1
|
Chen JN, Yang XJ, Cong M, Zhu LJ, Wu X, Wang LT, Sha L, Yu Y, He QR, Ding F, Xian H, Shi HY. Promotive effect of skin precursor-derived Schwann cells on brachial plexus neurotomy and motor neuron damage repair through milieu-regulating secretome. Regen Ther 2024; 27:365-380. [PMID: 38694448 PMCID: PMC11061650 DOI: 10.1016/j.reth.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/04/2024] Open
Abstract
Brachial plexus injury (BPI) with motor neurons (MNs) damage still remain poor recovery in preclinical research and clinical therapy, while cell-based therapy approaches emerged as novel strategies. Previous work of rat skin precursor-derived Schwann cells (SKP-SCs) provided substantial foundation for repairing peripheral nerve injury (PNI). Given that, our present work focused on exploring the repair efficacy and possible mechanisms of SKP-SCs implantation on rat BPI combined with neurorrhaphy post-neurotomy. Results indicated the significant locomotive and sensory function recovery, with improved morphological remodeling of regenerated nerves and angiogenesis, as well as amelioration of target muscles atrophy and motor endplate degeneration. Besides, MNs could restore from oxygen-glucose-deprivation (OGD) injury upon SKP-SCs-sourced secretome treatment, implying the underlying paracrine mechanisms. Moreover, rat cytokine array assay detected 67 cytokines from SKP-SC-secretome, and bioinformatic analyses of screened 32 cytokines presented multiple functional clusters covering diverse cell types, including inflammatory cells, Schwann cells, vascular endothelial cells (VECs), neurons, and SKP-SCs themselves, relating distinct biological processes to nerve regeneration. Especially, a panel of hypoxia-responsive cytokines (HRCK), can participate into multicellular biological process regulation for permissive regeneration milieu, which underscored the benefits of SKP-SCs and sourced secretome, facilitating the chorus of nerve regenerative microenvironment. Furthermore, platelet-derived growth factor-AA (PDGF-AA) and vascular endothelial growth factor-A (VEGF-A) were outstanding cytokines involved with nerve regenerative microenvironment regulating, with significantly elevated mRNA expression level in hypoxia-responsive SKP-SCs. Altogether, through recapitulating the implanted SKP-SCs and derived secretome as niche sensor and paracrine transmitters respectively, HRCK would be further excavated as molecular underpinning of the neural recuperative mechanizations for efficient cell therapy; meanwhile, the analysis paradigm in this study validated and anticipated the actions and mechanisms of SKP-SCs on traumatic BPI repair, and was beneficial to identify promising bioactive molecule cocktail and signaling targets for cell-free therapy strategy on neural repair and regeneration.
Collapse
Affiliation(s)
- Jia-nan Chen
- School of Medicine, Nantong University, Nantong, 226001, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiao-jia Yang
- School of Medicine, Nantong University, Nantong, 226001, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Ling-jie Zhu
- School of Medicine, Nantong University, Nantong, 226001, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xia Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Li-ting Wang
- School of Medicine, Nantong University, Nantong, 226001, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lei Sha
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Yan Yu
- School of Medicine, Nantong University, Nantong, 226001, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Qian-ru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Hua Xian
- School of Medicine, Nantong University, Nantong, 226001, China
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Hai-yan Shi
- School of Medicine, Nantong University, Nantong, 226001, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| |
Collapse
|
2
|
Yue Y, Wang J, Tian J. Glycyrrhizic acid promote remyelination after peripheral nerve injury by reducing NF-κB activation. Neurosci Lett 2024; 843:138009. [PMID: 39396548 DOI: 10.1016/j.neulet.2024.138009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Peripheral nerve injury (PNI) causes motor and sensory defects, has strong impact on life quality and still has no effective therapy. Glycyrrhizic acid (GA) is one of the most widely used in traditional Chinese prescriptions and as a flavoring additive in the food industry; the aims of the study were to investigate the effects of GA during sciatic nerve regeneration in a mouse model of sciatic nerve crush injury. METHODS We established peripheral nerve crush model and investigated the effects of GA. We further studied the potential mechanism of action of GA by Western blotting, fluorescence immunohistochemistry, and PCR analysis. RESULTS GA improves the sensory and motor functions of crushed nerve by preventing Schwann cell loss, axonal loss and promoting remyelination of sciatic nerve. Affected by GA, the inflammatory response in the distal part of the sciatic nerve was reduced. Finally, the neuroprotective properties of GA may be regulated by the nuclear factor (NF)-κB pathway. CONCLUSIONS Our data suggest that GA can effectively alleviate PNI, and the mechanism involves mediating inflammatory response by suppressing NF-κB pathway activation. Thus, GA may represent a potential therapeutic intervention for nerve crush injury.
Collapse
Affiliation(s)
- Yuan Yue
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China; The First People's Hospital of Jiande, Hangzhou 311600, Zhejiang Province, PR China
| | - Jing Wang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China.
| |
Collapse
|
3
|
Liao S, Chen Y, Luo Y, Zhang M, Min J. The phenotypic changes of Schwann cells promote the functional repair of nerve injury. Neuropeptides 2024; 106:102438. [PMID: 38749170 DOI: 10.1016/j.npep.2024.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/17/2024]
Abstract
Functional recovery after nerve injury is a significant challenge due to the complex nature of nerve injury repair and the non-regeneration of neurons. Schwann cells (SCs), play a crucial role in the nerve injury repair process because of their high plasticity, secretion, and migration abilities. Upon nerve injury, SCs undergo a phenotypic change and redifferentiate into a repair phenotype, which helps in healing by recruiting phagocytes, removing myelin fragments, promoting axon regeneration, and facilitating myelin formation. However, the repair phenotype can be unstable, limiting the effectiveness of the repair. Recent research has found that transplantation of SCs can be an effective treatment option, therefore, it is essential to comprehend the phenotypic changes of SCs and clarify the related mechanisms to develop the transplantation therapy further.
Collapse
Affiliation(s)
- Shufen Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yan Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yin Luo
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Mengqi Zhang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Jun Min
- Neurology Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
4
|
Zhou X, Lv Y, Xie H, Li Y, Liu C, Zheng M, Wu R, Zhou S, Gu X, Li J, Mi D. RNA sequencing of exosomes secreted by fibroblast and Schwann cells elucidates mechanisms underlying peripheral nerve regeneration. Neural Regen Res 2024; 19:1812-1821. [PMID: 38103248 PMCID: PMC10960293 DOI: 10.4103/1673-5374.387980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00035/figure1/v/2023-12-16T180322Z/r/image-tiff Exosomes exhibit complex biological functions and mediate a variety of biological processes, such as promoting axonal regeneration and functional recovery after injury. Long non-coding RNAs (lncRNAs) have been reported to play a crucial role in axonal regeneration. However, the role of the lncRNA-microRNA-messenger RNA (mRNA)-competitive endogenous RNA (ceRNA) network in exosome-mediated axonal regeneration remains unclear. In this study, we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts (FC-EXOs) and Schwann cells (SC-EXOs). Differential gene expression analysis, Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and protein-protein interaction network analysis were used to explore the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs. We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs, which suggests that it may promote axonal regeneration. In addition, using the miRWalk and Starbase prediction databases, we constructed a regulatory network of ceRNAs targeting Rps5, including 27 microRNAs and five lncRNAs. The ceRNA regulatory network, which included Ftx and Miat, revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury. Our findings suggest that exosomes derived from fibroblast and Schwann cells could be used to treat injuries of peripheral nervous system.
