1
|
Papini MG, Avila AN, Fitzgerald M, Hellewell SC. Evidence for Altered White Matter Organization After Mild Traumatic Brain Injury: A Scoping Review on the Use of Diffusion Magnetic Resonance Imaging and Blood-Based Biomarkers to Investigate Acute Pathology and Relationship to Persistent Post-Concussion Symptoms. J Neurotrauma 2024. [PMID: 39096132 DOI: 10.1089/neu.2024.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common form of traumatic brain injury. Post-concussive symptoms typically resolve after a few weeks although up to 20% of people experience these symptoms for >3 months, termed persistent post-concussive symptoms (PPCS). Subtle white matter (WM) microstructural damage is thought to underlie neurological and cognitive deficits experienced post-mTBI. Evidence suggests that diffusion magnetic resonance imaging (dMRI) and blood-based biomarkers could be used as surrogate markers of WM organization. We conducted a scoping review according to PRISMA-ScR guidelines, aiming to collate evidence for the use of dMRI and/or blood-based biomarkers of WM organization, in mTBI and PPCS, and document relationships between WM biomarkers and symptoms. We focused specifically on biomarkers of axonal or myelin integrity post-mTBI. Biomarkers excluded from this review therefore included the following: astroglial, perivascular, endothelial, and inflammatory markers. A literature search performed across four databases, EMBASE, Scopus, Google Scholar, and ProQuest, identified 100 records: 68 analyzed dMRI, 28 assessed blood-based biomarkers, and 4 used both. Blood biomarker studies commonly assessed axonal cytoskeleton proteins (i.e., tau); dMRI studies assessed measures of WM organization (i.e., fractional anisotropy). Significant biomarker alterations were frequently associated with heightened symptom burden and prolonged recovery time post-injury. These data suggest that dMRI and blood-based biomarkers may be useful proxies of WM organization, although few studies assessed these complementary measures in parallel, and the relationship between modalities remains unclear. Further studies are warranted to assess the benefit of a combined biomarker approach in evaluating alterations to WM organization after mTBI.
Collapse
Affiliation(s)
- Melissa G Papini
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - André N Avila
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
2
|
Kokubun K, Nemoto K, Yamakawa Y. Smartphone app for lifestyle improvement improves brain health and boosts the vitality and cognitive function of healthy middle-aged adults. Brain Behav 2024; 14:e3500. [PMID: 38685801 PMCID: PMC11058401 DOI: 10.1002/brb3.3500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024] Open
Abstract
INTRODUCTION The number of smartphone apps for brain training is increasing, and the number of people who are working on brain training is also increasing. However, researchers disagree about the effectiveness of brain training. METHODS Therefore, in this study, we conducted an intervention test with the participation of 70 healthy middle-aged men and women and measured the effect of smartphone apps on lifestyle improvement using brain healthcare quotient calculated from brain imaging data. RESULTS As a result, in the intervention group, significant improvements were seen in fractional anisotropy (FA) of the whole brain, corpus callosum, internal capsule, corona radiata, posterior thalamic radiation, external capsule, and superior longitudinal fasciculus. Additionally, in the intervention group, these FA increments correlated with improvements in cognitive function as measured by the trail-making test and vigor as measured by the Profile of Mood States 2nd Edition. CONCLUSION The results of this study suggest that improving lifestyle habits through smartphone apps can improve brain health and cognitive and emotional performance of healthy middle-aged adults. This is consistent with previous research that suggests that FA integrity in the limbic-thalamo-cortical pathway influences cognitive function and emotion regulation.
