1
|
Bae S, Hong I, Baek MS. Association between the length of stay in rehabilitation and mortality among the adults with Parkinson's disease: 2009-2019 Korean National Health Insurance Service Databases. Front Aging Neurosci 2024; 16:1428972. [PMID: 39161340 PMCID: PMC11330883 DOI: 10.3389/fnagi.2024.1428972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Background Rehabilitation is recognized as an effective means of alleviating the symptoms of Parkinson's disease (PD) and improving the physical and cognitive functions of patients with PD. However, research often focuses on short-term outcomes such as functioning and quality of life. This study investigated the association between the length of stay in rehabilitation and mortality among patients with PD. Methods Using the Korean National Health Insurance Service database, we identified 636 participants diagnosed with PD who received rehabilitation. The main outcome was all-cause mortality. We used a Cox proportional hazards regression model to examine the relationship between length of stay in rehabilitation and mortality among patients with PD. Results The final sample comprised 374 females (58.81%) and 262 males (41.19%). A survival analysis revealed a significant association between the length of stay in rehabilitation and mortality, with a decrease in mortality of 16.1% in patients with PD who received one year of rehabilitation (hazard ratio = 0.839, 95% confidence interval = 0.788-0.895). Conclusion Our findings underscore the potential benefits of timely implementation of rehabilitative interventions in patients with PD and the need for comprehensive and long-term rehabilitation strategies. It also highlights the necessity of such services for patients with PD and the importance of developing patient-centered rehabilitation guidelines.
Collapse
Affiliation(s)
- Suyeong Bae
- Department of Occupational Therapy, Graduate School, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Ickpyo Hong
- Department of Occupational Therapy, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Min Seok Baek
- Department of Neurology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, Republic of Korea
| |
Collapse
|
2
|
Zhang HY, Hou TT, Jin ZH, Zhang T, Wang YH, Cheng ZH, Liu YH, Fang JP, Yan HJ, Zhen Y, An X, Du J, Chen KK, Li ZZ, Li Q, Wen QP, Fang BY. Transcranial alternating current stimulation improves quality of life in Parkinson's disease: study protocol for a randomized, double-blind, controlled trial. Trials 2024; 25:200. [PMID: 38509589 PMCID: PMC10953283 DOI: 10.1186/s13063-024-08045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The neural cells in the brains of patients with Parkinson's disease (PWP) display aberrant synchronized oscillatory activity within the beta frequency range. Additionally, enhanced gamma oscillations may serve as a compensatory mechanism for motor inhibition mediated by beta activity and also reinstate plasticity in the primary motor cortex affected by Parkinson's disease. Transcranial alternating current stimulation (tACS) can synchronize endogenous oscillations with exogenous rhythms, thereby modulating cortical activity. The objective of this study is to investigate whether the addition of tACS to multidisciplinary intensive rehabilitation treatment (MIRT) can improve symptoms of PWP so as to enhance the quality of life in individuals with Parkinson's disease based on the central-peripheral-central theory. METHODS The present study was a randomized, double-blind trial that enrolled 60 individuals with Parkinson's disease aged between 45 and 70 years, who had Hoehn-Yahr scale scores ranging from 1 to 3. Participants were randomly assigned in a 1:1 ratio to either the tACS + MIRT group or the sham-tACS + MIRT group. The trial consisted of a two-week double-blind treatment period followed by a 24-week follow-up period, resulting in a total duration of twenty-six weeks. The primary outcome measured the change in PDQ-39 scores from baseline (T0) to 4 weeks (T2), 12 weeks (T3), and 24 weeks (T4) after completion of the intervention. The secondary outcome assessed changes in MDS-UPDRS III scores at T0, the end of intervention (T1), T2, T3, and T4. Additional clinical assessments and mechanistic studies were conducted as tertiary outcomes. DISCUSSION The objective of this study is to demonstrate that tACS can enhance overall functionality and improve quality of life in PWP, based on the framework of MIRT. Additionally, it seeks to establish a potential correlation between these therapeutic effects and neuroplasticity alterations in relevant brain regions. The efficacy of tACS will be assessed during the follow-up period in order to optimize neuroplasticity and enhance its potential impact on rehabilitation efficiency for PWP. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2300071969. Registered on 30 May 2023.