Collapse
Affiliation(s)
- Xinyang Zhou
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yehua Lv
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, Jiangsu Province, China
| | - Huimin Xie
- Nantong Stomatological Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, China
| | - Yan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Mengru Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jingjing Li
- Department of General Practice, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Daguo Mi
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, Jiangsu Province, China
| |
Collapse
|
5
|
Li Q, Zhang F, Fu X, Han N. Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes as Nanomedicine for Peripheral Nerve Injury. Int J Mol Sci 2024; 25:7882. [PMID: 39063125 PMCID: PMC11277195 DOI: 10.3390/ijms25147882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Peripheral nerve injury (PNI) is a complex and protracted process, and existing therapeutic approaches struggle to achieve effective nerve regeneration. Recent studies have shown that mesenchymal stem cells (MSCs) may be a pivotal choice for treating peripheral nerve injury. MSCs possess robust paracrine capabilities, and exosomes, as the primary secretome of MSCs, are considered crucial regulatory mediators involved in peripheral nerve regeneration. Exosomes, as nanocarriers, can transport various endogenous or exogenous bioactive substances to recipient cells, thereby promoting vascular and axonal regeneration while suppressing inflammation and pain. In this review, we summarize the mechanistic roles of exosomes derived from MSCs in peripheral nerve regeneration, discuss the engineering strategies for MSC-derived exosomes to improve therapeutic potential, and explore the combined effects of MSC-derived exosomes with biomaterials (nerve conduits, hydrogels) in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Qicheng Li
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Fengshi Zhang
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Xiaoyang Fu
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Na Han
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
6
|
Giannelli GG, Davidson E, Pereira J, Santra S. Design and Development of a Polymeric-Based Curcumin Nanoparticle for Drug Delivery Enhancement and Potential Incorporation into Nerve Conduits. Molecules 2024; 29:2281. [PMID: 38792144 PMCID: PMC11124517 DOI: 10.3390/molecules29102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Peripheral nerve injuries (PNI) impact millions of individuals in the United States, prompting thousands of nerve repair procedures annually. Nerve conduits (NC) are commonly utilized to treat nerve injuries under 3 cm but larger gaps still pose a challenge for successful peripheral nerve regeneration (PNR) and functional recovery. This is partly attributed to the absence of bioactive agents such as stem cells or growth factors in FDA-approved conduits due to safety, harvesting, and reproducibility concerns. Therefore, curcumin, a bioactive phytochemical, has emerged as a promising alternative bioactive agent due to its ability to enhance PNR and overcome said challenges. However, its hydrophobicity and rapid degradation in aqueous solutions are considerable limitations. In this work, a nanoscale delivery platform with tannic acid (TA) and polyvinylpyrrolidone (PVP) was developed to encapsulate curcumin for increased colloidal and chemical stability. The curcumin nanoparticles (CurNPs) demonstrate significantly improved stability in water, reduced degradation rates, and controlled release kinetics when compared to free curcumin. Further, cell studies show that the CurNP is biocompatible when introduced to neuronal cells (SH-SY5Y), rat Schwann cells (RSC-S16), and murine macrophages (J774 A.1) at 5 μM, 5 μM, and 10 μM of curcumin, respectively. As a result of these improved physicochemical properties, confocal fluorescence microscopy revealed superior delivery of curcumin into these cells when in the form of CurNPs compared to its free form. A hydrogen peroxide-based oxidative stress study also demonstrated the CurNP's potential to protect J774 A.1 cells against excessive oxidative stress. Overall, this study provides evidence for the suitability of CurNPs to be used as a bioactive agent in NC applications.
Collapse
Affiliation(s)
- Giuliana Gan Giannelli
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; (G.G.G.); (E.D.); (J.P.)
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
| | - Edwin Davidson
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; (G.G.G.); (E.D.); (J.P.)
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
| | - Jorge Pereira
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; (G.G.G.); (E.D.); (J.P.)
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; (G.G.G.); (E.D.); (J.P.)
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
7
|
Si W, Chen Z, Bei J, Chang S, Zheng Y, Gao L, Zhao G, Li X, Zhang D. Stigmasterol alleviates neuropathic pain by reducing Schwann cell-macrophage cascade in DRG by modulating IL-34/CSF1R. CNS Neurosci Ther 2024; 30:e14657. [PMID: 38572785 PMCID: PMC10993342 DOI: 10.1111/cns.14657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 04/05/2024] Open
Abstract
AIMS This study aimed to investigate the potential therapeutic applications of stigmasterol for treating neuropathic pain. METHODS Related mechanisms were investigated by DRG single-cell sequencing analysis and the use of specific inhibitors in cellular experiments. In animal experiments, 32 male Sprague-Dawley rats were randomly divided into the sham operation group, CCI group, ibuprofen group, and stigmasterol group. We performed behavioral tests, ELISA, H&E staining and immunohistochemistry, and western blotting. RESULTS Cell communication analysis by single-cell sequencing reveals that after peripheral nerve injury, Schwann cells secrete IL-34 to act on CSF1R in macrophages. After peripheral nerve injury, the mRNA expression levels of CSF1R pathway and NLRP3 inflammasome in macrophages were increased in DRG. In vitro studies demonstrated that stigmasterol can reduce the secretion of IL-34 in LPS-induced RSC96 Schwann cells; stigmasterol treatment of LPS-induced Schwann cell-conditioned medium (L-S-CM) does not induce the proliferation and migration of RAW264.7 macrophages; L-S-CM reduces CSF1R signaling pathway (CSF1R, P38MAPK, and NFκB) activation, NLRP3 inflammasome activation, and ROS production. In vivo experiments have verified that stigmasterol can reduce thermal and cold hyperalgesia in rat chronic compressive nerve injury (CCI) model; stigmasterol can reduce IL-1β, IL-6, TNF-α, CCL2, SP, and PGE2 in serum of CCI rats; immunohistochemistry and western blot confirmed that stigmasterol can reduce the levels of IL-34/CSF1R signaling pathway and NLRP3 inflammasome in DRG of CCI rats. CONCLUSION Stigmasterol alleviates neuropathic pain by reducing Schwann cell-macrophage cascade in DRG by modulating IL-34/CSF1R axis.
Collapse
Affiliation(s)
- Waimei Si
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Zhenni Chen
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Jing Bei
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Shiquan Chang
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Yachun Zheng
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Li Gao
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Guoping Zhao
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Xin Li
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Di Zhang
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| |
Collapse
|
8
|
Chen S, Wang H, Yang P, Chen S, Ho C, Yang P, Kao Y, Liu S, Chiu H, Lin Y, Chuang E, Huang J, Kao H, Huang C. Schwann cells acquire a repair phenotype after assembling into spheroids and show enhanced in vivo therapeutic potential for promoting peripheral nerve repair. Bioeng Transl Med 2024; 9:e10635. [PMID: 38435829 PMCID: PMC10905550 DOI: 10.1002/btm2.10635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 03/05/2024] Open
Abstract
The prognosis for postinjury peripheral nerve regeneration remains suboptimal. Although transplantation of exogenous Schwann cells (SCs) has been considered a promising treatment to promote nerve repair, this strategy has been hampered in practice by the limited availability of SC sources and an insufficient postengraftment cell retention rate. In this study, to address these challenges, SCs were aggregated into spheroids before being delivered to an injured rat sciatic nerve. We found that the three-dimensional aggregation of SCs induced their acquisition of a repair phenotype, as indicated by enhanced levels of c-Jun expression/activation and decreased expression of myelin sheath protein. Furthermore, our in vitro results demonstrated the superior potential of the SC spheroid-derived secretome in promoting neurite outgrowth of dorsal root ganglion neurons, enhancing the proliferation and migration of endogenous SCs, and recruiting macrophages. Moreover, transplantation of SC spheroids into rats after sciatic nerve transection effectively increased the postinjury nerve structure restoration and motor functional recovery rates, demonstrating the therapeutic potential of SC spheroids. In summary, transplantation of preassembled SC spheroids may hold great potential for enhancing the cell delivery efficiency and the resultant therapeutic outcome, thereby improving SC-based transplantation approaches for promoting peripheral nerve regeneration.
Collapse
Affiliation(s)
- Shih‐Heng Chen
- Department of Plastic and Reconstructive SurgeryLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
- School of MedicineCollege of Medicine, Chang Gung UniversityTaoyuanTaiwan
| | - Hsin‐Wen Wang
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Pei‐Ching Yang
- Department of Plastic and Reconstructive SurgeryLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Shih‐Shien Chen
- Department of Plastic and Reconstructive SurgeryLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Chia‐Hsin Ho
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Pei‐Ching Yang
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Ying‐Chi Kao
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Shao‐Wen Liu
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Han Chiu
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Yu‐Jie Lin
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Er‐Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, International Ph.D. Program in Biomedical Engineering, Taipei Medical UniversityTaipeiTaiwan
- Cell Physiology and Molecular Image Research CenterTaipei Medical University–Wan Fang HospitalTaipeiTaiwan
| | - Jen‐Huang Huang
- Department of Chemical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Huang‐Kai Kao
- Department of Plastic and Reconstructive SurgeryLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
- School of MedicineCollege of Medicine, Chang Gung UniversityTaoyuanTaiwan
| | - Chieh‐Cheng Huang
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
9
|
Shan Y, Xu L, Cui X, Wang E, Jiang F, Li J, Ouyang H, Yin T, Feng H, Luo D, Zhang Y, Li Z. A responsive cascade drug delivery scaffold adapted to the therapeutic time window for peripheral nerve injury repair. MATERIALS HORIZONS 2024; 11:1032-1045. [PMID: 38073476 DOI: 10.1039/d3mh01511d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Peripheral nerve injury (PNI) is a common clinical challenge, requiring timely and orderly initiation of synergistic anti-inflammatory and reparative therapy. Although the existing cascade drug delivery system can realize sequential drug release through regulation of the chemical structure of drug carriers, it is difficult to adjust the release kinetics of each drug based on the patient's condition. Therefore, there is an urgent need to develop a cascade drug delivery system that can dynamically adjust drug release and realize personalized treatment. Herein, we developed a responsive cascade drug delivery scaffold (RCDDS) which can adapt to the therapeutic time window, in which Vitamin B12 is used in early controllable release to suppress inflammation and nerve growth factor promotes regeneration by cascade loading. The RCDDS exhibited the ability to modulate the drug release kinetics by hierarchically opening polymer chains triggered by ultrasound, enabling real-time adjustment of the anti-inflammatory and neuroregenerative therapeutic time window depending on the patient's status. In the rat sciatic nerve injury model, the RCDDS group was able to achieve neural repair effects comparable to the autograft group in terms of tissue structure and motor function recovery. The development of the RCDDS provides a useful route toward an intelligent cascade drug delivery system for personalized therapy.