Collapse
Affiliation(s)
- Keisuke Kokubun
- Open Innovation InstituteKyoto UniversityKyotoJapan
- Graduate School of ManagementKyoto UniversityKyotoJapan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Institute of MedicineUniversity of TsukubaTsukubaJapan
| | - Yoshinori Yamakawa
- Open Innovation InstituteKyoto UniversityKyotoJapan
- Graduate School of ManagementKyoto UniversityKyotoJapan
- Institute of Innovative Research, Tokyo Institute of TechnologyMeguroTokyoJapan
- ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan)ChiyodaTokyoJapan
- Office for Academic and Industrial InnovationKobe UniversityKobeJapan
- Brain ImpactKyotoJapan
| |
Collapse
|
3
|
Fan C, Xu J, Tong H, Fang Y, Chen Y, Lin Y, Chen R, Chen F, Wu G. Gut-brain communication mediates the impact of dietary lipids on cognitive capacity. Food Funct 2024; 15:1803-1824. [PMID: 38314832 DOI: 10.1039/d3fo05288e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cognitive impairment, as a prevalent symptom of nervous system disorders, poses one of the most challenging aspects in the management of brain diseases. Lipids present in the cell membranes of all neurons within the brain and dietary lipids can regulate the cognition and memory function. In recent years, the advancements in gut microbiome research have enabled the exploration of dietary lipids targeting the gut-brain axis as a strategy for regulating cognition. This present review provides an in-depth overview of how lipids modulate cognition via the gut-brain axis depending on metabolic, immune, neural and endocrine pathways. It also comprehensively analyzes the effects of diverse lipids on the gut microbiota and intestinal barrier function, thereby affecting the central nervous system and cognitive capacity. Moreover, comparative analysis of the positive and negative effects is presented between beneficial and detrimental lipids. The former encompass monounsaturated fatty acids, short-chain fatty acids, omega-3 polyunsaturated fatty acids, phospholipids, phytosterols, fungal sterols and bioactive lipid-soluble vitamins, as well as lipid-derived gut metabolites, whereas the latter (detrimental lipids) include medium- or long-chain fatty acids, excessive proportions of n-6 polyunsaturated fatty acids, industrial trans fatty acids, and zoosterols. To sum up, the focus of this review is on how gut-brain communication mediates the impact of dietary lipids on cognitive capacity, providing a novel theoretical foundation for promoting brain cognitive health and scientific lipid consumption patterns.
Collapse
Affiliation(s)
- Chenhan Fan
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jingxuan Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Haoxiang Tong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yucheng Fang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yiming Chen
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yangzhuo Lin
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Rui Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Fuhao Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Guoqing Wu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
4
|
Kim NY, Lee HY, Choi YY, Mo SJ, Jeon S, Ha JH, Park SD, Shim JJ, Lee J, Chung BG. Effect of gut microbiota-derived metabolites and extracellular vesicles on neurodegenerative disease in a gut-brain axis chip. NANO CONVERGENCE 2024; 11:7. [PMID: 38340254 DOI: 10.1186/s40580-024-00413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
A new perspective suggests that a dynamic bidirectional communication system, often referred to as the microbiome-gut-brain axis, exists among the gut, its microbiome, and the central nervous system (CNS). This system may influence brain health and various brain-related diseases, especially in the realms of neurodevelopmental and neurodegenerative conditions. However, the exact mechanism is not yet understood. Metabolites or extracellular vesicles derived from microbes in the gut have the capacity to traverse the intestinal epithelial barrier or blood-brain barrier, gaining access to the systemic circulation. This phenomenon can initiate the physiological responses that directly or indirectly impact the CNS and its function. However, reliable and controllable tools are required to demonstrate the causal effects of gut microbial-derived substances on neurogenesis and neurodegenerative diseases. The integration of microfluidics enhances scientific research by providing advanced in vitro engineering models. In this study, we investigated the impact of microbe-derived metabolites and exosomes on neurodevelopment and neurodegenerative disorders using human induced pluripotent stem cells (iPSCs)-derived neurons in a gut-brain axis chip. While strain-specific, our findings indicate that both microbial-derived metabolites and exosomes exert the significant effects on neural growth, maturation, and synaptic plasticity. Therefore, our results suggest that metabolites and exosomes derived from microbes hold promise as potential candidates and strategies for addressing neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Ho Yeon Lee
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
| | | | | | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | | | | | | | - Bong Geun Chung
- Department of Biomedical Engineering, Sogang University, Seoul, Korea.
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea.
