1
|
El Abiad E, Al-Kuwari A, Al-Aani U, Al Jaidah Y, Chaari A. Navigating the Alzheimer's Biomarker Landscape: A Comprehensive Analysis of Fluid-Based Diagnostics. Cells 2024; 13:1901. [PMID: 39594648 PMCID: PMC11593284 DOI: 10.3390/cells13221901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) affects a significant portion of the aging population, presenting a serious challenge due to the limited availability of effective therapies during its progression. The disease advances rapidly, underscoring the need for early diagnosis and the application of preventative measures. Current diagnostic methods for AD are often expensive and invasive, restricting access for the general public. One potential solution is the use of biomarkers, which can facilitate early detection and treatment through objective, non-invasive, and cost-effective evaluations of AD. This review critically investigates the function and role of biofluid biomarkers in detecting AD, with a specific focus on cerebrospinal fluid (CSF), blood-based, and saliva biomarkers. RESULTS CSF biomarkers have demonstrated potential for accurate diagnosis and valuable prognostic insights, while blood biomarkers offer a minimally invasive and cost-effective approach for diagnosing cognitive issues. However, while current biomarkers for AD show significant potential, none have yet achieved the precision needed to replace expensive PET scans and CSF assays. The lack of a single accurate biomarker underscores the need for further research to identify novel or combined biomarkers to enhance the clinical efficacy of existing diagnostic tests. In this context, artificial intelligence (AI) and deep-learning (DL) tools present promising avenues for improving biomarker analysis and interpretation, enabling more precise and timely diagnoses. CONCLUSIONS Further research is essential to confirm the utility of all AD biomarkers in clinical settings. Combining biomarker data with AI tools offers a promising path toward revolutionizing the personalized characterization and early diagnosis of AD symptoms.
Collapse
Affiliation(s)
| | | | | | | | - Ali Chaari
- Weill Cornell Medicine–Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar; (E.E.A.); (A.A.-K.); (U.A.-A.); (Y.A.J.)
| |
Collapse
|
2
|
Kciuk M, Kruczkowska W, Gałęziewska J, Wanke K, Kałuzińska-Kołat Ż, Aleksandrowicz M, Kontek R. Alzheimer's Disease as Type 3 Diabetes: Understanding the Link and Implications. Int J Mol Sci 2024; 25:11955. [PMID: 39596023 PMCID: PMC11593477 DOI: 10.3390/ijms252211955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two prevalent conditions that present considerable public health issue in aging populations worldwide. Recent research has proposed a novel conceptualization of AD as "type 3 diabetes", highlighting the critical roles of insulin resistance and impaired glucose metabolism in the pathogenesis of the disease. This article examines the implications of this association, exploring potential new avenues for treatment and preventive strategies for AD. Key evidence linking diabetes to AD emphasizes critical metabolic processes that contribute to neurodegeneration, including inflammation, oxidative stress, and alterations in insulin signaling pathways. By framing AD within this metabolic context, we can enhance our understanding of its etiology, which in turn may influence early diagnosis, treatment plans, and preventive measures. Understanding AD as a manifestation of diabetes opens up the possibility of employing novel therapeutic strategies that incorporate lifestyle modifications and the use of antidiabetic medications to mitigate cognitive decline. This integrated approach has the potential to improve patient outcomes and deepen our comprehension of the intricate relationship between neurodegenerative diseases and metabolic disorders.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| | - Weronika Kruczkowska
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland; (W.K.); (J.G.); (Ż.K.-K.)
| | - Julia Gałęziewska
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland; (W.K.); (J.G.); (Ż.K.-K.)
| | - Katarzyna Wanke
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland; (W.K.); (J.G.); (Ż.K.-K.)
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, 90-136 Lodz, Poland
| | - Marta Aleksandrowicz
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| |
Collapse
|
3
|
Tenchov R, Sasso JM, Zhou QA. Alzheimer's Disease: Exploring the Landscape of Cognitive Decline. ACS Chem Neurosci 2024; 15:3800-3827. [PMID: 39392435 PMCID: PMC11587518 DOI: 10.1021/acschemneuro.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. The pathology of AD is marked by the accumulation of amyloid beta plaques and tau protein tangles in the brain, along with neuroinflammation and synaptic dysfunction. Genetic factors, such as mutations in APP, PSEN1, and PSEN2 genes, as well as the APOE ε4 allele, contribute to increased risk of acquiring AD. Currently available treatments provide symptomatic relief but do not halt disease progression. Research efforts are focused on developing disease-modifying therapies that target the underlying pathological mechanisms of AD. Advances in identification and validation of reliable biomarkers for AD hold great promise for enhancing early diagnosis, monitoring disease progression, and assessing treatment response in clinical practice in effort to alleviate the burden of this devastating disease. In this paper, we analyze data from the CAS Content Collection to summarize the research progress in Alzheimer's disease. We examine the publication landscape in effort to provide insights into current knowledge advances and developments. We also review the most discussed and emerging concepts and assess the strategies to combat the disease. We explore the genetic risk factors, pharmacological targets, and comorbid diseases. Finally, we inspect clinical applications of products against AD with their development pipelines and efforts for drug repurposing. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding AD, to outline challenges, and to evaluate growth opportunities to further efforts in combating the disease.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical
Society, Columbus Ohio 43210, United States
| | - Janet M. Sasso
- CAS, a division of the American Chemical
Society, Columbus Ohio 43210, United States
| | | |
Collapse
|
4
|
Kamatham PT, Shukla R, Khatri DK, Vora LK. Pathogenesis, diagnostics, and therapeutics for Alzheimer's disease: Breaking the memory barrier. Ageing Res Rev 2024; 101:102481. [PMID: 39236855 DOI: 10.1016/j.arr.2024.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and accounts for 60-70 % of all cases. It affects millions of people worldwide. AD poses a substantial economic burden on societies and healthcare systems. AD is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. As the prevalence of AD continues to increase, understanding its pathogenesis, improving diagnostic methods, and developing effective therapeutics have become paramount. This comprehensive review delves into the intricate mechanisms underlying AD, explores the current state of diagnostic techniques, and examines emerging therapeutic strategies. By revealing the complexities of AD, this review aims to contribute to the growing body of knowledge surrounding this devastating disease.