Collapse
Affiliation(s)
- Yizhu Shan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xi Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Engui Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
| | - Fengying Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiaxuan Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
| | - Han Ouyang
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongqing Feng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Raut NG, Maile LA, Oswalt LM, Mitxelena I, Adlakha A, Sprague KL, Rupert AR, Bokros L, Hofmann MC, Patritti-Cram J, Rizvi TA, Queme LF, Choi K, Ratner N, Jankowski MP. Schwann cells modulate nociception in neurofibromatosis 1. JCI Insight 2024; 9:e171275. [PMID: 38258905 PMCID: PMC10906222 DOI: 10.1172/jci.insight.171275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Pain of unknown etiology is frequent in individuals with the tumor predisposition syndrome neurofibromatosis 1 (NF1), even when tumors are absent. Nerve Schwann cells (SCs) were recently shown to play roles in nociceptive processing, and we find that chemogenetic activation of SCs is sufficient to induce afferent and behavioral mechanical hypersensitivity in wild-type mice. In mouse models, animals showed afferent and behavioral hypersensitivity when SCs, but not neurons, lacked Nf1. Importantly, hypersensitivity corresponded with SC-specific upregulation of mRNA encoding glial cell line-derived neurotrophic factor (GDNF), independently of the presence of tumors. Neuropathic pain-like behaviors in the NF1 mice were inhibited by either chemogenetic silencing of SC calcium or by systemic delivery of GDNF-targeting antibodies. Together, these findings suggest that alterations in SCs directly modulate mechanical pain and suggest cell-specific treatment strategies to ameliorate pain in individuals with NF1.
Collapse
Affiliation(s)
- Namrata G.R. Raut
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura A. Maile
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Leila M. Oswalt
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Irati Mitxelena
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Aaditya Adlakha
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kourtney L. Sprague
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ashley R. Rupert
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lane Bokros
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Megan C. Hofmann
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jennifer Patritti-Cram
- Graduate Program in Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Cancer Biology and Experimental Hematology and
| | - Tilat A. Rizvi
- Division of Cancer Biology and Experimental Hematology and
| | - Luis F. Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Pediatric Pain Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kwangmin Choi
- Division of Cancer Biology and Experimental Hematology and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nancy Ratner
- Division of Cancer Biology and Experimental Hematology and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Pediatric Pain Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
11
|
Shelly S, Dubey D, Mills JR, Klein CJ. Paraneoplastic neuropathies and peripheral nerve hyperexcitability disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:239-273. [PMID: 38494281 DOI: 10.1016/b978-0-12-823912-4.00020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Peripheral neuropathy is a common referral for patients to the neurologic clinics. Paraneoplastic neuropathies account for a small but high morbidity and mortality subgroup. Symptoms include weakness, sensory loss, sweating irregularity, blood pressure instability, severe constipation, and neuropathic pain. Neuropathy is the first presenting symptom of malignancy among many patients. The molecular and cellular oncogenic immune targets reside within cell bodies, axons, cytoplasms, or surface membranes of neural tissues. A more favorable immune treatment outcome occurs in those where the targets reside on the cell surface. Patients with antibodies binding cell surface antigens commonly have neural hyperexcitability with pain, cramps, fasciculations, and hyperhidrotic attacks (CASPR2, LGI1, and others). The antigenic targets are also commonly expressed in the central nervous system, with presenting symptoms being myelopathy, encephalopathy, and seizures with neuropathy, often masked. Pain and autonomic components typically relate to small nerve fiber involvement (nociceptive, adrenergic, enteric, and sudomotor), sometimes without nerve fiber loss but rather hyperexcitability. The specific antibodies discovered help direct cancer investigations. Among the primary axonal paraneoplastic neuropathies, pathognomonic clinical features do not exist, and testing for multiple antibodies simultaneously provides the best sensitivity in testing (AGNA1-SOX1; amphiphysin; ANNA-1-HU; ANNA-3-DACH1; CASPR2; CRMP5; LGI1; PCA2-MAP1B, and others). Performing confirmatory antibody testing using adjunct methods improves specificity. Antibody-mediated demyelinating paraneoplastic neuropathies are limited to MAG-IgM (IgM-MGUS, Waldenström's, and myeloma), with the others associated with cytokine elevations (VEGF, IL6) caused by osteosclerotic myeloma, plasmacytoma (POEMS), and rarely angiofollicular lymphoma (Castleman's). Paraneoplastic disorders have clinical overlap with other idiopathic antibody disorders, including IgG4 demyelinating nodopathies (NF155 and Contactin-1). This review summarizes the paraneoplastic neuropathies, including those with peripheral nerve hyperexcitability.
Collapse
Affiliation(s)
- Shahar Shelly
- Department of Neurology, Mayo Clinic, Rochester, MN, United States; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States; Department of Neurology, Rambam Health Care Campus, Haifa, Israel; Faculty of Medicine, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Divyanshu Dubey
- Department of Neurology, Mayo Clinic, Rochester, MN, United States; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - John R Mills
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Christopher J Klein
- Department of Neurology, Mayo Clinic, Rochester, MN, United States; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
12
|
Ghosh M, Pearse DD. Schwann Cell-Derived Exosomal Vesicles: A Promising Therapy for the Injured Spinal Cord. Int J Mol Sci 2023; 24:17317. [PMID: 38139147 PMCID: PMC10743801 DOI: 10.3390/ijms242417317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Exosomes are nanoscale-sized membrane vesicles released by cells into their extracellular milieu. Within these nanovesicles reside a multitude of bioactive molecules, which orchestrate essential biological processes, including cell differentiation, proliferation, and survival, in the recipient cells. These bioactive properties of exosomes render them a promising choice for therapeutic use in the realm of tissue regeneration and repair. Exosomes possess notable positive attributes, including a high bioavailability, inherent safety, and stability, as well as the capacity to be functionalized so that drugs or biological agents can be encapsulated within them or to have their surface modified with ligands and receptors to imbue them with selective cell or tissue targeting. Remarkably, their small size and capacity for receptor-mediated transcytosis enable exosomes to cross the blood-brain barrier (BBB) and access the central nervous system (CNS). Unlike cell-based therapies, exosomes present fewer ethical constraints in their collection and direct use as a therapeutic approach in the human body. These advantageous qualities underscore the vast potential of exosomes as a treatment option for neurological injuries and diseases, setting them apart from other cell-based biological agents. Considering the therapeutic potential of exosomes, the current review seeks to specifically examine an area of investigation that encompasses the development of Schwann cell (SC)-derived exosomal vesicles (SCEVs) as an approach to spinal cord injury (SCI) protection and repair. SCs, the myelinating glia of the peripheral nervous system, have a long history of demonstrated benefit in repair of the injured spinal cord and peripheral nerves when transplanted, including their recent advancement to clinical investigations for feasibility and safety in humans. This review delves into the potential of utilizing SCEVs as a therapy for SCI, explores promising engineering strategies to customize SCEVs for specific actions, and examines how SCEVs may offer unique clinical advantages over SC transplantation for repair of the injured spinal cord.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
13
|
Dahlin LB. The Dynamics of Nerve Degeneration and Regeneration in a Healthy Milieu and in Diabetes. Int J Mol Sci 2023; 24:15241. [PMID: 37894921 PMCID: PMC10607341 DOI: 10.3390/ijms242015241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Appropriate animal models, mimicking conditions of both health and disease, are needed to understand not only the biology and the physiology of neurons and other cells under normal conditions but also under stress conditions, like nerve injuries and neuropathy. In such conditions, understanding how genes and different factors are activated through the well-orchestrated programs in neurons and other related cells is crucial. Knowledge about key players associated with nerve regeneration intended for axonal outgrowth, migration of Schwann cells with respect to suitable substrates, invasion of macrophages, appropriate conditioning of extracellular matrix, activation of fibroblasts, formation of endothelial cells and blood vessels, and activation of other players in healthy and diabetic conditions is relevant. Appropriate physical and chemical attractions and repulsions are needed for an optimal and directed regeneration and are investigated in various nerve injury and repair/reconstruction models using healthy and diabetic rat models with relevant blood glucose levels. Understanding dynamic processes constantly occurring in neuropathies, like diabetic neuropathy, with concomitant degeneration and regeneration, requires advanced technology and bioinformatics for an integrated view of the behavior of different cell types based on genomics, transcriptomics, proteomics, and imaging at different visualization levels. Single-cell-transcriptional profile analysis of different cells may reveal any heterogeneity among key players in peripheral nerves in health and disease.