Collapse
Affiliation(s)
- Hong-Yu Zhang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Ting-Ting Hou
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Zhao-Hui Jin
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Tian Zhang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Yi-Heng Wang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Zi-Hao Cheng
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Yong-Hong Liu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Jin-Ping Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Hong-Jiao Yan
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Yi Zhen
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Xia An
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Jia Du
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Ke-Ke Chen
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Zhen-Zhen Li
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Qing Li
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Qi-Ping Wen
- Radiology Department, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Bo-Yan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China.
| |
Collapse
|
3
|
Wu J, Ma L, Luo D, Jin Z, Wang L, Wang L, Li T, Zhang J, Liu T, Lv D, Yan T, Fang B. Functional and structural gradients reveal atypical hierarchical organization of Parkinson's disease. Hum Brain Mapp 2024; 45:e26647. [PMID: 38488448 PMCID: PMC10941507 DOI: 10.1002/hbm.26647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024] Open
Abstract
Parkinson's disease (PD) patients exhibit deficits in primary sensorimotor and higher-order executive functions. The gradient reflects the functional spectrum in sensorimotor-associated areas of the brain. We aimed to determine whether the gradient is disrupted in PD patients and how this disruption is associated with treatment outcome. Seventy-six patients (mean age, 59.2 ± 12.4 years [standard deviation], 44 women) and 34 controls participants (mean age, 58.1 ± 10.0 years [standard deviation], 19 women) were evaluated. We explored functional and structural gradients in PD patients and control participants. Patients were followed during 2 weeks of multidisciplinary intensive rehabilitation therapy (MIRT). The Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) was administered to patients before and after treatment. We investigated PD-related alterations in the principal functional and structural gradients. We further used a support vector machine (SVM) and correlation analysis to assess the classification ability and treatment outcomes related to PD gradient alterations, respectively. The gradients showed significant differences between patients and control participants, mainly in somatosensory and visual networks involved in primary function, and higher-level association networks (dorsal attentional network (DAN) and default mode network (DMN)) related to motor control and execution. On the basis of the combined functional and structural gradient features of these networks, the SVM achieved an accuracy of 91.2% in discriminating patients from control participants. Treatment reduced the gradient difference. The altered gradient exhibited a significant correlation with motor improvement and was mainly distributed across the visual network, DAN and DMN. This study revealed damage to gradients in the brain characterized by sensorimotor and executive control deficits in PD patients. The application of gradient features to neurological disorders could lead to the development of potential diagnostic and treatment markers for PD.
Collapse
Affiliation(s)
- Jinglong Wu
- School of Mechatronical Engineering, Beijing Institute of TechnologyBeijingChina
| | - Lihua Ma
- School of Mechatronical Engineering, Beijing Institute of TechnologyBeijingChina
| | - Di Luo
- School of Mechatronical Engineering, Beijing Institute of TechnologyBeijingChina
| | - Zhaohui Jin
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical UniversityBeijingChina
| | - Li Wang
- School of Life Science, Beijing Institute of TechnologyBeijingChina
| | - Luyao Wang
- School of Life Science, Shanghai UniversityShanghaiChina
| | - Ting Li
- School of Life Science, Beijing Institute of TechnologyBeijingChina
| | - Jian Zhang
- School of Mechatronical Engineering, Beijing Institute of TechnologyBeijingChina
| | - Tiantian Liu
- School of Life Science, Beijing Institute of TechnologyBeijingChina
| | - Diyang Lv
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical UniversityBeijingChina
| | - Tianyi Yan
- School of Life Science, Beijing Institute of TechnologyBeijingChina
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Steendam-Oldekamp E, van Laar T. The Effectiveness of Inpatient Rehabilitation in Parkinson's Disease: A Systematic Review of Recent Studies. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S93-S112. [PMID: 38788087 PMCID: PMC11380234 DOI: 10.3233/jpd-230271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Background Parkinson's disease (PD) is a progressive disease, which is associated with the loss of activities of daily living independency. Several rehabilitation options have been studied during the last years, to improve mobility and independency. Objective This systematic review will focus on inpatient multidisciplinary rehabilitation (MR) in people with Parkinson's disease (PwPD), based on recent studies from 2020 onwards. Methods Search strategy in three databases included: multidisciplinary rehabilitation, Parkinson's Disease, inpatient rehabilitation, motor-, functional- and cognitive performance, cost-effectiveness, Quality of Life, and medication changes/Levodopa equivalent daily doses. Results Twenty-two studies were included, consisting of 13 studies dealing with inpatient MR and 9 studies on inpatient non-MR interventions. Inpatient PD multidisciplinary rehabilitation proved to be effective, as well as non-MR rehabilitation. Conclusions This review confirms the efficacy of inpatient MR and non-MR in PD, but is skeptical about the past and current study designs. New study designs, including new physical training methods, more attention to medication and costs, new biomarkers, artificial intelligence, and the use of wearables, will hopefully change rehabilitation trials in PwPD in the future.