Collapse
Affiliation(s)
- Pushpa Tryphena Kamatham
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Rashi Shukla
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, UK.
| |
Collapse
|
5
|
Tsintzas E, Niccoli T. Using Drosophila amyloid toxicity models to study Alzheimer's disease. Ann Hum Genet 2024; 88:349-363. [PMID: 38517001 DOI: 10.1111/ahg.12554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 03/23/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia and is characterised by a progressive loss of neurons, which manifests as gradual memory decline, followed by cognitive loss. Despite the significant progress in identifying novel biomarkers and understanding the prodromal pathology and symptomatology, AD remains a significant unmet clinical need. Lecanemab and aducanumab, the only Food and Drug Administration approved drugs to exhibit some disease-modifying clinical efficacy, target Aβ amyloid, underscoring the importance of this protein in disease aetiology. Nevertheless, in the absence of a definitive cure, the utilisation of preclinical models remains imperative for the identification of novel therapeutic targets and the evaluation of potential therapeutic agents. Drosophila melanogaster is a model system that can be used as a research tool to investigate neurodegeneration and therapeutic interventions. The short lifespan, low price and ease of husbandry/rearing make Drosophila an advantageous model organism from a practical perspective. However, it is the highly conserved genome and similarity of Drosophila and human neurobiology which make flies a powerful tool to investigate neurodegenerative mechanisms. In addition, the ease of transgenic modifications allows for early proof of principle studies for future therapeutic approaches in neurodegenerative research. This mini review will specifically focus on utilising Drosophila as an in vivo model of amyloid toxicity in AD.
Collapse
Affiliation(s)
- Elli Tsintzas
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| |
Collapse
|
6
|
Leung SK, Bamford RA, Jeffries AR, Castanho I, Chioza B, Flaxman CS, Moore K, Dempster EL, Harvey J, Brown JT, Ahmed Z, O'Neill P, Richardson SJ, Hannon E, Mill J. Long-read transcript sequencing identifies differential isoform expression in the entorhinal cortex in a transgenic model of tau pathology. Nat Commun 2024; 15:6458. [PMID: 39095344 PMCID: PMC11297290 DOI: 10.1038/s41467-024-50486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Increasing evidence suggests that alternative splicing plays an important role in Alzheimer's disease (AD) pathology. We used long-read sequencing in combination with a novel bioinformatics tool (FICLE) to profile transcript diversity in the entorhinal cortex of female transgenic (TG) mice harboring a mutant form of human tau. Our analyses revealed hundreds of novel isoforms and identified differentially expressed transcripts - including specific isoforms of Apoe, App, Cd33, Clu, Fyn and Trem2 - associated with the development of tau pathology in TG mice. Subsequent profiling of the human cortex from AD individuals and controls revealed similar patterns of transcript diversity, including the upregulation of the dominant TREM2 isoform in AD paralleling the increased expression of the homologous transcript in TG mice. Our results highlight the importance of differential transcript usage, even in the absence of gene-level expression alterations, as a mechanism underpinning gene regulation in the development of AD neuropathology.
Collapse
Affiliation(s)
- Szi Kay Leung
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| | - Rosemary A Bamford
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | | | - Isabel Castanho
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Barry Chioza
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Christine S Flaxman
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Karen Moore
- Biosciences, University of Exeter, Exeter, UK
| | - Emma L Dempster
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Joshua Harvey
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Jonathan T Brown
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | | | | | - Sarah J Richardson
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Eilis Hannon
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
7
|
Pantelopulos GA, Abraham CB, Straub JE. Cholesterol and Lipid Rafts in the Biogenesis of Amyloid-β Protein and Alzheimer's Disease. Annu Rev Biophys 2024; 53:455-486. [PMID: 38382114 PMCID: PMC11575466 DOI: 10.1146/annurev-biophys-062823-023436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Cholesterol has been conjectured to be a modulator of the amyloid cascade, the mechanism that produces the amyloid-β (Aβ) peptides implicated in the onset of Alzheimer's disease. We propose that cholesterol impacts the genesis of Aβ not through direct interaction with proteins in the bilayer, but indirectly by inducing the liquid-ordered phase and accompanying liquid-liquid phase separations, which partition proteins in the amyloid cascade to different lipid domains and ultimately to different endocytotic pathways. We explore the full process of Aβ genesis in the context of liquid-ordered phases induced by cholesterol, including protein partitioning into lipid domains, mechanisms of endocytosis experienced by lipid domains and secretases, and pH-controlled activation of amyloid precursor protein secretases in specific endocytotic environments. Outstanding questions on the essential role of cholesterol in the amyloid cascade are identified for future studies.
Collapse
Affiliation(s)
| | - Conor B Abraham
- Department of Chemistry, Boston University, Boston, Massachusetts, USA;
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts, USA;
| |
Collapse
|
8
|
Singh R, Rai S, Bharti PS, Zehra S, Gorai PK, Modi GP, Rani N, Dev K, Inampudi KK, Y VV, Chatterjee P, Nikolajeff F, Kumar S. Circulating small extracellular vesicles in Alzheimer's disease: a case-control study of neuro-inflammation and synaptic dysfunction. BMC Med 2024; 22:254. [PMID: 38902659 PMCID: PMC11188177 DOI: 10.1186/s12916-024-03475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aβ plaques and neurofibrillary tangles. Chronic inflammation and synaptic dysfunction lead to disease progression and cognitive decline. Small extracellular vesicles (sEVs) are implicated in AD progression by facilitating the spread of pathological proteins and inflammatory cytokines. This study investigates synaptic dysfunction and neuroinflammation protein markers in plasma-derived sEVs (PsEVs), their association with Amyloid-β and tau pathologies, and their correlation with AD progression. METHODS A total of 90 [AD = 35, mild cognitive impairment (MCI) = 25, and healthy age-matched controls (AMC) = 30] participants were recruited. PsEVs were isolated using a chemical precipitation method, and their morphology was characterized by transmission electron microscopy. Using nanoparticle tracking analysis, the size and concentration of PsEVs were determined. Antibody-based validation of PsEVs was done using CD63, CD81, TSG101, and L1CAM antibodies. Synaptic dysfunction and neuroinflammation were evaluated with synaptophysin, TNF-α, IL-1β, and GFAP antibodies. AD-specific markers, amyloid-β (1-42), and p-Tau were examined within PsEVs using Western blot and ELISA. RESULTS Our findings reveal higher concentrations of PsEVs in AD and MCI compared to AMC (p < 0.0001). Amyloid-β (1-42) expression within PsEVs is significantly elevated in MCI and AD compared to AMC. We could also differentiate between the amyloid-β (1-42) expression in AD and MCI. Similarly, PsEVs-derived p-Tau exhibited elevated expression in MCI compared with AMC, which is further increased in AD. Synaptophysin exhibited downregulated expression in PsEVs from MCI to AD (p = 0.047) compared to AMC, whereas IL-1β, TNF-α, and GFAP showed increased expression in MCI and AD compared to AMC. The correlation between the neuropsychological tests and PsEVs-derived proteins (which included markers for synaptic integrity, neuroinflammation, and disease pathology) was also performed in our study. The increased number of PsEVs correlates with disease pathological markers, synaptic dysfunction, and neuroinflammation. CONCLUSIONS Elevated PsEVs, upregulated amyloid-β (1-42), and p-Tau expression show high diagnostic accuracy in AD. The downregulated synaptophysin expression and upregulated neuroinflammatory markers in AD and MCI patients suggest potential synaptic degeneration and neuroinflammation. These findings support the potential of PsEV-associated biomarkers for AD diagnosis and highlight synaptic dysfunction and neuroinflammation in disease progression.