Collapse
Affiliation(s)
- Lars B. Dahlin
- Department of Translational Medicine—Hand Surgery, Lund University, SE-205 02 Malmö, Sweden; ; Tel.: +46-40-33-17-24
- Department of Hand Surgery, Skåne University Hospital, SE-205 02 Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
14
|
Zhang H, Zhang Z, Lin H. Research progress on the reduced neural repair ability of aging Schwann cells. Front Cell Neurosci 2023; 17:1228282. [PMID: 37545880 PMCID: PMC10398339 DOI: 10.3389/fncel.2023.1228282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Peripheral nerve injury (PNI) is associated with delayed repair of the injured nerves in elderly patients, resulting in loss of nerve function, chronic pain, muscle atrophy, and permanent disability. Therefore, the mechanism underlying the delayed repair of peripheral nerves in aging patients should be investigated. Schwann cells (SCs) play a crucial role in repairing PNI and regulating various nerve-repair genes after injury. SCs also promote peripheral nerve repair through various modalities, including mediating nerve demyelination, secreting neurotrophic factors, establishing Büngner bands, clearing axon and myelin debris, and promoting axon remyelination. However, aged SCs undergo structural and functional changes, leading to demyelination and dedifferentiation disorders, decreased secretion of neurotrophic factors, impaired clearance of axonal and myelin debris, and reduced capacity for axon remyelination. As a result, aged SCs may result in delayed repair of nerves after injury. This review article aimed to examine the mechanism underlying the diminished neural repair ability of aging SCs.
Collapse
|
15
|
Sun D. Sacrificial gelatin of PAM-Alginate-BC hydrogel tube with tunable diameter as nerve conduit. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-10. [PMID: 36625028 DOI: 10.1080/09205063.2023.2167047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Peripheral nerve regeneration is still one of the biggest challenges, autologous nerve transplantation is the 'gold standard' for evaluating its alternative therapy. However, the source of autologous nerves is limited, it is imminent to synthesize a nerve-guiding catheter material with a controllable diameter of a small orifice. Sacrificial gelatin polyacrylamide-Alginate-Bacterial cellulose (PAM-Alginate-BC) hydrogel overcomes poor mechanical properties with tunable diameter. In addition, the PAM-Alginate-BC hydrogel possesses the beneficial properties required for cell scaffolding with surface adhesion ability. The PAM-Alginate-BC materials options have potential applications in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Di Sun
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
16
|
Li M, Xu TM, Zhang DY, Zhang XM, Rao F, Zhan SZ, Ma M, Xiong C, Chen XF, Wang YH. Nerve growth factor-basic fibroblast growth factor poly-lactide co-glycolid sustained-release microspheres and the small gap sleeve bridging technique to repair peripheral nerve injury. Neural Regen Res 2023; 18:162-169. [PMID: 35799537 PMCID: PMC9241423 DOI: 10.4103/1673-5374.344842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We previously prepared nerve growth factor poly-lactide co-glycolid sustained-release microspheres to treat rat sciatic nerve injury using the small gap sleeve technique. Multiple growth factors play a synergistic role in promoting the repair of peripheral nerve injury; as a result, in this study, we added basic fibroblast growth factors to the microspheres to further promote nerve regeneration. First, in an in vitro biomimetic microenvironment, we developed and used a drug screening biomimetic microfluidic chip to screen the optimal combination of nerve growth factor/basic fibroblast growth factor to promote the regeneration of Schwann cells. We found that 22.56 ng/mL nerve growth factor combined with 4.29 ng/mL basic fibroblast growth factor exhibited optimal effects on the proliferation of primary rat Schwann cells. The successfully prepared nerve growth factor-basic fibroblast growth factor-poly-lactide-co-glycolid sustained-release microspheres were used to treat rat sciatic nerve transection injury using the small gap sleeve bridge technique. Compared with epithelium sutures and small gap sleeve bridging alone, the small gap sleeve bridging technique combined with drug-free sustained-release microspheres has a stronger effect on rat sciatic nerve transfection injury repair at the structural and functional level.
Collapse
|
17
|
Wang YS, Wang SL, Liu XL, Kang ZC. Platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury. Neural Regen Res 2023; 18:375-381. [PMID: 35900433 PMCID: PMC9396478 DOI: 10.4103/1673-5374.346461] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The effect of platelet-rich plasma on nerve regeneration remains controversial. In this study, we established a rabbit model of sciatic nerve small-gap defects with preserved epineurium and then filled the gaps with platelet-rich plasma. Twenty-eight rabbits were divided into the following groups (7 rabbits/group): model, low-concentration PRP (2.5–3.5-fold concentration of whole blood platelets), medium-concentration PRP (4.5–6.5-fold concentration of whole blood platelets), and high-concentration PRP (7.5–8.5-fold concentration of whole blood platelets). Electrophysiological and histomorphometrical assessments and proteomics analysis were used to evaluate regeneration of the sciatic nerve. Our results showed that platelet-rich plasma containing 4.5–6.5- and 7.5–8.5-fold concentrations of whole blood platelets promoted repair of sciatic nerve injury. Proteomics analysis was performed to investigate the possible mechanism by which platelet-rich plasma promoted nerve regeneration. Proteomics analysis showed that after sciatic nerve injury, platelet-rich plasma increased the expression of integrin subunit β-8 (ITGB8), which participates in angiogenesis, and differentially expressed proteins were mainly enriched in focal adhesion pathways. Additionally, two key proteins, ribosomal protein S27a (RSP27a) and ubiquilin 1 (UBQLN1), which were selected after protein-protein interaction analysis, are involved in the regulation of ubiquitin levels in vivo. These data suggest that platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury by affecting angiogenesis and intracellular ubiquitin levels.
Collapse
|
18
|
Han N, Zhang W, Fang XX, Li QC, Pi W. Reduced graphene oxide-embedded nerve conduits loaded with bone marrow mesenchymal stem cell-derived extracellular vesicles promote peripheral nerve regeneration. Neural Regen Res 2023. [PMID: 35799543 PMCID: PMC9241414 DOI: 10.4103/1673-5374.343889] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We previously combined reduced graphene oxide (rGO) with gelatin-methacryloyl (GelMA) and polycaprolactone (PCL) to create an rGO-GelMA-PCL nerve conduit and found that the conductivity and biocompatibility were improved. However, the rGO-GelMA-PCL nerve conduits differed greatly from autologous nerve transplants in their ability to promote the regeneration of injured peripheral nerves and axonal sprouting. Extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSCs) can be loaded into rGO-GelMA-PCL nerve conduits for repair of rat sciatic nerve injury because they can promote angiogenesis at the injured site. In this study, 12 weeks after surgery, sciatic nerve function was measured by electrophysiology and sciatic nerve function index, and myelin sheath and axon regeneration were observed by electron microscopy, immunohistochemistry, and immunofluorescence. The regeneration of microvessel was observed by immunofluorescence. Our results showed that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles were superior to rGO-GelMA-PCL conduits alone in their ability to increase the number of newly formed vessels and axonal sprouts at the injury site as well as the recovery of neurological function. These findings indicate that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles can promote peripheral nerve regeneration and neurological function recovery, and provide a new direction for the curation of peripheral nerve defect in the clinic.
Collapse
|
19
|
Yuan Y, Wang Y, Wu S, Zhao MY. Review: Myelin clearance is critical for regeneration after peripheral nerve injury. Front Neurol 2022; 13:908148. [PMID: 36588879 PMCID: PMC9801717 DOI: 10.3389/fneur.2022.908148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Traumatic peripheral nerve injury occurs frequently and is a major clinical and public health problem that can lead to functional impairment and permanent disability. Despite the availability of modern diagnostic procedures and advanced microsurgical techniques, active recovery after peripheral nerve repair is often unsatisfactory. Peripheral nerve regeneration involves several critical events, including the recreation of the microenvironment and remyelination. Results from previous studies suggest that the peripheral nervous system (PNS) has a greater capacity for repair than the central nervous system. Thus, it will be important to understand myelin and myelination specifically in the PNS. This review provides an update on myelin biology and myelination in the PNS and discusses the mechanisms that promote myelin clearance after injury. The roles of Schwann cells and macrophages are considered at length, together with the possibility of exogenous intervention.