Collapse
Affiliation(s)
- Elien Steendam-Oldekamp
- Department of Neurology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Teus van Laar
- Department of Neurology, University Medical Center Groningen, University of Groningen, The Netherlands
| |
Collapse
|
5
|
Yan T, Wang G, Liu T, Li G, Wang C, Funahashi S, Suo D, Pei G. Effects of Microstate Dynamic Brain Network Disruption in Different Stages of Schizophrenia. IEEE Trans Neural Syst Rehabil Eng 2023; 31:2688-2697. [PMID: 37285242 DOI: 10.1109/tnsre.2023.3283708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Schizophrenia is a heterogeneous mental disorder with unknown etiology or pathological characteristics. Microstate analysis of the electroencephalogram (EEG) signal has shown significant potential value for clinical research. Importantly, significant changes in microstate-specific parameters have been extensively reported; however, these studies have ignored the information interactions within the microstate network in different stages of schizophrenia. Based on recent findings, since rich information about the functional organization of the brain can be revealed by functional connectivity dynamics, we use the first-order autoregressive model to construct the functional connectivity of intra- and intermicrostate networks to identify information interactions among microstate networks. We demonstrate that, beyond abnormal parameters, disrupted organization of the microstate networks plays a crucial role in different stages of the disease by 128-channel EEG data collected from individuals with first-episode schizophrenia, ultrahigh-risk, familial high-risk, and healthy controls. According to the characteristics of the microstates of patients at different stages, the parameters of microstate class A are reduced, those of class C are increased, and the transitions from intra- to intermicrostate functional connectivity are gradually disrupted. Furthermore, decreased integration of intermicrostate information might lead to cognitive deficits in individuals with schizophrenia and those in high-risk states. Taken together, these findings illustrate that the dynamic functional connectivity of intra- and intermicrostate networks captures more components of disease pathophysiology. Our work sheds new light on the characterization of dynamic functional brain networks based on EEG signals and provides a new interpretation of aberrant brain function in different stages of schizophrenia from the perspective of microstates.
Collapse
|
6
|
Circular RNAs in Parkinson's Disease: Reliable Biological Markers and Targets for Rehabilitation. Mol Neurobiol 2023; 60:3261-3276. [PMID: 36840847 DOI: 10.1007/s12035-023-03268-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023]
Abstract
In clinical practice, the underlying pathogenesis of Parkinson's disease (PD) remains unknown. Circular RNAs (circRNAs) have good biological properties and can be used as biological marker. Rehabilitation as a third treatment alongside drug and surgery has been shown to be clinically effective, but biomarkers of rehabilitation efficiency at genetic level is still lacking. In this study, we identified differentially expressed circRNAs in peripheral blood exosomes between PD patients and health controls (HCs) and determined whether these circRNAs changed after rehabilitation, to explore the competing RNA networks and epigenetic mechanisms affected. We found that there were 558 upregulated and 609 downregulated circRNAs in PD patients compared to HCs, 3398 upregulated and 479 downregulated circRNAs in PD patients after rehabilitation compared to them before rehabilitation, along with 3721 upregulated and 635 downregulated circRNAs in PD patients after rehabilitation compared to HCs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that differentially expressed circRNAs may affect the stability of the cellular actin backbone and synaptic structure by influencing the aggregation of α-synuclein (a-syn). We selected two circRNAs overexpressed in PD patients for validation (hsa_circ_0001535 and hsa_circ_0000437); the results revealed that their expression levels were all reduced to varying degrees (p < 0.05) after rehabilitation. After network analysis, we believe that hsa_circ_0001535 may be related to the aggregation of a-syn, while hsa_circ_0000437 may act on hsa-let-7b-5p or hsa-let-7c-5p through sponge effect to cause inflammatory response. Our findings suggest that rehabilitation can mitigate the pathological process of PD by epigenetic means.