Collapse
Affiliation(s)
- Rishabh Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sadaqa Zehra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Priya Kumari Gorai
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Vishnu V Y
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Prasun Chatterjee
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Fredrik Nikolajeff
- Department of Health, Education, and Technology, Lulea University of Technology, Lulea, 97187, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Department of Health, Education, and Technology, Lulea University of Technology, Lulea, 97187, Sweden.
| |
Collapse
|
9
|
Iqbal I, Saqib F, Mubarak Z, Latif MF, Wahid M, Nasir B, Shahzad H, Sharifi-Rad J, Mubarak MS. Alzheimer's disease and drug delivery across the blood-brain barrier: approaches and challenges. Eur J Med Res 2024; 29:313. [PMID: 38849950 PMCID: PMC11161981 DOI: 10.1186/s40001-024-01915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Alzheimer's disease (AD) is a diverse disease with a complex pathophysiology. The presence of extracellular β-amyloid deposition as neuritic plaques and intracellular accumulation of hyper-phosphorylated tau as neurofibrillary tangles remain the core neuropathologic criteria for diagnosing Alzheimer's disease. Nonetheless, several recent basic discoveries have revealed significant pathogenic roles for other essential cellular and molecular processes. Previously, there were not so many disease-modifying medications (DMT) available as drug distribution through the blood-brain barrier (BBB) is difficult due to its nature, especially drugs of polypeptides nature and proteins. Recently FDA has approved lecanemab as DMT for its proven efficacy. It is also complicated to deliver drugs for diseases like epilepsy or any brain tumor due to the limitations of the BBB. After the advancements in the drug delivery system, different techniques are used to transport the medication across the BBB. Other methods are used, like enhancement of brain blood vessel fluidity by liposomes, infusion of hyperosmotic solutions, and local intracerebral implants, but these are invasive approaches. Non-invasive approaches include the formulation of nanoparticles and their coating with polymers. This review article emphasizes all the above-mentioned techniques, procedures, and challenges to transporting medicines across the BBB. It summarizes the most recent literature dealing with drug delivery across the BBB.
Collapse
Affiliation(s)
- Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
- Primary and Secondary Healthcare Department, Govt of the Punjab, Lahore, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Zobia Mubarak
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
- Primary and Secondary Healthcare Department, Govt of the Punjab, Lahore, Pakistan
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Bushra Nasir
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamna Shahzad
- Department of Biochemistry, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Javad Sharifi-Rad
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
| | - Mohammad S Mubarak
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
10
|
Zhang Y, Xie X, Chen B, Pan L, Li J, Wang W, Wang J, Tang R, Huang Q, Chen X, Ren R, Zhang Z, Fu W, Wang G. E674Q (Shanghai APP mutant), a novel amyloid precursor protein mutation, in familial late-onset Alzheimer's disease. Genes Dis 2024; 11:1022-1034. [PMID: 37692508 PMCID: PMC10491941 DOI: 10.1016/j.gendis.2023.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 09/12/2023] Open
Abstract
Identified as the pathogenic genes of Alzheimer's disease (AD), APP, PSEN1, and PSEN2 mainly lead to early-onset AD, whose course is more aggressive, and atypical symptoms are more common than sporadic AD. Here, a novel missense mutation, APP E674Q (also named "Shanghai APP"), was detected in a Chinese index patient with typical late-onset AD (LOAD) who developed memory decline in his mid-70s. The results from neuroimaging were consistent with AD, where widespread amyloid β deposition was demonstrated in 18F-florbetapir Positron Emission Tomography (PET). APP E674Q is close to the β-secretase cleavage site and the well-studied Swedish APP mutation (KM670/671NL), which was predicted to be pathogenic in silico. Molecular dynamics simulation indicated that the E674Q mutation resulted in a rearrangement of the interaction mode between APP and BACE1 and that the E674Q mutation was more prone to cleavage by BACE1. The in vitro results suggested that the E674Q mutation was pathogenic by facilitating the BACE1-mediated processing of APP and the production of Aβ. Furthermore, we applied an adeno-associated virus (AAV)-mediated transfer of the human E674Q mutant APP gene to the hippocampi of two-month-old C57Bl/6 J mice. AAV-E674Q-injected mice exhibited impaired learning behavior and increased pathological burden in the brain, implying that the E674Q mutation had a pathogenicity that bore a comparison with the classical Swedish mutation. Collectively, we report a strong amyloidogenic effect of the E674Q substitution in AD. To our knowledge, E674Q is the only pathogenic mutation within the amyloid processing sequence causing LOAD.
Collapse
Affiliation(s)
- Yongfang Zhang
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyi Xie
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Boyu Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jianping Li
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wanbing Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518063, China
| | - Jintao Wang
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Tang
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiang Huang
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaofen Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518063, China
| | - Rujing Ren
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Gang Wang
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
11
|
Ercolano E, Bencivenga L, Palaia ME, Carbone G, Scognamiglio F, Rengo G, Femminella GD. Intricate relationship between obstructive sleep apnea and dementia in older adults. GeroScience 2024; 46:99-111. [PMID: 37814196 PMCID: PMC10828345 DOI: 10.1007/s11357-023-00958-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
Numerous evidence reports direct correlation between cognitive impairment, Alzheimer's disease and sleep disorders, in particular obstructive sleep apnea. Both obstructive sleep apnea and Alzheimer's disease are highly prevalent conditions whose incidence increases with age. Several studies demonstrate how sleep-disordered breathing may lead to poor cognition, even though the underlying mechanisms of this association remain partially unclear. According to the most recent studies, obstructive sleep apnea may be considered a modifiable risk factor for cognitive dysfunction. In the present review, the authors aim to integrate recent research examining obstructive sleep apnea and Alzheimer's disease biomarkers, also focusing on the mechanisms that support this correlation, including but not limited to the role of hypoxia and cardiovascular risk. Moreover, the potential favourable effect of obstructive sleep apnea therapy on cognitive function is discussed, to evaluate the benefits deriving from appropriate treatment of sleep-disordered breathing on cognition.
