Accepted: 05/23/2023] [Indexed: 07/02/2023]
Abstract
By harnessing structural hierarchical insights, plausibly simulate better ones imagination to figure out the best choice of methods for reaching out the unprecedented developments of the tissue engineering products as a next level. Constructing a functional tissue that incorporates two-dimensional (2D) or higher dimensions requires overcoming technological or biological limitations in order to orchestrate the structural compilation of one-dimensional and 2D sheets (microstructures) simultaneously (in situ). This approach enables the creation of a layered structure that can be referred to as an ensemble of layers or, after several days of maturation, a direct or indirect joining of layers. Here, we have avoided providing a detailed methodological description of three-dimensional and 2D strategies, except for a few interesting examples that highlight the higher alignment of cells and emphasize rarely remembered facts associated with vascular, peripheral nerve, muscle, and intestine tissues. The effective directionality of cells in conjunction with geometric cues (in the range of micrometers) is well known to affect a variety of cell behaviors. The curvature of a cell's environment is one of the factors that influence the formation of patterns within tissues. The text will cover cell types containing some level of stemness, which will be followed by their consequences for tissue formation. Other important considerations pertain to cytoskeleton traction forces, cell organelle positioning, and cell migration. An overview of cell alignment along with several pivotal molecular and cellular level concepts, such as mechanotransduction, chirality, and curvature of structure effects on cell alignments will be presented. The mechanotransduction term will be used here in the context of the sensing capability that cells show as a result of force-induced changes either at the conformational or the organizational levels, a capability that allows us to modify cell fate by triggering downstream signaling pathways. A discussion of the cells' cytoskeleton and of the stress fibers involvement in altering the cell's circumferential constitution behavior (alignment) based on exposed scaffold radius will be provided. Curvatures with size similarities in the range of cell sizes cause the cell's behavior to act as if it was in an in vivo tissue environment. The revision of the literature, patents, and clinical trials performed for the present study shows that there is a clear need for translational research through the implementation of clinical trial platforms that address the tissue engineering possibilities raised in the current revision. This article is categorized under: Infectious Diseases > Biomedical Engineering Neurological Diseases > Biomedical Engineering Cardiovascular Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Amir Jafari
- Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erfan Behjat
- Department of Biomaterials, School of Metallurgy & Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Aalborg, Denmark
| | - Faezeh Mobini
- Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
5
|
Vecchi JT, Mullan S, Lopez JA, Rhomberg M, Yamamoto A, Hallam A, Lee A, Sonka M, Hansen MR. Sensitivity of CNN image analysis to multifaceted measurements of neurite growth. BMC Bioinformatics 2023; 24:320. [PMID: 37620759 PMCID: PMC10464248 DOI: 10.1186/s12859-023-05444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Quantitative analysis of neurite growth and morphology is essential for understanding the determinants of neural development and regeneration, however, it is complicated by the labor-intensive process of measuring diverse parameters of neurite outgrowth. Consequently, automated approaches have been developed to study neurite morphology in a high-throughput and comprehensive manner. These approaches include computer-automated algorithms known as 'convolutional neural networks' (CNNs)-powerful models capable of learning complex tasks without the biases of hand-crafted models. Nevertheless, their complexity often relegates them to functioning as 'black boxes.' Therefore, research in the field of explainable AI is imperative to comprehend the relationship between CNN image analysis output and predefined morphological parameters of neurite growth in order to assess the applicability of these machine learning approaches. In this study, drawing inspiration from the field of automated feature selection, we investigate the correlation between quantified metrics of neurite morphology and the image analysis results from NeuriteNet-a CNN developed to analyze neurite growth. NeuriteNet accurately distinguishes images of neurite growth based on different treatment groups within two separate experimental systems. These systems differentiate between neurons cultured on different substrate conditions and neurons subjected to drug treatment inhibiting neurite outgrowth. By examining the model's function and patterns of activation underlying its classification decisions, we discover that NeuriteNet focuses on aspects of neuron morphology that represent quantifiable metrics distinguishing these groups. Additionally, it incorporates factors that are not encompassed by neuron morphology tracing analyses. NeuriteNet presents a novel tool ideally suited for screening morphological differences in heterogeneous neuron groups while also providing impetus for targeted follow-up studies.