Collapse
|
7
|
Li T, Wang L, Piao Z, Chen K, Yu X, Wen Q, Suo D, Zhang C, Funahashi S, Pei G, Fang B, Yan T. Altered Neurovascular Coupling for Multidisciplinary Intensive Rehabilitation in Parkinson's Disease. J Neurosci 2023; 43:1256-1266. [PMID: 36609454 PMCID: PMC9962778 DOI: 10.1523/jneurosci.1204-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Effective rehabilitation in Parkinson's disease (PD) is related to brain reorganization with restoration of cortico-subcortical networks and compensation of frontoparietal networks; however, further neural rehabilitation evidence from a multidimensional perspective is needed. To investigate how multidisciplinary intensive rehabilitation treatment affects neurovascular coupling, 31 PD patients (20 female) before and after treatment and 30 healthy controls (17 female) underwent blood oxygenation level-dependent functional magnetic resonance imaging and arterial spin labeling scans. Cerebral blood flow (CBF) was used to measure perfusion, and fractional amplitude of low-frequency fluctuation (fALFF) was used to measure neural activity. The global CBF-fALFF correlation and regional CBF/fALFF ratio were calculated as neurovascular coupling. Dynamic causal modeling (DCM) was used to evaluate treatment-related alterations in the strength and directionality of information flow. Treatment reduced CBF-fALFF correlations. The altered CBF/fALFF exhibited increases in the left angular gyrus and the right inferior parietal gyrus and decreases in the bilateral thalamus and the right superior frontal gyrus. The CBF/fALFF alteration in right superior frontal gyrus showed correlations with motor improvement. Further, DCM indicated increases in connectivity from the superior frontal gyrus and decreases from the thalamus to the inferior parietal gyrus. The benefits of rehabilitation were reflected in the dual mechanism, with restoration of executive control occurring in the initial phase of motor learning and compensation of information integration occurring in the latter phase. These findings may yield multimodal insights into the role of rehabilitation in disease modification and identify the dorsolateral superior frontal gyrus as a potential target for noninvasive neuromodulation in PD.SIGNIFICANCE STATEMENT Although rehabilitation has been proposed as a promising supplemental treatment for PD as it results in brain reorganization, restoring cortico-subcortical networks and eliciting compensatory activation of frontoparietal networks, further multimodal evidence of the neural mechanisms underlying rehabilitation is needed. We measured the ratio of perfusion and neural activity derived from arterial spin labeling and blood oxygenation level-dependent fMRI data and found that benefits of rehabilitation seem to be related to the dual mechanism, restoring executive control in the initial phase of motor learning and compensating for information integration in the latter phase. We also identified the dorsolateral superior frontal gyrus as a potential target for noninvasive neuromodulation in PD patients.
Collapse
Affiliation(s)
- Ting Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhixin Piao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Keke Chen
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Xin Yu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qiping Wen
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Chunyu Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Guangying Pei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Pei G, Liu X, Huang Q, Shi Z, Wang L, Suo D, Funahashi S, Wu J, Zhang J, Fang B. Characterizing cortical responses to short-term multidisciplinary intensive rehabilitation treatment in patients with Parkinson’s disease: A transcranial magnetic stimulation and electroencephalography study. Front Aging Neurosci 2022; 14:1045073. [PMID: 36408100 PMCID: PMC9669794 DOI: 10.3389/fnagi.2022.1045073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is a powerful non-invasive tool for qualifying the neurophysiological effects of interventions by recording TMS-induced cortical activation with high temporal resolution and generates reproducible and reliable waves of activity without participant cooperation. Cortical dysfunction contributes to the pathogenesis of the clinical symptoms of Parkinson’s disease (PD). Here, we examined changes in cortical activity in patients with PD following multidisciplinary intensive rehabilitation treatment (MIRT). Forty-eight patients with PD received 2 weeks of MIRT. The cortical response was examined following single-pulse TMS over the primary motor cortex by 64-channel EEG, and clinical symptoms were assessed before and after MIRT. TMS-evoked potentials were quantified by the global mean field power, as well as oscillatory power in theta, alpha, beta, and gamma bands, and their clinical correlations were calculated. After MIRT, motor and non-motor symptoms improved in 22 responders, and only non-motor function was enhanced in 26 non-responders. Primary motor cortex stimulation reduced global mean field power amplitudes in responders but not significantly in non-responders. Oscillations exhibited attenuated power in the theta, beta, and gamma bands in responders but only reduced gamma power in non-responders. Associations were observed between beta oscillations and motor function and between gamma oscillations and non-motor symptoms. Our results suggest that motor function enhancement by MIRT may be due to beta oscillatory power modulation and that alterations in cortical plasticity in the primary motor cortex contribute to PD recovery.