Collapse
Affiliation(s)
- Erica Ercolano
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini, 5, Naples, Italy
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini, 5, Naples, Italy
| | - Maria Emiliana Palaia
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini, 5, Naples, Italy
| | - Giovanni Carbone
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini, 5, Naples, Italy
| | - Francesco Scognamiglio
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini, 5, Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini, 5, Naples, Italy
- Istituti Clinici Scientifici ICS Maugeri - S.P.A. - Istituti Di Ricovero E Cura a Carattere Scientifico (IRCCS) Istituto Scientifico Di Telese Terme, Telese, Italy
| | - Grazia Daniela Femminella
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini, 5, Naples, Italy.
- Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
12
|
Rathee S, Sen D, Pandey V, Jain SK. Advances in Understanding and Managing Alzheimer's Disease: From Pathophysiology to Innovative Therapeutic Strategies. Curr Drug Targets 2024; 25:752-774. [PMID: 39039673 DOI: 10.2174/0113894501320096240627071400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the presence of amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles, leading to cognitive and physical decline. Representing the majority of dementia cases, AD poses a significant burden on healthcare systems globally, with onset typically occurring after the age of 65. While most cases are sporadic, about 10% exhibit autosomal forms associated with specific gene mutations. Neurofibrillary tangles and Aβ plaques formed by misfolded tau proteins and Aβ peptides contribute to neuronal damage and cognitive impairment. Currently, approved drugs, such as acetylcholinesterase inhibitors and N-methyl D-aspartate receptor agonists, offer only partial symptomatic relief without altering disease progression. A promising development is using lecanemab, a humanized IgG1 monoclonal antibody, as an immune therapeutic approach. Lecanemab demonstrates selectivity for polymorphic Aβ variants and binds to large soluble Aβ aggregates, providing a potential avenue for targeted treatment. This shift in understanding the role of the adaptive immune response in AD pathogenesis opens new possibilities for therapeutic interventions aiming to address the disease's intricate mechanisms. This review aims to summarize recent advancements in understanding Alzheimer's disease pathophysiology and innovative therapeutic approaches, providing valuable insights for both researchers and clinicians.
Collapse
Affiliation(s)
- Sunny Rathee
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Debasis Sen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Vishal Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
13
|
Eremin DV, Kondaurova EM, Rodnyy AY, Molobekova CA, Kudlay DA, Naumenko VS. Serotonin Receptors as a Potential Target in the Treatment of Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2023-2042. [PMID: 38462447 DOI: 10.1134/s0006297923120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 03/12/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide that has an increasing impact on aging societies. Besides its critical role in the control of various physiological functions and behavior, brain serotonin (5-HT) system is involved in the regulation of migration, proliferation, differentiation, maturation, and programmed death of neurons. At the same time, a growing body of evidence indicates the involvement of 5-HT neurotransmission in the formation of insoluble aggregates of β-amyloid and tau protein, the main histopathological signs of AD. The review describes the role of various 5-HT receptors and intracellular signaling cascades induced by them in the pathological processes leading to the development of AD, first of all, in protein aggregation. Changes in the functioning of certain types of 5-HT receptors or associated intracellular signaling mediators prevent accumulation of β-amyloid plaques and tau protein neurofibrillary tangles. Based on the experimental data, it can be suggested that the use of 5-HT receptors as new drug targets will not only improve cognitive performance in AD, but will be also important in treating the causes of AD-related dementia.
Collapse
Affiliation(s)
- Dmitrii V Eremin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Elena M Kondaurova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Aleksander Ya Rodnyy
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Camilla A Molobekova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitrii A Kudlay
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
14
|
Moreno-Gázquez I, Pérez-Palacios R, Abengochea-Quílez L, Lahuerta Pueyo C, Roteta Unceta Barrenechea A, Andrés Gracia A, Aibar Arregui MA, Menao Guillén S. Targeted sequencing of selected functional genes in patients with wild-type transthyretin amyloidosis. BMC Res Notes 2023; 16:249. [PMID: 37784196 PMCID: PMC10546623 DOI: 10.1186/s13104-023-06491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/03/2023] [Indexed: 10/04/2023] Open
Abstract
OBJECTIVE Wild-type transthyretin (ATTRwt) amyloidosis is caused by the misfolding and deposition of the transthyretin protein (TTR) in the absence of mutations in the TTR gene. Studies regarding the variant form of ATTR amyloidosis (ATTRv) suggest that the presence of single-nucleotide polymorphisms (SNP) in genes other than the TTR, may influence the development of the disease. However, other genetic factors involved in the aetiopathogenesis of ATTRwt are currently unknown. This work investigates the presence of sequence variants in genes selected for their possible impact on ATTRwt amyloidosis. To do so, targeted sequencing of 84 protein-coding genes was performed in a cohort of 27 patients diagnosed with ATTRwt. RESULTS After applying quality and frequency filtering criteria, 72 rare or novel genetic variants were found. Subsequent classification according to the ACMG-AMP criteria resulted in 17 variants classified as of uncertain significance in 14 different genes. To our knowledge, this is the first report associating novel gene variants with ATTRwt amyloidosis. In conclusion, this study provides potential insights into the aetiopathogenesis of ATTRwt amyloidosis by linking novel coding-gene variants with the occurrence of the disease.
Collapse
Affiliation(s)
- Inmaculada Moreno-Gázquez
- Department of Clinical Biochemistry, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain.
| | - Raquel Pérez-Palacios
- Department of Anatomy, Embryology and Genetics, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Lucia Abengochea-Quílez
- Health Research Institute in Aragón, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, Campus Río Ebro- Edificio I+D, University of Zaragoza, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Carmen Lahuerta Pueyo
- Department of Clinical Biochemistry, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Ana Roteta Unceta Barrenechea
- Department of Nuclear Medicine, Multihospital Nuclear Medicine Clinical Unit of Aragón, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Alejandro Andrés Gracia
- Department of Nuclear Medicine, Multihospital Nuclear Medicine Clinical Unit of Aragón, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Miguel Angel Aibar Arregui
- Department of Internal Medicine, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Sebastián Menao Guillén
- Department of Clinical Biochemistry, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| |
Collapse
|
15
|
Orobets KS, Karamyshev AL. Amyloid Precursor Protein and Alzheimer's Disease. Int J Mol Sci 2023; 24:14794. [PMID: 37834241 PMCID: PMC10573485 DOI: 10.3390/ijms241914794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders associated with age or inherited mutations. It is characterized by severe dementia in the late stages that affect memory, cognitive functions, and daily life overall. AD progression is linked to the accumulation of cytotoxic amyloid beta (Aβ) and hyperphosphorylated tau protein combined with other pathological features such as synaptic loss, defective energy metabolism, imbalances in protein, and metal homeostasis. Several treatment options for AD are under investigation, including antibody-based therapy and stem cell transplantation. Amyloid precursor protein (APP) is a membrane protein considered to play a main role in AD pathology. It is known that APP in physiological conditions follows a non-amyloidogenic pathway; however, it can proceed to an amyloidogenic scenario, which leads to the generation of extracellular deleterious Aβ plaques. Not all steps of APP biogenesis are clear so far, and these questions should be addressed in future studies. AD is a complex chronic disease with many factors that contribute to disease progression.