Collapse
Affiliation(s)
- YiMing Yuan
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China,*Correspondence: Yan Wang
| | - ShanHong Wu
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming Yue Zhao
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
20
|
Pan B, Guo D, Jing L, Li K, Li X, Li G, Gao X, Li ZW, Zhao W, Feng H, Cao MH. Long noncoding RNA Pvt1 promotes the proliferation and migration of Schwann cells by sponging microRNA-214 and targeting c-Jun following peripheral nerve injury. Neural Regen Res 2022; 18:1147-1153. [PMID: 36255005 PMCID: PMC9827779 DOI: 10.4103/1673-5374.353497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Research has shown that long-chain noncoding RNAs (lncRNAs) are involved in the regulation of a variety of biological processes, including peripheral nerve regeneration, in part by acting as competing endogenous RNAs. c-Jun plays a key role in the repair of peripheral nerve injury. However, the precise underlying mechanism of c-Jun remains unclear. In this study, we performed microarray and bioinformatics analysis of mouse crush-injured sciatic nerves and found that the lncRNA Pvt1 was overexpressed in Schwann cells after peripheral nerve injury. Mechanistic studies revealed that Pvt1 increased c-Jun expression through sponging miRNA-214. We overexpressed Pvt1 in Schwann cells cultured in vitro and found that the proliferation and migration of Schwann cells were enhanced, and overexpression of miRNA-214 counteracted the effects of Pvt1 overexpression on Schwann cell proliferation and migration. We conducted in vivo analyses and injected Schwann cells overexpressing Pvt1 into injured sciatic nerves of mice. Schwann cells overexpressing Pvt1 enhanced the regeneration of injured sciatic nerves following peripheral nerve injury and the locomotor function of mice was improved. Our findings reveal the role of lncRNAs in the repair of peripheral nerve injury and highlight lncRNA Pvt1 as a novel potential treatment target for peripheral nerve injury.
Collapse
Affiliation(s)
- Bin Pan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Di Guo
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Li Jing
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ke Li
- Department of Imaging, Xuzhou Central Hospital, Xuzhou, Jiangsu Province, China
| | - Xin Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Gen Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiao Gao
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhi-Wen Li
- College of Extended Education, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Zhao
- Department of Orthopedics, Kuitun Hospital, Yili Kazak Autonomous Prefecture, Xinjiang Uygur Autonomous Region, China
| | - Hu Feng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Correspondence to: Meng-Han Cao, ; Hu Feng, .
| | - Meng-Han Cao
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Correspondence to: Meng-Han Cao, ; Hu Feng, .
| |
Collapse
|
21
|
Li C, Liu SY, Zhang M, Pi W, Wang B, Li QC, Lu CF, Zhang PX. Sustained release of exosomes loaded into polydopamine-modified chitin conduits promotes peripheral nerve regeneration in rats. Neural Regen Res 2022; 17:2050-2057. [PMID: 35142696 PMCID: PMC8848592 DOI: 10.4103/1673-5374.335167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Exosomes derived from mesenchymal stem cells are of therapeutic interest because of their important role in intracellular communication and biological regulation. On the basis of previously studied nerve conduits, we designed a polydopamine-modified chitin conduit loaded with mesenchymal stem cell-derived exosomes that release the exosomes in a sustained and stable manner. In vitro experiments revealed that rat mesenchymal stem cell-derived exosomes enhanced Schwann cell proliferation and secretion of neurotrophic and growth factors, increased the expression of Jun and Sox2 genes, decreased the expression of Mbp and Krox20 genes in Schwann cells, and reprogrammed Schwann cells to a repair phenotype. Furthermore, mesenchymal stem cell-derived exosomes promoted neurite growth of dorsal root ganglia. The polydopamine-modified chitin conduits loaded with mesenchymal stem cell-derived exosomes were used to bridge 2 mm rat sciatic nerve defects. Sustained release of exosomes greatly accelerated nerve healing and improved nerve function. These findings confirm that sustained release of mesenchymal stem cell-derived exosomes loaded into polydopamine-modified chitin conduits promotes the functional recovery of injured peripheral nerves.
Collapse
Affiliation(s)
- Ci Li
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Ministry of Education; National Center for Trauma Medicine, Beijing, China
| | - Song-Yang Liu
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Ministry of Education; National Center for Trauma Medicine, Beijing, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Ministry of Education; National Center for Trauma Medicine, Beijing, China
| | - Wei Pi
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Ministry of Education; National Center for Trauma Medicine, Beijing, China
| | - Bo Wang
- Department of Orthopedics, Beijing Jishuitan Hospital, Beijing, China
| | - Qi-Cheng Li
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Ministry of Education; National Center for Trauma Medicine, Beijing, China
| | - Chang-Feng Lu
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Ministry of Education; National Center for Trauma Medicine, Beijing, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Ministry of Education; National Center for Trauma Medicine, Beijing, China
| |
Collapse
|
22
|
Ye Z, Wei J, Zhan C, Hou J. Role of Transforming Growth Factor Beta in Peripheral Nerve Regeneration: Cellular and Molecular Mechanisms. Front Neurosci 2022; 16:917587. [PMID: 35769702 PMCID: PMC9234557 DOI: 10.3389/fnins.2022.917587] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Peripheral nerve injury (PNI) is one of the most common concerns in trauma patients. Despite significant advances in repair surgeries, the outcome can still be unsatisfactory, resulting in morbidities such as loss of sensory or motor function and reduced quality of life. This highlights the need for more supportive strategies for nerve regrowth and adequate recovery. Multifunctional cytokine transforming growth factor-β (TGF-β) is essential for the development of the nervous system and is known for its neuroprotective functions. Accumulating evidence indicates its involvement in multiple cellular and molecular responses that are critical to peripheral nerve repair. Following PNI, TGF-β is released at the site of injury where it can initiate a series of phenotypic changes in Schwann cells (SCs), modulate immune cells, activate neuronal intrinsic growth capacity, and regulate blood nerve barrier (BNB) permeability, thus enhancing the regeneration of the nerves. Notably, TGF-β has already been applied experimentally in the treatment of PNI. These treatments with encouraging outcomes further demonstrate its regeneration-promoting capacity. Herein, we review the possible roles of TGF-β in peripheral nerve regeneration and discuss the underlying mechanisms, thus providing new cues for better treatment of PNI.
Collapse
Affiliation(s)
- Zhiqian Ye
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junbin Wei
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaoning Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jin Hou,
| |
Collapse
|
23
|
Li J, Yao Y, Wang Y, Xu J, Zhao D, Liu M, Shi S, Lin Y. Modulation of the Crosstalk between Schwann Cells and Macrophages for Nerve Regeneration: A Therapeutic Strategy Based on a Multifunctional Tetrahedral Framework Nucleic Acids System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202513. [PMID: 35483031 DOI: 10.1002/adma.202202513] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/17/2022] [Indexed: 02/05/2023]
Abstract
Peripheral nerve injury (PNI) is currently recognized as one of the most significant public health issues and affects the general well-being of millions of individuals worldwide. Despite advances in nerve tissue engineering, nerve repair still cannot guarantee complete functional recovery. In the present study, an innovative approach is adopted to establish a multifunctional tetrahedral framework nucleic acids (tFNAs) system, denoted as MiDs, which can integrate the powerful programmability, permeability, and structural stability of tFNAs, with the nerve regeneration potential of microRNA-22 to enhance the communication between Schwann cells (SCs) and macrophages for more effective functional rehabilitation of peripheral nerves. Relevant results demonstrate that MiDs can amplify the ability of SCs to recruit macrophages and facilitate their polarization into the pro-healing M2 phenotype to reconstruct the post-injury microenvironment. Furthermore, MiDs can initiate the adaptive intracellular reprogramming of SCs within a short period to further promote axon regeneration and remyelination. MiDs represent a new possibility for enhancing nerve repair and may have critical clinical applications in the future.