Collapse
Affiliation(s)
- Joseph T Vecchi
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sean Mullan
- Iowa Institute for Biomedical Imaging, Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Josue A Lopez
- Department of Neuroscience, University of Texas-Austin, Austin, TX, USA
| | - Madeline Rhomberg
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Annabelle Hallam
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amy Lee
- Department of Neuroscience, University of Texas-Austin, Austin, TX, USA
| | - Milan Sonka
- Iowa Institute for Biomedical Imaging, Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Marlan R Hansen
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
6
|
Kopeć K, Podgórski R, Ciach T, Wojasiński M. System for Patterning Polydopamine and VAPG Peptide on Polytetrafluoroethylene and Biodegradable Polyesters for Patterned Growth of Smooth Muscle Cells In Vitro. ACS OMEGA 2023; 8:22055-22066. [PMID: 37360448 PMCID: PMC10285958 DOI: 10.1021/acsomega.3c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Biomaterial's surface functionalization for selective adhesion and patterned cell growth remains essential in developing novel implantable medical devices for regenerative medicine applications. We built and applied a 3D-printed microfluidic device to fabricate polydopamine (PDA) patterns on the surface of polytetrafluoroethylene (PTFE), poly(l-lactic acid-co-D,l-lactic acid) (PLA), and poly(lactic acid-co-glycolic acid) (PLGA). Then, we covalently attached the Val-Ala-Pro-Gly (VAPG) peptide to the created PDA pattern to promote the adhesion of the smooth muscle cells (SMCs). We proved that the fabrication of PDA patterns allows for the selective adhesion of mouse fibroblast and human SMCs to PDA-patterned surfaces after only 30 min of in vitro cultivation. After 7 days of SMC culture, we observed the proliferation of cells only along the patterns on PTFE but over the entire surface of the PLA and PLGA, regardless of patterning. This means that the presented approach is beneficial for application to materials resistant to cell adhesion and proliferation. The additional attachment of the VAPG peptide to the PDA patterns did not bring measurable benefits due to the high increase in adhesion and patterned cell proliferation by PDA itself.
Collapse
Affiliation(s)
- Kamil Kopeć
- Warsaw
University of Technology, Faculty of Chemical and Process Engineering,
Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Rafał Podgórski
- Warsaw
University of Technology, Faculty of Chemical and Process Engineering,
Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Tomasz Ciach
- Warsaw
University of Technology, Faculty of Chemical and Process Engineering,
Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
- Warsaw
University of Technology, CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| | - Michał Wojasiński
- Warsaw
University of Technology, Faculty of Chemical and Process Engineering,
Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
7
|
Xue W, Shi W, Kong Y, Kuss M, Duan B. Anisotropic scaffolds for peripheral nerve and spinal cord regeneration. Bioact Mater 2021; 6:4141-4160. [PMID: 33997498 PMCID: PMC8099454 DOI: 10.1016/j.bioactmat.2021.04.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of long-gap (>10 mm) peripheral nerve injury (PNI) and spinal cord injury (SCI) remains a continuous challenge due to limited native tissue regeneration capabilities. The current clinical strategy of using autografts for PNI suffers from a source shortage, while the pharmacological treatment for SCI presents dissatisfactory results. Tissue engineering, as an alternative, is a promising approach for regenerating peripheral nerves and spinal cords. Through providing a beneficial environment, a scaffold is the primary element in tissue engineering. In particular, scaffolds with anisotropic structures resembling the native extracellular matrix (ECM) can effectively guide neural outgrowth and reconnection. In this review, the anatomy of peripheral nerves and spinal cords, as well as current clinical treatments for PNI and SCI, is first summarized. An overview of the critical components in peripheral nerve and spinal cord tissue engineering and the current status of regeneration approaches are also discussed. Recent advances in the fabrication of anisotropic surface patterns, aligned fibrous substrates, and 3D hydrogel scaffolds, as well as their in vitro and in vivo effects are highlighted. Finally, we summarize potential mechanisms underlying the anisotropic architectures in orienting axonal and glial cell growth, along with their challenges and prospects.