Collapse
Affiliation(s)
| | - Andrey L. Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| |
Collapse
|
16
|
Vogt ACS, Jennings GT, Mohsen MO, Vogel M, Bachmann MF. Alzheimer's Disease: A Brief History of Immunotherapies Targeting Amyloid β. Int J Mol Sci 2023; 24:3895. [PMID: 36835301 PMCID: PMC9961492 DOI: 10.3390/ijms24043895] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and may contribute to 60-70% of cases. Worldwide, around 50 million people suffer from dementia and the prediction is that the number will more than triple by 2050, as the population ages. Extracellular protein aggregation and plaque deposition as well as accumulation of intracellular neurofibrillary tangles, all leading to neurodegeneration, are the hallmarks of brains with Alzheimer's disease. Therapeutic strategies including active and passive immunizations have been widely explored in the last two decades. Several compounds have shown promising results in many AD animal models. To date, only symptomatic treatments are available and because of the alarming epidemiological data, novel therapeutic strategies to prevent, mitigate, or delay the onset of AD are required. In this mini-review, we focus on our understanding of AD pathobiology and discuss current active and passive immunomodulating therapies targeting amyloid-β protein.
Collapse
Affiliation(s)
- Anne-Cathrine S. Vogt
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3008 Bern, Switzerland
| | | | - Mona O. Mohsen
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
| | - Monique Vogel
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
| | - Martin F. Bachmann
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
- Centre for Cellular and Molecular Physiology (CCMP), Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
17
|
Makdissi S, Parsons BD, Di Cara F. Towards early detection of neurodegenerative diseases: A gut feeling. Front Cell Dev Biol 2023; 11:1087091. [PMID: 36824371 PMCID: PMC9941184 DOI: 10.3389/fcell.2023.1087091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
The gastrointestinal tract communicates with the nervous system through a bidirectional network of signaling pathways called the gut-brain axis, which consists of multiple connections, including the enteric nervous system, the vagus nerve, the immune system, endocrine signals, the microbiota, and its metabolites. Alteration of communications in the gut-brain axis is emerging as an overlooked cause of neuroinflammation. Neuroinflammation is a common feature of the pathogenic mechanisms involved in various neurodegenerative diseases (NDs) that are incurable and debilitating conditions resulting in progressive degeneration and death of neurons, such as in Alzheimer and Parkinson diseases. NDs are a leading cause of global death and disability, and the incidences are expected to increase in the following decades if prevention strategies and successful treatment remain elusive. To date, the etiology of NDs is unclear due to the complexity of the mechanisms of diseases involving genetic and environmental factors, including diet and microbiota. Emerging evidence suggests that changes in diet, alteration of the microbiota, and deregulation of metabolism in the intestinal epithelium influence the inflammatory status of the neurons linked to disease insurgence and progression. This review will describe the leading players of the so-called diet-microbiota-gut-brain (DMGB) axis in the context of NDs. We will report recent findings from studies in model organisms such as rodents and fruit flies that support the role of diets, commensals, and intestinal epithelial functions as an overlooked primary regulator of brain health. We will finish discussing the pivotal role of metabolisms of cellular organelles such as mitochondria and peroxisomes in maintaining the DMGB axis and how alteration of the latter can be used as early disease makers and novel therapeutic targets.
Collapse
Affiliation(s)
- Stephanie Makdissi
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
- IWK Health Centre, Department of Pediatrics, Halifax, Canada
| | - Brendon D. Parsons
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
| | - Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
- IWK Health Centre, Department of Pediatrics, Halifax, Canada
| |
Collapse
|
18
|
Li Z, Zhao T, Shi M, Wei Y, Huang X, Shen J, Zhang X, Xie Z, Huang P, Yuan K, Li Z, Li N, Qin D. Polyphenols: Natural food grade biomolecules for treating neurodegenerative diseases from a multi-target perspective. Front Nutr 2023; 10:1139558. [PMID: 36925964 PMCID: PMC10011110 DOI: 10.3389/fnut.2023.1139558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
As natural functional bioactive ingredients found in foods and plants, polyphenols play various antioxidant and anti-inflammatory roles to prevent the development of disease and restore human health. The multi-target modulation of polyphenols provides a novel practical therapeutic strategy for neurodegenerative diseases that are difficult to treat with traditional drugs like glutathione and cholinesterase inhibitors. This review mainly focuses on the efficacy of polyphenols on ischemic stroke, Parkinson's disease and Alzheimer's disease, including in vivo and in vitro experimental studies. It is further emphasized that polyphenols exert neuroprotective effects primarily through inhibiting production of oxidative stress and inflammatory cytokines, which may be the underlying mechanism. However, polyphenols are still rarely used as medicines to treat neurodegenerative diseases. Due to the lack of clinical trials, the mechanism of polyphenols is still in the stage of insufficient exploration. Future large-scale multi-center randomized controlled trials and in-depth mechanism studies are still needed to fully assess the safety, efficacy and side effects of polyphenols.
Collapse
Affiliation(s)
- Zhenmin Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Ting Zhao
- The First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- The First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiaoyu Zhang
- The First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Peidong Huang
- The Second Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Kai Yuan
- The Second Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Ning Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
19
|
Abondio P, Sarno S, Giuliani C, Laganà V, Maletta R, Bernardi L, Bruno F, Colao R, Puccio G, Frangipane F, Borroni B, Van Broeckhoven C, Luiselli D, Bruni A. Amyloid Precursor Protein A713T Mutation in Calabrian Patients with Alzheimer's Disease: A Population Genomics Approach to Estimate Inheritance from a Common Ancestor. Biomedicines 2021; 10:biomedicines10010020. [PMID: 35052700 PMCID: PMC8773445 DOI: 10.3390/biomedicines10010020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Mutation A713T in the amyloid precursor protein (APP) has been linked to cases of Alzheimer’s disease (AD), cerebral amyloid angiopathy (CAA) and cerebrovascular disease. Despite its rarity, it has been observed in several families from the same geographical area, in the Calabria region in Southern Italy. Genotyping of 720,000 genome-wide SNPs with the HumanOmniExpress BeadChip was performed for six patients that were representative of apparently unrelated Calabrian families, as well as a Belgian subject of Italian descent (all with the same A713T mutation and disease). Their genomic structure and genetic relationships were analyzed. Demographic reconstruction and coalescent theory were applied to estimate the time of the most recent common ancestor (tMRCA) among patients. Results show that all A713T carriers fell into the genetic variability of Southern Italy and were not more closely related to each other than to any other healthy Calabrian individual. However, five out of seven patients shared a 1.7 Mbp-long DNA segment centered on the A713T mutation, making it possible to estimate a tMRCA for its common origin in the Calabrian region dating back over 1000 years. The analysis of affected individuals with methodologies based on human population genomics thus provides informative insights in support of clinical observations and biomedical research.