Collapse
Affiliation(s)
- Jiajie Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yangxue Yao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yun Wang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Jiangshan Xu
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
24
|
Wu Y, Liu X, Han Y, Li L, Jian M, Sun G, Nie J. Peripheral Blood Mononuclear Cells Regulate Differentially Expressed Proteins in the Proximal Sciatic Nerve of Rats after Transection Anastomosis. Neuroscience 2022; 491:146-155. [PMID: 35395357 DOI: 10.1016/j.neuroscience.2022.03.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
Peripheral nerve injury (PNI) is a common disease that causes the partial loss of sensory, exercise, and autonomic nervous function. In clinical practice, accurate end-to-end neurorrhaphy of the epineurium without tension is the ideal treatment when there is no nerve defect. We have confirmed that peripheral blood mononuclear cells (PBMCs) can effectively improve nerve regeneration and functional recovery after PNI. However, the global protein profile and signaling conduction pathways regulated by PBMCs remain unclear. This study employed the transection anastomosis model to detect the walking track analysis, gastrocnemius wet weight rate, and morphological examination in order to validate the effect of PBMCs on sciatic nerve injury in rats. Results showed that PBMCs improved nerve regeneration after sciatic nerve dissociation and anastomosis in rats, which reflected in the improvement of the sciatic nerve function index, wet weight rate of gastrocnemius muscles, muscle fiber structure, and the number of axons. We then used TMT labeling quantitative proteomics to explore the underlying mechanism by which PBMCs ameliorated sciatic nerve injury. Results showed that PBMCs regulated 40 differential proteins and the regulated proteins were primarily involved in the complement and coagulation cascade pathways, the notch signaling pathway, the renin angiotensin system, DNA replication, histidine metabolism, β-alanine metabolism, and other types of O-glycan biosynthesis. Immunohistochemical results supported our findings on the changes in expression of Kininogen 1 and Psen1, the relationships between PNI and the notch pathway and the complement and coagulation level pathways.
Collapse
Affiliation(s)
- Yajuan Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xuejia Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yu Han
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Luxi Li
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi 563000, China
| | - Mingjiang Jian
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Guangfeng Sun
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi 563000, China.
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
25
|
Wang S, Liu X, Wang Y. Evaluation of Platelet-Rich Plasma Therapy for Peripheral Nerve Regeneration: A Critical Review of Literature. Front Bioeng Biotechnol 2022; 10:808248. [PMID: 35299637 PMCID: PMC8923347 DOI: 10.3389/fbioe.2022.808248] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Peripheral nerve injury (PNI) is a common disease in clinic, and the regeneration process of peripheral nerve tissue is slow, and patients with PNI often suffer from the loss of nerve function. At present, related research on the mechanism of peripheral nerve regeneration has become a hot spot, and scholars are also seeking a method that can accelerate the regeneration of peripheral nerve. Platelet-rich plasma (PRP) is a platelet concentrate extracted from autologous blood by centrifugation, which is a kind of bioactive substance. High concentration of platelets can release a variety of growth factors after activation, and can promote the proliferation and differentiation of tissue cells, which can accelerate the process of tissue regeneration. The application of PRP comes from the body, there is no immune rejection reaction, it can promote tissue regeneration with less cost, it is,therefore, widely used in various clinical fields. At present, there are relatively few studies on the application of PRP to peripheral nerve regeneration. This article summarizes the literature in recent years to illustrate the effect of PRP on peripheral nerve regeneration from mechanism to clinical application, and prospects for the application of PRP to peripheral nerve.
Collapse
Affiliation(s)
| | | | - Yueshu Wang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Schwann Cells in the Tumor Microenvironment: Need More Attention. JOURNAL OF ONCOLOGY 2022; 2022:1058667. [PMID: 35186076 PMCID: PMC8853772 DOI: 10.1155/2022/1058667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment (TME), which is composed of various cell components and signaling molecules, plays an important role in the occurrence and progression of tumors and has become the central issue of current cancer research. In recent years, as a part of the TME, the peripheral nervous system (PNS) has attracted increasing attention. Moreover, emerging evidence shows that Schwann cells (SCs), which are the most important glial cells in the PNS, are not simply spectators in the TME. In this review article, we focused on the up-to-date research progress on SCs in the TME and introduced our point of view. In detail, we described that under two main tumor-nerve interaction patterns, perineural invasion (PNI) and tumor innervation, SCs were reprogrammed and acted as important participants. We also investigated the newest mechanisms between the interactions of SCs and tumor cells. In addition, SCs can have profound impacts on other cellular components in the TME, such as immune cells and cancer-associated fibroblasts (CAFs), involving immune regulation, tumor-related pain, and nerve remodeling. Overall, these innovative statements can expand the scope of the TME, help fully understand the significant role of SCs in the tumor-nerve-immune axis, and propose enlightenments to innovate antitumor therapeutic methods and future research.
Collapse
|
27
|
Pandey S, Mudgal J. A Review on the Role of Endogenous Neurotrophins and Schwann Cells in Axonal Regeneration. J Neuroimmune Pharmacol 2022; 17:398-408. [PMID: 34843075 PMCID: PMC9810669 DOI: 10.1007/s11481-021-10034-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/13/2021] [Indexed: 01/13/2023]
Abstract
Injury to the peripheral nerve is traditionally referred to acquired nerve injury as they are the result of physical trauma due to laceration, stretch, crush and compression of nerves. However, peripheral nerve injury may not be completely limited to acquired physical trauma. Peripheral nerve injury equally implies clinical conditions like Guillain-Barré syndrome (GBS), Carpal tunnel syndrome, rheumatoid arthritis and diabetes. Physical trauma is commonly mono-neuropathic as it engages a single nerve and produces focal damage, while in the context of pathological conditions the damage is divergent involving a group of the nerve causing polyneuropathy. Damage to the peripheral nerve can cause a diverse range of manifestations from sensory impairment to loss of function with unpredictable recovery patterns. Presently no treatment option provides complete or functional recovery in nerve injury, as nerve cells are highly differentiated and inert to regeneration. However, the regenerative phenotypes in Schwann cells get expressed when a signalling cascade is triggered by neurotrophins. Neurotrophins are one of the promising biomolecules that are released naturally post-injury with the potential to exhibit better functional recovery. Pharmacological intervention modulating the expression of these neurotrophins such as brain-derived neurotrophic factor (BDNF) and pituitary adenylyl cyclase-activating peptide (PACAP) can prove to be a significant treatment option as endogenous compounds which may have remarkable innate advantage showing maximum 'biological relevance'.
Collapse
Affiliation(s)
- Samyak Pandey
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| |
Collapse
|
28
|
Liu J, Li L, Zou Y, Fu L, Ma X, Zhang H, Xu Y, Xu J, Zhang J, Li M, Hu X, Li Z, Wang X, Sun H, Zheng H, Zhu L, Guo J. Role of microtubule dynamics in Wallerian degeneration and nerve regeneration after peripheral nerve injury. Neural Regen Res 2022; 17:673-681. [PMID: 34380909 PMCID: PMC8504388 DOI: 10.4103/1673-5374.320997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Wallerian degeneration, the progressive disintegration of distal axons and myelin that occurs after peripheral nerve injury, is essential for creating a permissive microenvironment for nerve regeneration, and involves cytoskeletal reconstruction. However, it is unclear whether microtubule dynamics play a role in this process. To address this, we treated cultured sciatic nerve explants, an in vitro model of Wallerian degeneration, with the microtubule-targeting agents paclitaxel and nocodazole. We found that paclitaxel-induced microtubule stabilization promoted axon and myelin degeneration and Schwann cell dedifferentiation, whereas nocodazole-induced microtubule destabilization inhibited these processes. Evaluation of an in vivo model of peripheral nerve injury showed that treatment with paclitaxel or nocodazole accelerated or attenuated axonal regeneration, as well as functional recovery of nerve conduction and target muscle and motor behavior, respectively. These results suggest that microtubule dynamics participate in peripheral nerve regeneration after injury by affecting Wallerian degeneration. This study was approved by the Animal Care and Use Committee of Southern Medical University, China (approval No. SMU-L2015081) on October 15, 2015.