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
- Institute of Smart Biosensor, Sogang University, Seoul, Korea.
| |
Collapse
|
5
|
Zhong S, Lou J, Ma K, Shu Z, Chen L, Li C, Ye Q, Zhou L, Shen Y, Ye X, Zhang J. Disentangling in-vivo microstructural changes of white and gray matter in mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis. Brain Imaging Behav 2023; 17:764-777. [PMID: 37752311 DOI: 10.1007/s11682-023-00805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
The microstructural characteristics of white and gray matter in mild cognitive impairment (MCI) and the early-stage of Alzheimer's disease (AD) remain unclear. This study aimed to systematically identify the microstructural damages of MCI/AD in studies using neurite orientation dispersion and density imaging (NODDI), and explore their correlations with cognitive performance. Multiple databases were searched for eligible studies. The 10 eligible NODDI studies were finally included. Patients with MCI/AD showed overall significant reductions in neurite density index (NDI) of specific white matter structures in bilateral hemispheres (left hemisphere: -0.40 [-0.53, -0.27], P < 0.001; right: -0.33 [-0.47, -0.19], P < 0.001), involving the bilateral superior longitudinal fasciculus (SLF), uncinate fasciculus (UF), the left posterior thalamic radiation (PTR), and the left cingulum. White matter regions exhibited significant increased orientation dispersion index (ODI) (left: 0.25 [0.02, 0.48], P < 0.05; right: 0.27 [0.07, 0.46], P < 0.05), including the left cingulum, the right UF, and the bilateral parahippocampal cingulum (PHC), and PTR. Additionally, the ODI of gray matter showed significant reduction in bilateral hippocampi (left: -0.97 [-1.42, -0.51], P < 0.001; right: -0.90 [-1.35, -0.45], P < 0.001). The cognitive performance in MCI/AD was significantly associated with NDI (r = 0.50, P < 0.001). Our findings highlight the microstructural changes in MCI/AD were characterized by decreased fiber orientation dispersion in the hippocampus, and decreased neurite density and increased fiber orientation dispersion in specific white matter tracts, including the cingulum, UF, and PTR. Moreover, the decreased NDI may indicate the declined cognitive level of MCI/AD patients.
Collapse
Affiliation(s)
- Shuchang Zhong
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jingjing Lou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ke Ma
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhenyu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lin Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chao Li
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qing Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liang Zhou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ye Shen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangming Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jie Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Martínez-Tapia R, Estrada-Rojo F, López-Aceves T, García-Velasco S, Rodríguez-Mata V, Pulido-Camarillo E, Pérez-Torres A, López-Flores E, Ugalde-Muñiz P, Noriega-Navarro R, Navarro L. A model of traumatic brain injury in rats is influenced by neuroprotection of diurnal variation which improves motor behavior and histopathology in white matter myelin. Heliyon 2023; 9:e16088. [PMID: 37215868 PMCID: PMC10196591 DOI: 10.1016/j.heliyon.2023.e16088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/07/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Traumatic brain injury (TBI) represents a significant public health concern and has been associated with high rates of morbidity and mortality. TBI generates two types of brain damage: primary and secondary. Secondary damage originates a series of pathophysiological processes, which include metabolic crisis, excitotoxicity, and neuroinflammation, which have deleterious consequences for neuronal function. However, neuroprotective mechanisms are also activated. The balance among these tissue responses, and its variations throughout the day determines the fate of the damage tissue. We have demonstrated less behavioral and morphological damage when a rat model of TBI was induced during the light hours of the day. Moreover, here we show that rats subjected to TBI in the dark lost less body weight than those subjected to TBI in the light, despite no change in food intake. Besides, the rats subjected to TBI in the dark had better performance in the beam walking test and presented less histological damage in the corpus callosum and the cingulum bundle, as shown by the Klüver-Barrera staining. Our results suggest that the time of day when the injury occurs is important. Thus, this data should be used to evaluate the pathophysiological processes of TBI events and develop better therapies.