Collapse
Affiliation(s)
- Paolo Abondio
- Laboratory of Molecular Anthropology, Center for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (S.S.); (C.G.)
- Correspondence: (P.A.); (A.B.)
| | - Stefania Sarno
- Laboratory of Molecular Anthropology, Center for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (S.S.); (C.G.)
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology, Center for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (S.S.); (C.G.)
| | - Valentina Laganà
- Regional Neurogenetic Center, Azianda Sanitaria Provinciale Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.); (L.B.); (F.B.); (R.C.); (G.P.); (F.F.)
| | - Raffaele Maletta
- Regional Neurogenetic Center, Azianda Sanitaria Provinciale Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.); (L.B.); (F.B.); (R.C.); (G.P.); (F.F.)
| | - Livia Bernardi
- Regional Neurogenetic Center, Azianda Sanitaria Provinciale Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.); (L.B.); (F.B.); (R.C.); (G.P.); (F.F.)
| | - Francesco Bruno
- Regional Neurogenetic Center, Azianda Sanitaria Provinciale Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.); (L.B.); (F.B.); (R.C.); (G.P.); (F.F.)
| | - Rosanna Colao
- Regional Neurogenetic Center, Azianda Sanitaria Provinciale Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.); (L.B.); (F.B.); (R.C.); (G.P.); (F.F.)
| | - Gianfranco Puccio
- Regional Neurogenetic Center, Azianda Sanitaria Provinciale Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.); (L.B.); (F.B.); (R.C.); (G.P.); (F.F.)
| | - Francesca Frangipane
- Regional Neurogenetic Center, Azianda Sanitaria Provinciale Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.); (L.B.); (F.B.); (R.C.); (G.P.); (F.F.)
| | - Barbara Borroni
- Department of Neurology, University of Brescia, 25121 Brescia, Italy;
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, Vlaams Instituut voor Biotechnologie, 2600 Antwerp, Belgium;
- Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Donata Luiselli
- Ancient DNA Laboratory, Department of Cultural Heritage, Ravenna Campus, University of Bologna, 48121 Ravenna, Italy;
| | - Amalia Bruni
- Regional Neurogenetic Center, Azianda Sanitaria Provinciale Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.); (L.B.); (F.B.); (R.C.); (G.P.); (F.F.)
- Correspondence: (P.A.); (A.B.)
| |
Collapse
|
20
|
Epibrassinolide prevents tau hyperphosphorylation via GSK3β inhibition in vitro and improves Caenorhabditis elegans lifespan and motor deficits in combination with roscovitine. Amino Acids 2021; 53:1373-1389. [PMID: 34386848 DOI: 10.1007/s00726-021-03027-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/23/2021] [Indexed: 01/17/2023]
Abstract
Glycogen synthase kinase 3β (GSK3β) is considered an important element of glycogen metabolism; however, it has many other regulatory roles. Changes in the GSK3β signaling mechanism have been associated with various disorders, such as Alzheimer's disease (AD), type II diabetes, and cancer. Although the effects of GSK3β inhibitors on reducing the pathological effects of AD have been described, an effective inhibitor has not yet been developed. Epibrassinolide (EBR), a brassinosteroid (BR), is structurally similar to mammalian steroid hormones. Our studies have shown that EBR has an inhibitory effect on GSK3β in different cell lines. Roscovitine (ROSC), a cyclin-dependent kinase (CDK) inhibitor, has also been identified as a potential GSK3 inhibitor. Within the scope of this study, we propose that EBR and/or ROSC might have mechanistic action in AD models. To test this hypothesis, we used in vitro models and Caenorhabditis elegans (C. elegans) AD strains. Finally, EBR treatment successfully protected cells from apoptosis and increased the inhibitory phosphorylation of GSK3β. In addition, EBR and/or ROSC treatment had a positive effect on the survival rates of C. elegans strains. More interestingly, the paralysis phenotype of the C. elegans AD model due to Aβ42 toxicity was prevented by EBR and/or ROSC. Our findings suggest that EBR and ROSC administration have neuroprotective effects on both in vitro and C. elegans models via inhibitory GSK3β phosphorylation at Ser9.
Collapse
|
21
|
Nutraceutical and Probiotic Approaches to Examine Molecular Interactions of the Amyloid Precursor Protein APP in Drosophila Models of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22137022. [PMID: 34209883 PMCID: PMC8269328 DOI: 10.3390/ijms22137022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Studies using animal models have shed light into the molecular and cellular basis for the neuropathology observed in patients with Alzheimer’s disease (AD). In particular, the role of the amyloid precursor protein (APP) plays a crucial role in the formation of senile plaques and aging-dependent degeneration. Here, we focus our review on recent findings using the Drosophila AD model to expand our understanding of APP molecular function and interactions, including insights gained from the fly homolog APP-like (APPL). Finally, as there is still no cure for AD, we review some approaches that have shown promising results in ameliorating AD-associated phenotypes, with special attention on the use of nutraceuticals and their molecular effects, as well as interactions with the gut microbiome. Overall, the phenomena described here are of fundamental significance for understanding network development and degeneration. Given the highly conserved nature of fundamental signaling pathways, the insight gained from animal models such as Drosophila melanogaster will likely advance the understanding of the mammalian brain, and thus be relevant to human health.
Collapse
|
22
|
Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules 2020; 25:E5789. [PMID: 33302541 PMCID: PMC7764106 DOI: 10.3390/molecules25245789] [Citation(s) in RCA: 1032] [Impact Index Per Article: 206.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a disorder that causes degeneration of the cells in the brain and it is the main cause of dementia, which is characterized by a decline in thinking and independence in personal daily activities. AD is considered a multifactorial disease: two main hypotheses were proposed as a cause for AD, cholinergic and amyloid hypotheses. Additionally, several risk factors such as increasing age, genetic factors, head injuries, vascular diseases, infections, and environmental factors play a role in the disease. Currently, there are only two classes of approved drugs to treat AD, including inhibitors to cholinesterase enzyme and antagonists to N-methyl d-aspartate (NMDA), which are effective only in treating the symptoms of AD, but do not cure or prevent the disease. Nowadays, the research is focusing on understanding AD pathology by targeting several mechanisms, such as abnormal tau protein metabolism, β-amyloid, inflammatory response, and cholinergic and free radical damage, aiming to develop successful treatments that are capable of stopping or modifying the course of AD. This review discusses currently available drugs and future theories for the development of new therapies for AD, such as disease-modifying therapeutics (DMT), chaperones, and natural compounds.