Collapse
Affiliation(s)
- Wen Xue
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Mechanical Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
8
|
Lomboni DJ, Steeves A, Schock S, Bonetti L, De Nardo L, Variola F. Compounded topographical and physicochemical cueing by micro-engineered chitosan substrates on rat dorsal root ganglion neurons and human mesenchymal stem cells. SOFT MATTER 2021; 17:5284-5302. [PMID: 34075927 DOI: 10.1039/d0sm02170a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Given the intertwined physicochemical effects exerted in vivo by both natural and synthetic (e.g., biomaterial) interfaces on adhering cells, the evaluation of structure-function relationships governing cellular response to micro-engineered surfaces for applications in neuronal tissue engineering requires the use of in vitro testing platforms which consist of a clinically translatable material with tunable physiochemical properties. In this work, we micro-engineered chitosan substrates with arrays of parallel channels with variable width (20 and 60 μm). A citric acid (CA)-based crosslinking approach was used to provide an additional level of synergistic cueing on adhering cells by regulating the chitosan substrate's stiffness. Morphological and physicochemical characterization was conducted to unveil the structure-function relationships which govern the activity of rat dorsal root ganglion neurons (DRGs) and human mesenchymal stem cells (hMSCs), ultimately singling out the key role of microtopography, roughness and substrate's stiffness. While substrate's stiffness predominantly affected hMSC spreading, the modulation of the channels' design affected the neuronal architecture's complexity and guided the morphological transition of hMSCs. Finally, the combined analysis of tubulin expression and cell morphology allowed us to cast new light on the predominant role of the microtopography over substrate's stiffness in the process of hMSCs neurogenic differentiation.
Collapse
Affiliation(s)
- David J Lomboni
- Department of Mechanical Engineering, University of Ottawa, K1N 6N5 Canada. and Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Alexander Steeves
- Department of Mechanical Engineering, University of Ottawa, K1N 6N5 Canada. and Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Sarah Schock
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada and The Children's Hospital of Eastern Ontario (CHEO) Research Institute, Canada
| | - Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering, "G. Natta", Politecnico di Milano, Italy
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering, "G. Natta", Politecnico di Milano, Italy
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, K1N 6N5 Canada. and Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada and Department of Cellular and Molecular Medicine, University of Ottawa, Canada and The Children's Hospital of Eastern Ontario (CHEO) Research Institute, Canada
| |
Collapse
|
9
|
Wang Z, Wu Y, Xiang Y, Kruth MB, Wei P, Dai G, Xu K, Yin J, Huang Y. Efficacy of Large Groove Texture on Rat Sciatic Nerve Regeneration In Vivo Using Polyacrylonitrile Nerve Conduits. Ann Biomed Eng 2021; 49:394-406. [PMID: 32671626 DOI: 10.1007/s10439-020-02560-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/26/2020] [Indexed: 01/07/2023]
Abstract
Physical guidance cues play an important role in enhancing the efficiency of nerve conduits for peripheral nerve injury repair. However, very few in vivo investigations have been performed to evaluate the repair efficiency of nerve conduits with micro-grooved inner textures. In this study, polyacrylonitrile nerve conduits were prepared using dry-jet wet spinning, and micro-grooved textures were incorporated on the inner surface. The nerve conduits were applied to treat 10 mm sciatic nerve gaps in Sprague-Dawley (SD) rats. Sixteen weeks following implantation, nerve function was evaluated based on heat sensory tests, electrophysiological assessments and gastrocnemius muscle mass measurements. The thermal latency reaction and gastrocnemii weight of SD rats treated with grooved nerve conduits were almost 25% faster and 60% heavier than those of SD rats treated with smooth nerve conduits. The histological and immunohistochemical stain analyses showed the repair capacity of inner grooved conduits was found to be similar to that of autografts. These results suggest that grooved nerve conduits with groove width larger than 300 μm significantly improve peripheral nerve regeneration by introducing physical guidance cues. The obtained results can support the design of nerve conduits and lead to the improvement of nerve tissue engineering strategies.