Collapse
Affiliation(s)
- R.J. Martínez-Tapia
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - F. Estrada-Rojo
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - T.G. López-Aceves
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - S. García-Velasco
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - V. Rodríguez-Mata
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - E. Pulido-Camarillo
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - A. Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - E.Y. López-Flores
- Residente de Anatomía Patológica, CMN “20 de Noviembre”, ISSSTE, Ciudad de México, Mexico
| | - P. Ugalde-Muñiz
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - R. Noriega-Navarro
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - L. Navarro
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
7
|
Fixel-based analysis of the diffusion properties of the patients with brain injury and chronic health symptoms. Neurosci Res 2023:S0168-0102(23)00009-3. [PMID: 36682692 DOI: 10.1016/j.neures.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/28/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
The diffusion properties from diffusion tensor imaging (DTI) are sensitive to white matter (WM) abnormalities and could serve as indicators of diffuse axonal damages incurred during a traumatic brain injury (TBI). Analyses of diffusion metrics in the regions of interest (ROIs) were used to compare the differences in the 18 major fiber tracts in 46 participants, between TBI participants with (n = 17) or without (n = 16) chronic symptoms (CS) and a control group (CG, n = 13). In addition to the widely used diffusion metrics, such as fractional anisotropy (FA), mean (MD), axial (AD) and radial (RD) diffusivities, apparent fiber density (AFD), complexity (CX) and fixel number (FN) derived from Mrtrix3 software package were used to characterize WM tracts and compare between participant groups in the ROIs defined by the fixel numbers. Significant differences were found in FA, AFD, MD, RD and CX in ROIs with different FNs in the corpus callosum forceps minor, left and right inferior longitudinal fasciculus, and left and right uncinate fasciculus for both TBI groups compared to controls. Diffusion properties in ROIs with different FNs can serve as detailed biomarkers of WM abnormalities, especially for individuals with chronic TBI related symptoms.
Collapse
|
8
|
Hebert JR, Filley CM. Multisensory integration and white matter pathology: Contributions to cognitive dysfunction. Front Neurol 2022; 13:1051538. [PMID: 36408503 PMCID: PMC9668060 DOI: 10.3389/fneur.2022.1051538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
The ability to simultaneously process and integrate multiple sensory stimuli is paramount to effective daily function and essential for normal cognition. Multisensory management depends critically on the interplay between bottom-up and top-down processing of sensory information, with white matter (WM) tracts acting as the conduit between cortical and subcortical gray matter (GM) regions. White matter tracts and GM structures operate in concert to manage both multisensory signals and cognition. Altered sensory processing leads to difficulties in reweighting and modulating multisensory input during various routine environmental challenges, and thus contributes to cognitive dysfunction. To examine the specific role of WM in altered sensory processing and cognitive dysfunction, this review focuses on two neurologic disorders with diffuse WM pathology, multiple sclerosis and mild traumatic brain injury, in which persistently altered sensory processing and cognitive impairment are common. In these disorders, cognitive dysfunction in association with altered sensory processing may develop initially from slowed signaling in WM tracts and, in some cases, GM pathology secondary to WM disruption, but also because of interference with cognitive function by the added burden of managing concurrent multimodal primary sensory signals. These insights promise to inform research in the neuroimaging, clinical assessment, and treatment of WM disorders, and the investigation of WM-behavior relationships.
Collapse
Affiliation(s)
- Jeffrey R. Hebert
- Physical Performance Laboratory, Marcus Institute for Brain Health, University of Colorado School of Medicine, Aurora, CO, United States
| | - Christopher M. Filley
- Behavorial Neurology Section, Department of Neurology and Psychiatry, Marcus Institute for Brain Health, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
9
|
Men LH, Song TT, Wang X, Hui WT, Gu YW, Du WJ, Zhang SW, Chen X. Sodium butyrate protects against focal cerebral ischemic injury through the regulation of the nuclear receptor Nur77. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Synergistic Role of Quantitative Diffusion Magnetic Resonance Imaging and Structural Magnetic Resonance Imaging in Predicting Outcomes After Traumatic Brain Injury. J Comput Assist Tomogr 2022; 46:236-243. [PMID: 35297580 PMCID: PMC8974470 DOI: 10.1097/rct.0000000000001284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE This study aimed to assess if quantitative diffusion magnetic resonance imaging analysis would improve prognostication of individual patients with severe traumatic brain injury. METHODS We analyzed images of 30 healthy controls to extract normal fractional anisotropy ranges along 18 white-matter tracts. Then, we analyzed images of 33 patients, compared their fractional anisotropy values with normal ranges extracted from controls, and computed severity of injury to white-matter tracts. We also asked 2 neuroradiologists to rate severity of injury to different brain regions on fluid-attenuated inversion recovery and susceptibility-weighted imaging. Finally, we built 3 models: (1) fed with neuroradiologists' ratings, (2) fed with white-matter injury measures, and (3) fed with both input types. RESULTS The 3 models respectively predicted survival at 1 year with accuracies of 70%, 73%, and 88%. The accuracy with both input types was significantly better (P < 0.05). CONCLUSIONS Quantifying severity of injury to white-matter tracts complements qualitative imaging findings and improves outcome prediction in severe traumatic brain injury.