Collapse
Affiliation(s)
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| |
Collapse
|
23
|
Chauhan PS, Yadav D, Koul B, Mohanta YK, Jin JO. Recent Advances in Nanotechnology: A Novel Therapeutic System for the Treatment of Alzheimer's Disease. Curr Drug Metab 2020; 21:1144-1151. [PMID: 33234100 DOI: 10.2174/1389200221666201124140518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/14/2020] [Accepted: 10/15/2020] [Indexed: 11/22/2022]
Abstract
A amyloid-β (Aβ) plaque formation in the brain is known to be the root cause of Alzheimer's disease (AD), which affects the behavior, memory, and cognitive ability in humans. The brain starts undergoing changes several years before the actual appearance of the symptoms. Nanotechnology could prove to be an alternative strategy for treating the disease effectively. It encompasses the diagnosis as well as the therapeutic aspect using validated biomarkers and nano-based drug delivery systems, respectively. A nano-based therapy may provide an alternate strategy, wherein one targets the protofibrillar amyloid-β (Aβ) structures, and this is followed by their disaggregation as random coils. Conventional/routine drug therapies are inefficient in crossing the blood-brain barrier; however, this hurdle can be overcome with the aid of nanoparticles. The present review highlights the various challenges in the diagnosis and treatment of AD. Meticulous and collaborative research using nanotherapeutic systems could provide remarkable breakthroughs in the early-stage diagnosis and therapy of AD.
Collapse
Affiliation(s)
- Pallavi Singh Chauhan
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior, 474005, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Yugal Kishore Mohanta
- Biochemistry Laboratory, Department of Botany, North Orissa University Baripada- 757003, India
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
24
|
Tian Y, Cao R, Che B, Sun D, Tang Y, Jiang L, Bai Q, Liu Y, Morozova-Roche LA, Zhang C. Proinflammatory S100A9 Regulates Differentiation and Aggregation of Neural Stem Cells. ACS Chem Neurosci 2020; 11:3549-3556. [PMID: 33079539 DOI: 10.1021/acschemneuro.0c00365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammation is the primary pathological feature of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease. Proinflammatory molecules (e.g., S100A9) play important roles during the progression of the diseases by regulating behavior and fate of multiple cell types in the nervous system. Our earlier studies reveal that S100A9 is toxic to neurons, and its interaction with Aβ peptides leads to the formation of large nontoxic amyloidogenic aggregates, suggesting a protective role of coaggregation with Aβ amyloids. We herein demonstrate that S100A9 interacts with neural stem cells (NSCs) and causes NSC differentiation. In the brain of transgenic AD mouse models, we found large quantities of proinflammatory S100A9, which colocalizes with the differentiated NSCs. NSC sphere formation, which is a representative character of NSC stemness, is also substantially inhibited by S100A9. These results suggest that S100A9 is a representative marker for the inflammatory conditions in AD, and it promotes NSC differentiation. Intriguingly, in contrast to the death of both stem and differentiated NSCs caused by high S100A9 doses, S100A9 at a moderate concentration is toxic only to the early differentiated NSCs but not the stem cells. We therefore postulate that, at the early stage of AD, the expression of S100A9 leads to NSC differentiation, which remedies the neuron damage. The application of drugs, which help maintain NSC stemness (e.g., the platelet-derived growth factor, PDGF), may help overcome the acute inflammatory conditions and improve the efficacy of NSC transplantation therapy.
Collapse
Affiliation(s)
- Yin Tian
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University & Institute of Photonics and Photon-Technology, Northwest University, 1 Xue Fu Avenue, Xi’an, Shaanxi 710127, China
| | - Rui Cao
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University & Institute of Photonics and Photon-Technology, Northwest University, 1 Xue Fu Avenue, Xi’an, Shaanxi 710127, China
| | - Bingchen Che
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University & Institute of Photonics and Photon-Technology, Northwest University, 1 Xue Fu Avenue, Xi’an, Shaanxi 710127, China
| | - Dan Sun
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University & Institute of Photonics and Photon-Technology, Northwest University, 1 Xue Fu Avenue, Xi’an, Shaanxi 710127, China
| | - Yong Tang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University & Institute of Photonics and Photon-Technology, Northwest University, 1 Xue Fu Avenue, Xi’an, Shaanxi 710127, China
| | - Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University & Institute of Photonics and Photon-Technology, Northwest University, 1 Xue Fu Avenue, Xi’an, Shaanxi 710127, China
| | - Qiao Bai
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University & Institute of Photonics and Photon-Technology, Northwest University, 1 Xue Fu Avenue, Xi’an, Shaanxi 710127, China
| | - Yonggang Liu
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University & Institute of Photonics and Photon-Technology, Northwest University, 1 Xue Fu Avenue, Xi’an, Shaanxi 710127, China
| | | | - Ce Zhang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University & Institute of Photonics and Photon-Technology, Northwest University, 1 Xue Fu Avenue, Xi’an, Shaanxi 710127, China
- Department of Pharmacy, Chongqing Three Gorges Medical College, Chongqing 404120, China
| |
Collapse
|
25
|
Li M, Wu M, Qin Y, Liu H, Tu C, Shen B, Xu X, Chen H. Differentially expressed serum proteins in children with or without asthma as determined using isobaric tags for relative and absolute quantitation proteomics. PeerJ 2020; 8:e9971. [PMID: 33194371 PMCID: PMC7646293 DOI: 10.7717/peerj.9971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Background Although asthma is one of the most common chronic, noncommunicable diseases worldwide, the pathogenesis of childhood asthma is not yet clear. Genetic factors and environmental factors may lead to airway immune-inflammation responses and an imbalance of airway nerve regulation. The aim of the present study was to determine which serum proteins are differentially expressed between children with or without asthma and to ascertain the potential roles that these differentially expressed proteins (DEPs) may play in the pathogenesis of childhood asthma. Methods Serum samples derived from four children with asthma and four children without asthma were collected. The DEPs were identified by using isobaric tags for relative and absolute quantitation (iTRAQ) combined with liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses. Using biological information technology, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Cluster of Orthologous Groups of Proteins (COG) databases and analyses, we determined the biological processes associated with these DEPs. Key protein glucose-6-phosphate dehydrogenase (G6PD) was verified by enzyme linked immunosorbent assay (ELISA). Results We found 46 DEPs in serum samples of children with asthma vs. children without asthma. Among these DEPs, 12 proteins were significantly (>1.5 fold change) upregulated and 34 proteins were downregulated. The results of GO analyses showed that the DEPs were mainly involved in binding, the immune system, or responding to stimuli or were part of a cellular anatomical entity. In the KEGG signaling pathway analysis, most of the downregulated DEPs were associated with cardiomyopathy, phagosomes, viral infections, and regulation of the actin cytoskeleton. The results of a COG analysis showed that the DEPs were primarily involved in signal transduction mechanisms and posttranslational modifications. These DEPs were associated with and may play important roles in the immune response, the inflammatory response, extracellular matrix degradation, and the nervous system. The downregulated of G6PD in the asthma group was confirmed using ELISA experiment. Conclusion After bioinformatics analyses, we found numerous DEPs that may play important roles in the pathogenesis of childhood asthma. Those proteins may be novel biomarkers of childhood asthma and may provide new clues for the early clinical diagnosis and treatment of childhood asthma.