Collapse
Affiliation(s)
- Jingmin Liu
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lixia Li
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ying Zou
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lanya Fu
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinrui Ma
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Haowen Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yizhou Xu
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University; Department of Spine Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiawei Xu
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Mi Li
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaofang Hu
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhenlin Li
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xianghai Wang
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| | - Hao Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| | - Hui Zheng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| | - Lixin Zhu
- Department of Spine Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiasong Guo
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Spine Orthopedics, Zhujiang Hospital of Southern Medical University; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory); Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong Province, China
| |
Collapse
|
29
|
Zheng T, Wu L, Sun S, Xu J, Han Q, Liu Y, Wu R, Li G. Co-culture of Schwann cells and endothelial cells for synergistically regulating dorsal root ganglion behavior on chitosan-based anisotropic topology for peripheral nerve regeneration. BURNS & TRAUMA 2022; 10:tkac030. [PMID: 36071954 PMCID: PMC9444262 DOI: 10.1093/burnst/tkac030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Abstract
Background Anisotropic topologies are known to regulate cell-oriented growth and induce cell differentiation, which is conducive to accelerating nerve regeneration, while co-culture of endothelial cells (ECs) and Schwann cells (SCs) can significantly promote the axon growth of dorsal root ganglion (DRG). However, the synergistic regulation of EC and SC co-culture of DRG behavior on anisotropic topologies is still rarely reported. The study aims to investigate the effect of anisotropic topology co-cultured with Schwann cells and endothelial cells on dorsal root ganglion behavior for promoting peripheral nerve regeneration. Methods Chitosan/artemisia sphaerocephala (CS/AS) scaffolds with anisotropic topology were first prepared using micro-molding technology, and then the surface was modified with dopamine to facilitate cell adhesion and growth. The physical and chemical properties of the scaffolds were characterized through morphology, wettability, surface roughness and component variation. SCs and ECs were co-cultured with DRG cells on anisotropic topology scaffolds to evaluate the axon growth behavior. Results Dopamine-modified topological CS/AS scaffolds had good hydrophilicity and provided an appropriate environment for cell growth. Cellular immunofluorescence showed that in contrast to DRG growth alone, co-culture of SCs and ECs could not only promote the growth of DRG axons, but also offered a stronger guidance for orientation growth of neurons, which could effectively prevent axons from tangling and knotting, and thus may significantly inhibit neurofibroma formation. Moreover, the co-culture of SCs and ECs could promote the release of nerve growth factor and vascular endothelial growth factor, and up-regulate genes relevant to cell proliferation, myelination and skeletal development via the PI3K-Akt, MAPK and cytokine and receptor chemokine pathways. Conclusions The co-culture of SCs and ECs significantly improved the growth behavior of DRG on anisotropic topological scaffolds, which may provide an important basis for the development of nerve grafts in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Tiantian Zheng
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education , Co-innovation Center of Neuroregeneration, NMPA Key Lab for Research and Evaluation of Tissue Engineering Technology Products, , Nantong , P. R. China
- Nantong University. 226001 , Co-innovation Center of Neuroregeneration, NMPA Key Lab for Research and Evaluation of Tissue Engineering Technology Products, , Nantong , P. R. China
| | - Linliang Wu
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education , Co-innovation Center of Neuroregeneration, NMPA Key Lab for Research and Evaluation of Tissue Engineering Technology Products, , Nantong , P. R. China
- Nantong University. 226001 , Co-innovation Center of Neuroregeneration, NMPA Key Lab for Research and Evaluation of Tissue Engineering Technology Products, , Nantong , P. R. China
| | - Shaolan Sun
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education , Co-innovation Center of Neuroregeneration, NMPA Key Lab for Research and Evaluation of Tissue Engineering Technology Products, , Nantong , P. R. China
- Nantong University. 226001 , Co-innovation Center of Neuroregeneration, NMPA Key Lab for Research and Evaluation of Tissue Engineering Technology Products, , Nantong , P. R. China
| | - Jiawei Xu
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education , Co-innovation Center of Neuroregeneration, NMPA Key Lab for Research and Evaluation of Tissue Engineering Technology Products, , Nantong , P. R. China
- Nantong University. 226001 , Co-innovation Center of Neuroregeneration, NMPA Key Lab for Research and Evaluation of Tissue Engineering Technology Products, , Nantong , P. R. China
| | - Qi Han
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education , Co-innovation Center of Neuroregeneration, NMPA Key Lab for Research and Evaluation of Tissue Engineering Technology Products, , Nantong , P. R. China
- Nantong University. 226001 , Co-innovation Center of Neuroregeneration, NMPA Key Lab for Research and Evaluation of Tissue Engineering Technology Products, , Nantong , P. R. China
| | - Yifan Liu
- School of Medicine, Nantong University. 226001 , Nantong , P. R. China
| | - Ronghua Wu
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education , Co-innovation Center of Neuroregeneration, NMPA Key Lab for Research and Evaluation of Tissue Engineering Technology Products, , Nantong , P. R. China
- Nantong University. 226001 , Co-innovation Center of Neuroregeneration, NMPA Key Lab for Research and Evaluation of Tissue Engineering Technology Products, , Nantong , P. R. China
| | - Guicai Li
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education , Co-innovation Center of Neuroregeneration, NMPA Key Lab for Research and Evaluation of Tissue Engineering Technology Products, , Nantong , P. R. China
- Nantong University. 226001 , Co-innovation Center of Neuroregeneration, NMPA Key Lab for Research and Evaluation of Tissue Engineering Technology Products, , Nantong , P. R. China
- School of Medicine, Nantong University. 226001 , Nantong , P. R. China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University , 530021, Nanning , P.R.China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123 , China
| |
Collapse
|
30
|
Li L, Du X, Ling H, Li Y, Wu X, Jin A, Yang M. Gene correlation network analysis to identify regulatory factors in sciatic nerve injury. J Orthop Surg Res 2021; 16:622. [PMID: 34663380 PMCID: PMC8522103 DOI: 10.1186/s13018-021-02756-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sciatic nerve injury (SNI), which frequently occurs under the traumatic hip and hip fracture dislocation, induces serious complications such as motor and sensory loss, muscle atrophy, or even disabling. The present work aimed to determine the regulating factors and gene network related to the SNI pathology. METHODS Sciatic nerve injury dataset GSE18803 with 24 samples was divided into adult group and neonate group. Weighted gene co-expression network analysis (WGCNA) was carried out to identify modules associated with SNI in the two groups. Moreover, differentially expressed genes (DEGs) were determined from every group, separately. Subsequently, co-expression network and protein-protein interaction (PPI) network were overlapped to identify hub genes, while functional enrichment and Reactome analysis were used for a comprehensive analysis of potential pathways. GSE30165 was used as the test set for investigating the hub gene involvement within SNI. Gene set enrichment analysis (GSEA) was performed separately using difference between samples and gene expression level as phenotype label to further prove SNI-related signaling pathways. In addition, immune infiltration analysis was accomplished by CIBERSORT. Finally, Drug-Gene Interaction database (DGIdb) was employed for predicting the possible therapeutic agents. RESULTS 14 SNI status modules and 97 DEGs were identified in adult group, while 15 modules and 21 DEGs in neonate group. A total of 12 hub genes was overlapping from co-expression and PPI network. After the results from both test and training sets were overlapped, we verified that the ten real hub genes showed remarkably up-regulation within SNI. According to functional enrichment of hub genes, the above genes participated in the immune effector process, inflammatory responses, the antigen processing and presentation, and the phagocytosis. GSEA also supported that gene sets with the highest significance were mostly related to the cytokine-cytokine receptor interaction. Analysis of hub genes possible related signaling pathways using gene expression level as phenotype label revealed an enrichment involved in Lysosome, Chemokine signaling pathway, and Neurotrophin signaling pathway. Immune infiltration analysis showed that Macrophages M2 and Regulatory T cells may participate in the development of SNI. At last, 25 drugs were screened from DGIdb to improve SNI treatment. CONCLUSIONS The gene expression network is determined in the present work based on the related regulating factors within SNI, which sheds more light on SNI pathology and offers the possible biomarkers and therapeutic targets in subsequent research.
Collapse
Affiliation(s)
- Liuxun Li
- Department of Spine Surgery, the First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Xiaokang Du
- Department of Spine Surgery, the First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Haiqian Ling
- Department of Spine Surgery, the First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yuhang Li
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuemin Wu
- Department of Endocrinology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong, China
| | - Anmin Jin
- Department of Spine Surgery, ZhuJiang Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiling Yang
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518034, Guangdong, China.