Collapse
|
11
|
Kim MS, Cho MJ, Kim JW, Jang SH. White Matter Abnormalities in Traumatic Subarachnoid Hemorrhage: A Tract-Based Spatial Statistics Study. Med Sci Monit 2021; 27:e933959. [PMID: 34657118 PMCID: PMC8529937 DOI: 10.12659/msm.933959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The pathophysiology of traumatic subarachnoid hemorrhage and brain injury has not been fully elucidated. In this study, we examined abnormalities of white matter in isolated traumatic subarachnoid hemorrhage patients by applying tract-based spatial statistics. Material/Methods For this study, 10 isolated traumatic subarachnoid hemorrhage patients and 10 age- and sex-matched healthy control subjects were recruited. Fractional anisotropy data voxel-wise statistical analyses were conducted through the tract-based spatial statistics as implemented in the FMRIB Software Library. Depending on the intersection between the fractional anisotropy skeleton and the probabilistic white matter atlases of Johns Hopkins University, we calculated mean fractional anisotropy values within the entire tract skeleton and 48 regions of interest. Results The fractional anisotropy values for 19 of 48 regions of interest showed significant divergences (P<0.05) between the patient group and control group. The regions showing significant differences included the corpus callosum and its adjacent neural structures, the brainstem and its adjacent neural structures, and the subcortical white matter that passes the long neural tract. Conclusions The results demonstrated abnormalities of white matter in traumatic subarachnoid hemorrhage patients, and the abnormality locations are compatible with areas that are vulnerable to diffuse axonal injury. Based on these results, traumatic subarachnoid hemorrhage patients also exhibit diffuse axonal injuries; thus, traumatic subarachnoid hemorrhage could be an indicator of the presence of severe brain injuries associated with acute or excessive mechanical forces.
Collapse
Affiliation(s)
- Min Son Kim
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Taegu, South Korea
| | - Min Jye Cho
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Taegu, South Korea
| | - Jae Woon Kim
- Department of Radiology, College of Medicine, Yeungnam University, Namku, Taegu, South Korea
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Taegu, South Korea
| |
Collapse
|
12
|
Title: Injury characteristics of the Papez circuit in patients with diffuse axonal injury: a diffusion tensor tractography study. Acta Neurol Belg 2021; 121:941-947. [PMID: 32889659 DOI: 10.1007/s13760-020-01485-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
We investigate the characteristics of injury of four portions of the Papez circuit in patients with diffuse axonal injury (DAI), using diffusion tensor tractography (DTT). Thirty-four consecutive patients with DAI and 30 normal control subjects were recruited. Four portions of the Papez circuit were reconstructed: the fornix, cingulum, thalamocingulate tract, and mammillothalamic tract. Analysis of DTT parameters [fractional anisotropy (FA) and tract volume (TV)] and configuration (narrowing, discontinuation, or non-reconstruction) was performed for each portion of the Papez circuit. The Memory Assessment Scale (MAS) was used for the estimation of cognitive function. In the group analysis, decreased fractional anisotropy and tract volume of the entire Papez circuit were observed in the patient group compared with the control group (p < 0.05). In the individual analysis, all four portions of the Papez circuit were injured in terms of DTT parameters or configuration. Positive correlation was observed between TV of the fornix and short-term memory on MAS r = 0.618, p < 0.05), and between FA of the fornix and total memory on MAS (r = 0.613, p < 0.05). We found that all four portions of the Papez circuit in the patient group were vulnerable to DAI, and among four portions of the Papez circuit, the fornix was the most vulnerable portion in terms of injury incidence and severity.