Collapse
Affiliation(s)
- Ming Li
- Department of Neonatology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingzhu Wu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Qin
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Huaqing Liu
- Department of Neonatology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chengcheng Tu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bing Shen
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohong Xu
- Department of Clinical Laboratory, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongbo Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
26
|
Han LH, Xue YY, Zheng YC, Li XY, Lin RR, Wu ZY, Tao QQ. Genetic Analysis of Chinese Patients with Early-Onset Dementia Using Next-Generation Sequencing. Clin Interv Aging 2020; 15:1831-1839. [PMID: 33061333 PMCID: PMC7538001 DOI: 10.2147/cia.s271222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022] Open
Abstract
Objective Early-onset dementia (EOD) is a relatively uncommon form of dementia that afflicts people before age 65. Only a few studies analyzing the genetics of EOD have been performed in the Chinese Han population. Diagnosing EOD remains a challenge due to the diverse genetic and clinical heterogeneity of these diseases. The aim of this study was to investigate the genetic spectrum and clinical features of Chinese patients with EOD. Materials and Methods A total of 49 EOD patients were recruited. Targeted next-generation (NGS) analyses were performed to screen for all of the known genes associated with dementia. Possible pathogenic variants were confirmed by performing Sanger sequencing. The genetic spectrum and clinical features of the EOD patients were analyzed. Results Seven previously reported pathogenic variants (p.I213T and p.W165C in PSEN1; p.D678N in APP; c.1349_1352del in TBK1; p.P301L and p.R406W in MAPT; p.R110C in NOTCH3) and two novel variants of uncertain significance (p.P436L in PSEN2; c.239-11G>A in TARDBP) were identified. Conclusion Our study demonstrated the genetic spectrum and clinical features of EOD patients, and it reveals that genetic testing of known causal genes in EOD patients can help to make a precise diagnosis.
Collapse
Affiliation(s)
- Li-Hong Han
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Department of Neurology, Second People's Hospital of Luqiao District, Taizhou, People's Republic of China
| | - Yan-Yan Xue
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yi-Cen Zheng
- Department of Psychology, Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Xiao-Yan Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Rong-Rong Lin
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qing-Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
27
|
Antonyová V, Kejík Z, Brogyányi T, Kaplánek R, Pajková M, Talianová V, Hromádka R, Masařík M, Sýkora D, Mikšátková L, Martásek P, Jakubek M. Role of mtDNA disturbances in the pathogenesis of Alzheimer's and Parkinson's disease. DNA Repair (Amst) 2020; 91-92:102871. [PMID: 32502755 DOI: 10.1016/j.dnarep.2020.102871] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (e.g. Alzheimer's and Parkinson's disease) are becoming increasingly problematic to healthcare systems. Therefore, their underlying mechanisms are trending topics of study in medicinal research. Numerous studies have evidenced a strong association between mitochondrial DNA disturbances (e.g. oxidative damage, mutations, and methylation shifts) and the initiation and progression of neurodegenerative diseases. Therefore, this review discusses the risk and development of neurodegenerative diseases in terms of disturbances in mitochondrial DNA and as a part of a complex ecosystem that includes other important mechanisms (e.g. neuroinflammation and the misfolding and aggregation of amyloid-β peptides, α-synuclein, and tau proteins). In addition, the influence of individual mitochondrial DNA haplogroups on the risk and development of neurodegenerative diseases is also described and discussed.
Collapse
Affiliation(s)
- Veronika Antonyová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Tereza Brogyányi
- Depertment of Pathological Physiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic
| | - Robert Kaplánek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Martina Pajková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Veronika Talianová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Róbert Hromádka
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Michal Masařík
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - David Sýkora
- BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Lucie Mikšátková
- BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic.
| | - Milan Jakubek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic.
| |
Collapse
|
28
|
An APP mutation family exhibiting white matter hyperintensities and cortical calcification in East China. Neurol Sci 2020; 41:2921-2928. [DOI: 10.1007/s10072-020-04342-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
|
29
|
Zhang FQ, Jiang JL, Zhang JT, Niu H, Fu XQ, Zeng LL. Current status and future prospects of stem cell therapy in Alzheimer's disease. Neural Regen Res 2020; 15:242-250. [PMID: 31552889 PMCID: PMC6905342 DOI: 10.4103/1673-5374.265544] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease is a common progressive neurodegenerative disorder, pathologically characterized by the presence of β-amyloid plaques and neurofibrillary tangles. Current treatment approaches using drugs only alleviate the symptoms without curing the disease, which is a serious issue and influences the quality of life of the patients and their caregivers. In recent years, stem cell technology has provided new insights into the treatment of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Currently, the main sources of stem cells include neural stem cells, embryonic stem cells, mesenchymal stem cells, and induced pluripotent stem cells. In this review, we discuss the pathophysiology and general treatment of Alzheimer's disease, and the current state of stem cell transplantation in the treatment of Alzheimer's disease. We also assess future challenges in the clinical application and drug development of stem cell transplantation as a treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Fu-Qiang Zhang
- Scientific Research Centre of China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Jin-Lan Jiang
- Scientific Research Centre of China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Jing-Tian Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Han Niu
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Xue-Qi Fu
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Lin-Lin Zeng
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
30
|
Chen Z, Tao S, Li X, Zeng X, Zhang M, Yao Q. Anagliptin protects neuronal cells against endogenous amyloid β (Aβ)-induced cytotoxicity and apoptosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2213-2220. [PMID: 31159590 DOI: 10.1080/21691401.2019.1609979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhenbo Chen
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Shanwei Tao
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Xiaohui Li
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Xudong Zeng
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Mirong Zhang
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Qinghe Yao
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| |
Collapse
|