Collapse
Affiliation(s)
- Guangying Pei
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinting Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Qiwei Huang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhongyan Shi
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Jian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Jian Zhang,
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- *Correspondence: Boyan Fang,
| |
Collapse
|
9
|
Scherbaum R, Moewius A, Oppermann J, Geritz J, Hansen C, Gold R, Maetzler W, Tönges L. Parkinson's disease multimodal complex treatment improves gait performance: an exploratory wearable digital device-supported study. J Neurol 2022; 269:6067-6085. [PMID: 35864214 PMCID: PMC9553759 DOI: 10.1007/s00415-022-11257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Wearable device-based parameters (DBP) objectively describe gait and balance impairment in Parkinson's disease (PD). We sought to investigate correlations between DBP of gait and balance and clinical scores, their respective changes throughout the inpatient multidisciplinary Parkinson's Disease Multimodal Complex Treatment (PD-MCT), and correlations between their changes. METHODS This exploratory observational study assessed 10 DBP and clinical scores at the start (T1) and end (T2) of a two-week PD-MCT of 25 PD in patients (mean age: 66.9 years, median HY stage: 2.5). Subjects performed four straight walking tasks under single- and dual-task conditions, and four balance tasks. RESULTS At T1, reduced gait velocity and larger sway area correlated with motor severity. Shorter strides during motor-motor dual-tasking correlated with motor complications. From T1 to T2, gait velocity improved, especially under dual-task conditions, stride length increased for motor-motor dual-tasking, and clinical scores measuring motor severity, balance, dexterity, executive functions, and motor complications changed favorably. Other gait parameters did not change significantly. Changes in motor complications, motor severity, and fear of falling correlated with changes in stride length, sway area, and measures of gait stability, respectively. CONCLUSION DBP of gait and balance reflect clinical scores, e.g., those of motor severity. PD-MCT significantly improves gait velocity and stride length and favorably affects additional DBP. Motor complications and fear of falling are factors that may influence the response to PD-MCT. A DBP-based assessment on admission to PD inpatient treatment could allow for more individualized therapy that can improve outcomes. TRIAL REGISTRATION NUMBER AND DATE DRKS00020948 number, 30-Mar-2020, retrospectively registered.
Collapse
Affiliation(s)
- Raphael Scherbaum
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Andreas Moewius
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Judith Oppermann
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Johanna Geritz
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Clint Hansen
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, 44791, Bochum, Germany
- Neurodegeneration Research, Protein Research Unit Ruhr (PURE), Ruhr University Bochum, 44801, Bochum, Germany
| | - Walter Maetzler
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, 44791, Bochum, Germany.
- Neurodegeneration Research, Protein Research Unit Ruhr (PURE), Ruhr University Bochum, 44801, Bochum, Germany.
| |
Collapse
|
10
|
Wang Y, Liu Y, Jin Z, Liu C, Yu X, Chen K, Meng D, Liu A, Fang B. Association Between Mitochondrial Function and Rehabilitation of Parkinson's Disease: Revealed by Exosomal mRNA and lncRNA Expression Profiles. Front Aging Neurosci 2022; 14:909622. [PMID: 35783124 PMCID: PMC9244703 DOI: 10.3389/fnagi.2022.909622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Rehabilitation has been proposed as a valid measure complementary to the management of Parkinson's disease (PD). However, the mechanism underlying is not clear yet. The differential expressions of exosomal messenger RNA (mRNA) and long noncoding RNAs (lncRNAs) may play a critical role in PD progression and rehabilitation. To compare the differential expressions of exosomal mRNAs and lncRNAs, patients with PD (PWPs, Hoehn and Yahr stages 1.5-2.5, n = 6) and age- and sex-matched healthy controls (HCs, n = 6) were included in this study. All PWPs received a 2-week rehabilitation treatment in the hospital, which seemingly led to improvement in both the motor and non-motor functions. A set of differentially expressed mRNAs (DEmRNAs) and differentially expressed lncRNAs (DElncRNAs) extracted from exosomes in blood samples via next-generation sequencing (NGS) was screened out. Compared to HCs, 2,337 vs. 701 mRNAs and 1,278 vs. 445 lncRNAs were significantly upregulated and significantly downregulated, respectively, in pre-rehabilitation (pre-rehab) PWPs; 2,490 vs. 629 mRNAs and 1,561 vs. 370 lncRNAs were significantly upregulated and significantly downregulated, respectively, in post-rehabilitation (post-rehab) PWPs. Compared to pre-rehab PWPs, 606 vs. 1,056 mRNAs and 593 vs. 1,136 lncRNAs were significantly upregulated and significantly downregulated, respectively, in post-rehab PWPs. Overall, 14 differentially expressed mRNAs (DEmRNAs) and 73 differentially expressed lncRNAs (DElncRNAs) were expressed in the blood exosomes of HCs, pre- and post-rehab PWPs, simultaneously. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses identified 243 significantly co-expressed lncRNA-mRNA pairs. One DEmRNA of interest (ENSG00000099795, NDUFB7) and three corresponding DElncRNAs (ENST00000564683, ENST00000570408, and ENST00000628340) were positively related. Quantitative real-time polymerase chain reaction (qRT-PCR) validated that the expression levels of NDUFB7 mRNA and the 3 DElncRNAs increased significantly in pre-rehab PWPs, but decreased significantly in post-rehab PWPs compared to HCs. NDUFB7 mRNA is a marker related to mitochondrial respiration. It is reasonably believed that mitochondrial function is associated with PD rehabilitation, and the mitochondrial pathway may involve in the pathogenesis of PD.
Collapse
Affiliation(s)
- Yixuan Wang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yonghong Liu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Jin
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Cui Liu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xin Yu
- Beijing Rehabilitation Medical College, Capital Medical University, Beijing, China
| | - Keke Chen
- Beijing Rehabilitation Medical College, Capital Medical University, Beijing, China
| | - Detao Meng
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Aixian Liu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- *Correspondence: Aixian Liu
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Boyan Fang ; orcid.org/0000-0002-9935-433X
| |
Collapse
|
11
|
Meng D, Jin Z, Chen K, Yu X, Wang Y, Du W, Wei J, Xi J, Fang B. Quality of life predicts rehabilitation prognosis in Parkinson's disease patients: Factors influence rehabilitation prognosis: Factors influence rehabilitation prognosis. Brain Behav 2022; 12:e2579. [PMID: 35429406 PMCID: PMC9120870 DOI: 10.1002/brb3.2579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/14/2022] [Accepted: 03/20/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Rehabilitation has been reported to improve the quality of life (QoL) of patients with Parkinson's disease (PD). Nevertheless, not all patients are satisfied with rehabilitation outcomes and could achieve a significant improvement in QoL. OBJECTIVE To detect possible predictors of QoL improvement in patients with PD after rehabilitation. METHODS A total of 86 PD patients were included and followed up for 3 months with a 39-item Parkinson's Disease Questionnaire summary index (PDQ-39 SI) as the primary endpoint. All patients received 2 weeks of multidisciplinary intensive rehabilitation treatment (MIRT). Changes in patients' QoL were assessed using the PDQ-39 at baseline and at the 3-month follow-up. The reliable change index (RCI) was adapted to determine the individual QoL outcome. The predictors of QoL outcome were detected using logistic regression analysis. RESULTS After a 3-month follow-up, PDQ-39 SI decreased significantly from 22.95 ± 9.75 to 18.73 ± 10.32 (P < 0.001). Scores for QoL improved (RCI>10.9) after rehabilitation for 18.6% of the patients, and 74.4% of patients reported an unchanged QoL (-10.9≤RCI≤10.9), while 7.0% of patients reported a worsening of QoL (RCI<-10.9). Among the baseline parameters, the PDQ-39 SI was a baseline predictor for changes in QoL in the logistic regression model (OR: 1.15, CI: 1.07-1.24, P < 0.001). CONCLUSIONS MIRT could improve QoL for some patients with PD, and PDQ-39 score at baseline is the most important predictor for QoL improvements after rehabilitation for this patients.
Collapse
Affiliation(s)
- Detao Meng
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Jin
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Keke Chen
- Beijing Rehabilitation Medical College, Capital Medical University, Beijing, China
| | - Xin Yu
- Beijing Rehabilitation Medical College, Capital Medical University, Beijing, China
| | - Yixuan Wang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Wenjun Du
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jingran Wei
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jianing Xi
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| |
Collapse
|