Collapse
|
13
|
Lee CH, Ahn JH, Lee TK, Sim H, Lee JC, Park JH, Shin MC, Cho JH, Kim DW, Won MH, Choi SY. Comparison of Neuronal Death, Blood-Brain Barrier Leakage and Inflammatory Cytokine Expression in the Hippocampal CA1 Region Following Mild and Severe Transient Forebrain Ischemia in Gerbils. Neurochem Res 2021; 46:2852-2866. [PMID: 34050880 DOI: 10.1007/s11064-021-03362-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022]
Abstract
Transient ischemia in the brain causes blood-brain barrier (BBB) breakdown and dysfunction, which is related to ischemia-induced neuronal damage. Leakage of plasma proteins following transient ischemia is one of the indicators that is used to determine the extent of BBB dysfunction. In this study, neuronal damage/death, leakage of albumin and IgG, microgliosis, and inflammatory cytokine expression were examined in the hippocampal CA1 region, which is vulnerable to transient ischemia, following 5-min (mild) and 15-min (severe) ischemia in gerbils induced by transient common carotid arteries occlusion (tCCAo). tCCAo-induced neuronal damage/death occurred earlier and was more severe after 15-min tCCAo vs. after 5-min tCCAo. Significant albumin and IgG leakage (albumin and IgG immunoreactivity) took 1 or 2 days to begin, and immunoreactivity was markedly increased 5 days after 5-min tCCAo. While, albumin and IgG leakage began to increase 6 h after 15-min tCCAo and remained significantly higher over time than that seen in 5-min tCCAo. IgG immunoreactivity was observed in degenerating neurons and activated microglia after tCCAo, and microglia were activated to a greater extent after 15-min tCCAo than 5-min tCCAo. In addition, following 15-min tCCAo, pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β)] immunoreactivity was significantly higher than that seen following 5-min tCCAo, whereas immunoreactivity of anti-inflammatory cytokines (IL-4 and IL-13) was lower in 15-min than 5-min tCCAo. These results indicate that duration of tCCAo differentially affects the timing and degree of neuronal damage or loss, albumin and IgG leakage and inflammatory cytokine expression in brain tissue. In addition, more severe BBB leakage is closely related to acceleration of neuronal damage through increased microglial activation and pro-inflammatory cytokine expression in the ischemic hippocampal CA1 region.
Collapse
Affiliation(s)
- Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungnam, 31116, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan, Gyeongnam, 50510, Republic of Korea
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk, 38066, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, Gangwon, 24289, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, Gangwon, 24289, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon, 25457, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea.
| |
Collapse
|
14
|
Xiang Z, Jiang X, Ji R, Yuan H. Enhanced expression of P2X4 purinoceptors in pyramidal neurons of the rat hippocampal CA1 region may be involved ischemia-reperfusion injury. Purinergic Signal 2021; 17:425-438. [PMID: 33966147 DOI: 10.1007/s11302-021-09780-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke is the most serious disease that harms human beings. In principle, its treatment is to restore blood flow supply as soon as possible. However, after the blood flow is restored, it will lead to secondary brain injury, that is, ischemia-reperfusion injury. The mechanism of ischemia-reperfusion injury is very complicated. This study showed that P2X4 receptors in the pyramidal neurons of rat hippocampus were significantly upregulated in the early stage of ischemia-reperfusion injury. Neurons with high expression of P2X4 receptors are neurons that are undergoing apoptosis. Intraventricular injection of the P2X4 receptor antagonist 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) and PSB-12062 can partially block neuronal apoptosis, to promote the survival of neurons, indicating that ATP through P2X4 receptors is involved in the process of cerebral ischemia-reperfusion injury. Therefore, identifying the mechanism of neuronal degeneration induced by extracellular ATP via P2X4 receptors after ischemia-reperfusion will likely find new targets for the treatment of ischemia-reperfusion injury, and will provide a useful theoretical basis for the treatment of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhenghua Xiang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Rihui Ji
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| |
Collapse
|
15
|