Collapse
Affiliation(s)
- Zonghuan Wang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
| | - Yibing Wu
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, 315010, China
| | - Yang Xiang
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, 315010, China
| | - Marie Beatrix Kruth
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, 315010, China.
| | - Guangli Dai
- Department of Medical Engineering, Ningbo First Hospital, Ningbo, 315010, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, 310028, China.
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310028, China.
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China.
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China.
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
10
|
Physical understanding of axonal growth patterns on grooved substrates: groove ridge crossing versus longitudinal alignment. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00089-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
|
12
|
Duffy P, McMahon S, Wang X, Keaveney S, O'Cearbhaill ED, Quintana I, Rodríguez FJ, Wang W. Synthetic bioresorbable poly-α-hydroxyesters as peripheral nerve guidance conduits; a review of material properties, design strategies and their efficacy to date. Biomater Sci 2019; 7:4912-4943. [DOI: 10.1039/c9bm00246d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Implantable tubular devices known as nerve guidance conduits (NGCs) have drawn considerable interest as an alternative to autografting in the repair of peripheral nerve injuries.
Collapse
Affiliation(s)
- Patrick Duffy
- The Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin
- Ireland
| | - Seán McMahon
- Ashland Specialties Ireland Ltd
- Synergy Centre
- Dublin
- Ireland
| | - Xi Wang
- The Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin
- Ireland
| | - Shane Keaveney
- School of Mechanical & Materials Engineering
- UCD Centre for Biomedical Engineering
- UCD Conway Institute of Biomolecular and Biomedical Research
- University College Dublin
- Dublin
| | - Eoin D. O'Cearbhaill
- School of Mechanical & Materials Engineering
- UCD Centre for Biomedical Engineering
- UCD Conway Institute of Biomolecular and Biomedical Research
- University College Dublin
- Dublin
| | - Iban Quintana
- IK4-Tekniker
- Surface Engineering and Materials Science Unit
- Eibar
- Spain
| | | | - Wenxin Wang
- The Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin
- Ireland
| |
Collapse
|
13
|
Davis B, Wojtalewicz S, Labroo P, Shea J, Sant H, Gale B, Agarwal J. Controlled release of FK506 from micropatterned PLGA films: potential for application in peripheral nerve repair. Neural Regen Res 2018; 13:1247-1252. [PMID: 30028334 PMCID: PMC6065245 DOI: 10.4103/1673-5374.235063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
After decades of research, peripheral nerve injury and repair still frequently results in paralysis, chronic pain and neuropathies leading to severe disability in patients. Current clinically available nerve conduits only provide crude guidance of regenerating axons across nerve gap without additional functionality. FK506 (Tacrolimus), an FDA approved immunosuppressant, has been shown to enhance peripheral nerve regeneration but carries harsh side-effects when delivered systemically. The objective of this study was to develop and evaluate a bioresorbable drug delivery system capable of local extended delivery of FK506 that also provides topological guidance cues to guide axon growth via microgrooves. Photolithography was used to create micropatterned poly(lactide-co-glycolic acid) (PLGA) films embedded with FK506. Non-patterned, 10/10 μm (ridge/groove width), and 30/30 μm patterned films loaded with 0, 1, and 3 μg/cm2 FK506 were manufactured and characterized. In vitro FK506 rate of release testing indicated that the films are capable of an extended (at least 56 days), controlled, and scalable release of FK506. Neurite extension bioactivity assay indicated that FK506 released from the films (concentration of samples tested ranged between 8.46–19.7 ng/mL) maintained its neural bioactivity and promoted neurite extension similar to control FK506 dosages (10 ng/mL FK506). The multi-functional FK506 embedded, micropatterned poly(lactide-co-glycolic acid) films developed in this study have potential to be used in the construction of peripheral nerve repair devices.
Collapse
Affiliation(s)
- Brett Davis
- Department of Bioengineering, University of Utah; Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Susan Wojtalewicz
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Pratima Labroo
- Department of Surgery, University of Utah; Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Jill Shea
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Himanshu Sant
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Bruce Gale
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Jayant Agarwal
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|