| |
Collapse
|
31
|
Xu J, Wen J, Fu L, Liao L, Zou Y, Zhang J, Deng J, Zhang H, Liu J, Wang X, Zuo D, Guo J. Macrophage-specific RhoA knockout delays Wallerian degeneration after peripheral nerve injury in mice. J Neuroinflammation 2021; 18:234. [PMID: 34654444 PMCID: PMC8520251 DOI: 10.1186/s12974-021-02292-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022] Open
Abstract
Background Plenty of macrophages are recruited to the injured nerve to play key roles in the immunoreaction and engulf the debris of degenerated axons and myelin during Wallerian degeneration, thus creating a conducive microenvironment for nerve regeneration. Recently, drugs targeting the RhoA pathway have been widely used to promote peripheral axonal regeneration. However, the role of RhoA in macrophage during Wallerian degeneration and nerve regeneration after peripheral nerve injury is still unknown. Herein, we come up with the hypothesis that RhoA might influence Wallerian degeneration and nerve regeneration by affecting the migration and phagocytosis of macrophages after peripheral nerve injury. Methods Immunohistochemistry, Western blotting, H&E staining, and electrophysiology were performed to access the Wallerian degeneration and axonal regeneration after sciatic nerve transection and crush injury in the LyzCre+/−; RhoAflox/flox (cKO) mice or Lyz2Cre+/− (Cre) mice, regardless of sex. Macrophages’ migration and phagocytosis were detected in the injured nerves and the cultured macrophages. Moreover, the expression and potential roles of ROCK and MLCK were also evaluated in the cultured macrophages. Results 1. RhoA was specifically knocked out in macrophages of the cKO mice; 2. The segmentation of axons and myelin, the axonal regeneration, and nerve conduction in the injured nerve were significantly impeded while the myoatrophy was more severe in the cKO mice compared with those in Cre mice; 3. RhoA knockout attenuated the migration and phagocytosis of macrophages in vivo and in vitro; 4. ROCK and MLCK were downregulated in the cKO macrophages while inhibition of ROCK and MLCK could weaken the migration and phagocytosis of macrophages. Conclusions Our findings suggest that RhoA depletion in macrophages exerts a detrimental effect on Wallerian degeneration and nerve regeneration, which is most likely due to the impaired migration and phagocytosis of macrophages resulted from disrupted RhoA/ROCK/MLCK pathway. Since previous research has proved RhoA inhibition in neurons was favoring for axonal regeneration, the present study reminds us of that the cellular specificity of RhoA-targeted drugs is needed to be considered in the future application for treating peripheral nerve injury.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Jinkun Wen
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Department of Neurology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, 529030, China
| | - Lanya Fu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Liqiang Liao
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China
| | - Ying Zou
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Junyao Deng
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Haowen Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Jingmin Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Xianghai Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiasong Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou Ave North 1838, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China. .,Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China. .,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, 510515, China.
| |
Collapse
|
32
|
Chen Z, Shen G, Tan X, Qu L, Zhang C, Ma L, Luo P, Cao X, Yang F, Liu Y, Wang Y, Shi C. ID1/ID3 mediate the contribution of skin fibroblasts to local nerve regeneration through Itga6 in wound repair. Stem Cells Transl Med 2021; 10:1637-1649. [PMID: 34520124 PMCID: PMC8641086 DOI: 10.1002/sctm.21-0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/28/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022] Open
Abstract
Cutaneous wound healing requires intricate synchronization of several key processes. Among them, local nerve regeneration is known to be vitally important for proper repair. However, the underlying mechanisms of local nerve regeneration are still unclear. Fibroblasts are one of the key cell types within the skin whose role in local nerve regeneration has not been extensively studied. In our study, we found skin fibroblasts were in tight contact with regenerated nerves during wound healing, while rare interactions were shown under normal circumstances. Moreover, skin fibroblasts surrounding the nerves were shown to be activated and reprogrammed to exhibit neural cell‐like properties by upregulated expressing inhibitor of DNA binding 1 (ID1) and ID3. Furthermore, we identified the regulation of integrin α6 (Itga6) by ID1/ID3 in fibroblasts as the mechanism for axon guidance. Accordingly, transplantation of the ID1/ID3‐overexpressing fibroblasts or topical injection of ID1/ID3 lentivirus significantly promoted local nerve regeneration and wound healing following skin excision or sciatic nerve injury. Therefore, we demonstrated a new role for skin fibroblasts in nerve regeneration following local injury by directly contacting and guiding axon regrowth, which might hold therapeutic potential in peripheral nerve disorders and peripheral neuropathies in relatively chronic refractory wounds.
Collapse
Affiliation(s)
- Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Gufang Shen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Langfan Qu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Can Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Xiaohui Cao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Fan Yang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Yunsheng Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
33
|
Wei Z, Pan P, Hong FF, Cao Z, Ji Y, Chen L. A novel approach for efficient fabrication of chitosan nanoparticles-embedded bacterial nanocellulose conduits. Carbohydr Polym 2021; 264:118002. [PMID: 33910735 DOI: 10.1016/j.carbpol.2021.118002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022]
Abstract
Incorporation of chitosan (CS) into Bacterial nanocellulose (BNC) matrix is of great interests in biomedical field due to the advantageous properties of each material. However, the conventional strategies result in poor composite effect with low efficiency. In this study, the three-dimensional fibrillar network of BNC was utilized as a template for the first time to homogeneously disperse CS to form nanoparticles (CSNPs) in BNC matrix via ionic gelation method, to develop chitosan nanoparticles-embedded bacterial nanocellulose (CSNPs-BNC) composites. This composite method is simple and efficient, without introducing dispersants and crosslinking agents, while retaining the mechanical properties and native 3D network structure of BNC. The CSNPs-BNC composites had excellent antibacterial activity to support potential clinical application. The CSNPs-BNC composites could promote the adhesion and proliferation of Schwann cells, and demonstrate good biocompatibility both in vitro and in vivo. The results indicated that CSNPs-BNC can provide a promising candidate for biomedical applications.
Collapse
Affiliation(s)
- Zhao Wei
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China; Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, China
| | - Pan Pan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China; Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, China
| | - Feng F Hong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China; Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, China.
| | - Zhangjun Cao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China; Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, China
| | - Ying Ji
- Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong
| | - Lin Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China; Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, China.
| |
Collapse
|
34
|
Gazerani P. Satellite Glial Cells in Pain Research: A Targeted Viewpoint of Potential and Future Directions. FRONTIERS IN PAIN RESEARCH 2021; 2:646068. [PMID: 35295432 PMCID: PMC8915641 DOI: 10.3389/fpain.2021.646068] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is known to be caused by sensitization within the pain circuits. An imbalance occurs between excitatory and inhibitory transmission that enables this sensitization to form. In addition to neurons, the contribution of central glia, especially astrocytes and microglia, to the pathogenesis of pain induction and maintenance has been identified. This has led to the targeting of astrogliosis and microgliosis to restore the normal functions of astrocytes and microglia to help reverse chronic pain. Gliosis is broadly defined as a reactive response of glial cells in response to insults to the central nervous system (CNS). The role of glia in the peripheral nervous system (PNS) has been less investigated. Accumulating evidence, however, points to the contribution of satellite glial cells (SGCs) to chronic pain. Hence, understanding the potential role of these cells and their interaction with sensory neurons has become important for identifying the mechanisms underlying pain signaling. This would, in turn, provide future therapeutic options to target pain. Here, a viewpoint will be presented regarding potential future directions in pain research, with a focus on SGCs to trigger further research. Promising avenues and new directions include the potential use of cell lines, cell live imaging, computational analysis, 3D tissue prints and new markers, investigation of glia–glia and macrophage–glia interactions, the time course of glial activation under acute and chronic pathological pain compared with spontaneous pain, pharmacological and non-pharmacological responses of glia, and potential restoration of normal function of glia considering sex-related differences.
Collapse
Affiliation(s)
- Parisa Gazerani
- Laboratory of Molecular Pharmacology, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Pharmacy, Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet, Oslo, Norway
- *Correspondence: Parisa Gazerani
| |
Collapse
|
35
|
Neuroimmune Regulation of Surgery-Associated Metastases. Cells 2021; 10:cells10020454. [PMID: 33672617 PMCID: PMC7924204 DOI: 10.3390/cells10020454] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Surgery remains an essential therapeutic approach for most solid malignancies. Although for more than a century accumulating clinical and experimental data have indicated that surgical procedures themselves may promote the appearance and progression of recurrent and metastatic lesions, only in recent years has renewed interest been taken in the mechanism by which metastasizing of cancer occurs following operative procedures. It is well proven now that surgery constitutes a risk factor for the promotion of pre-existing, possibly dormant micrometastases and the acceleration of new metastases through several mechanisms, including the release of neuroendocrine and stress hormones and wound healing pathway-associated immunosuppression, neovascularization, and tissue remodeling. These postoperative consequences synergistically facilitate the establishment of new metastases and the development of pre-existing micrometastases. While only in recent years the role of the peripheral nervous system has been recognized as another contributor to cancer development and metastasis, little is known about the contribution of tumor-associated neuronal and neuroglial elements in the metastatic disease related to surgical trauma and wound healing. Specifically, although numerous clinical and experimental data suggest that biopsy- and surgery-induced wound healing can promote survival and metastatic spread of residual and dormant malignant cells, the involvement of the tumor-associated neuroglial cells in the formation of metastases following tissue injury has not been well understood. Understanding the clinical significance and underlying mechanisms of neuroimmune regulation of surgery-associated metastasis will not only advance the field of neuro–immuno–oncology and contribute to basic science and translational oncology research but will also produce a strong foundation for developing novel mechanism-based therapeutic approaches that may protect patients against the oncologically adverse effects of primary tumor biopsy and excision.
Collapse
|