Chen X, Chai Y, Wang SB, Wang JC, Yue SY, Jiang RC, Zhang JN. Risk factors for corticosteroid insufficiency during the sub-acute phase of acute traumatic brain injury. Neural Regen Res 2020; 15:1259-1265. [PMID: 31960811 PMCID: PMC7047797 DOI: 10.4103/1673-5374.272611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hypothalamic-pituitary-adrenal axis dysfunction may lead to the occurrence of critical illness-related corticosteroid insufficiency. Critical illness-related corticosteroid insufficiency can easily occur after traumatic brain injury, but few studies have examined this occurrence. A multicenter, prospective, cohort study was performed to evaluate the function of the hypothalamic-pituitary-adrenal axis and the incidence of critical illness-related corticosteroid insufficiency during the sub-acute phase of traumatic brain injury. One hundred and forty patients with acute traumatic brain injury were enrolled from the neurosurgical departments of three tertiary-level hospitals in China, and the critical illness-related corticosteroid insufficiency incidence, critical-illness-related corticosteroid insufficiency-related risk factors, complications, and 28-day mortality among these patients was recorded. Critical illness-related corticosteroid insufficiency was diagnosed in patients with plasma total cortisol levels less than 10 μg/dL (275.9 nM) on post-injury day 4 or when serum cortisol was insufficiently suppressed (less than 50%) during a dexamethasone suppression test on post-injury day 5. The results demonstrated that critical illness-related corticosteroid insufficiency occurred during the sub-acute phase of traumatic brain injury in 5.6% of patients with mild injury, 22.5% of patients with moderate injury, and 52.2% of patients with severe injury. Traumatic brain injury-induced critical illness-related corticosteroid insufficiency was strongly correlated to injury severity during the sub-acute stage of traumatic brain injury. Traumatic brain injury patients with critical illness-related corticosteroid insufficiency frequently presented with hemorrhagic cerebral contusions, diffuse axonal injury, brain herniation, and hypotension. Differences in the incidence of hospital-acquired pneumonia, gastrointestinal bleeding, and 28-day mortality were observed between patients with and without critical illness-related corticosteroid insufficiency during the sub-acute phase of traumatic brain injury. Hypotension, brain-injury severity, and the types of traumatic brain injury were independent risk factors for traumatic brain injury-induced critical illness-related corticosteroid insufficiency. These findings indicate that critical illness-related corticosteroid insufficiency is common during the sub-acute phase of traumatic brain injury and is strongly associated with poor prognosis. The dexamethasone suppression test is a practical assay for the evaluation of hypothalamic-pituitary-adrenal axis function and for the diagnosis of critical illness-related corticosteroid insufficiency in patients with traumatic brain injury, especially those with hypotension, hemorrhagic cerebral contusions, diffuse axonal injury, and brain herniation. Sub-acute infection of acute traumatic brain injury may be an important factor associated with the occurrence and development of critical illness-related corticosteroid insufficiency. This study protocol was approved by the Ethics Committee of General Hospital of Tianjin Medical University, China in December 2011 (approval No. 201189).
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yan Chai
- Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Shao-Bo Wang
- Department of Neurosurgery, Ordos Central Hospital, Ordos, Inner Mongolia Autonomous Region, China
| | - Jia-Chong Wang
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Changsha, Hunan Province, China
| | - Shu-Yuan Yue
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Rong-Cai Jiang
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Jian-Ning Zhang
- Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
16
|
Park CH, Kim SH, Jung HY. Characteristics of the Uncinate Fasciculus and Cingulum in Patients with Mild Cognitive Impairment: Diffusion Tensor Tractography Study. Brain Sci 2019; 9:brainsci9120377. [PMID: 31847329 PMCID: PMC6956104 DOI: 10.3390/brainsci9120377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022] Open
Abstract
Many studies have examined the relationship between cognition, and the cingulum and uncinate fasciculus (UF). In this study, diffusion tensor tractography (DTT) was used to investigate the correlation between fractional-anisotropy (FA) values and the number of fibers in the cingulum and UF in patients with and without cognitive impairment. The correlation between cognitive function, and the cingulum and UF was also investigated. Thirty patients (14 males, age = 70.68 ± 7.99 years) were divided into a control group (n = 14) and mild-cognitive-impairment (MCI) group (n = 16). The Seoul Neuropsychological Screening Battery (SNSB) and DTT were performed to assess cognition and bilateral tracts of the cingulum and UF. The relationship between SNSB values and the cingulum and UF was analyzed. The number of fibers in the right cingulum and right UF were significantly different between the two groups. The MCI group showed thinner tracts in both the cingulum and UF compared to the control group. A significant relationship was found between the number of fibers in the right UF and delayed memory recall. In conclusion, memory loss in MCI was associated with a decreased number of fibers in the right UF, while language and visuospatial function were related to the number of fibers in the right cingulum.
Collapse
|