1
|
Yu F, Zhou F, Hao Q, Cao W, Xie L, Xu X, Zhen P, Song S, Liu Z, Song S, Li S, Zhong M, Li R, Tan Y, Zhang Q, Wei Q, Tong J. Knowledge, attitude, and practice of inpatients with cardiovascular disease regarding obstructive sleep apnea. Sci Rep 2024; 14:25905. [PMID: 39472645 PMCID: PMC11522412 DOI: 10.1038/s41598-024-77546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
There is a significant interrelationship between cardiovascular disease and obstructive sleep apnea (OSA), as they share common risk factors and comorbidities. This study aimed to investigate the knowledge, attitude, and practice (KAP) of inpatients with cardiovascular disease towards OSA. This cross-sectional study was conducted between January, 2022 and January, 2023 at Zhongda Hospital Affiliated to Southeast University among inpatients with cardiovascular disease using a self-administered questionnaire. A self-designed questionnaire was used to assess KAP, and the STOP-Bang questionnaire was applied to evaluate participants' OSA risk. Spearman correlation and path analyses were conducted to explore relationships among KAP scores and high OSA risk. Subgroup analyses were conducted within the high-risk population identified by the STOP-Bang questionnaire. In a study analyzing 591 questionnaires, 66.33% were males. Mean scores were 6.81 ± 4.903 for knowledge, 26.84 ± 4.273 for attitude, and 14.46 ± 2.445 for practice. Path analysis revealed high risk of OSA positively impacting knowledge (β = 2.351, P < 0.001) and practice (β = 0.598, P < 0.001) towards OSA. Knowledge directly affected attitude (β = 0.544) and practice (β = 0.139), while attitude influenced practice (β = 0.266). Among high OSA risk individuals, knowledge directly impacted attitude (β = 0.645) and practice (β = 0.133). Knowledge indirectly influenced practice via attitude (β = 0.197). Additionally, attitude directly affected practice (β = 0.305). These findings provide insights into the interplay between OSA risk, knowledge, attitude, and practice. Inpatients with cardiovascular disease demonstrated inadequate knowledge, moderate attitude, and practice towards OSA. The findings highlighting the need for targeted educational interventions to improve awareness and management of OSA.
Collapse
Affiliation(s)
- Fuchao Yu
- Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
- Southeast University, Nanjing, 210009, China
| | - Fangping Zhou
- Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
| | - Qing Hao
- Southeast University, Nanjing, 210009, China
| | - Wu Cao
- Southeast University, Nanjing, 210009, China
| | - Liang Xie
- Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
| | - Xuan Xu
- Southeast University, Nanjing, 210009, China
| | | | | | - Zhuyuan Liu
- Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
| | - Sifan Song
- Southeast University, Nanjing, 210009, China
| | - Shengnan Li
- Southeast University, Nanjing, 210009, China
| | - Min Zhong
- Southeast University, Nanjing, 210009, China
| | - Runqian Li
- Southeast University, Nanjing, 210009, China
| | - Yanyi Tan
- Southeast University, Nanjing, 210009, China
| | - Qiang Zhang
- Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
| | - Qin Wei
- Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
| | - Jiayi Tong
- Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Weng L, Luo Y, Luo X, Yao K, Zhang Q, Tan J, Yin Y. The common link between sleep apnea syndrome and osteoarthritis: a literature review. Front Med (Lausanne) 2024; 11:1401309. [PMID: 39234045 PMCID: PMC11371730 DOI: 10.3389/fmed.2024.1401309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Patients with Osteoarthritis (OA) often also suffer from Sleep Apnea Syndrome (SAS), and many scholars have started to notice this link, although the relationship between the two is still unclear. In this review, we aim to summarize the current literature on these two diseases, integrate evidence of the OA and OSA connection, explore and discuss their potential common mechanisms, and thus identify effective treatment methods for patients with both OA and SAS. Some shared characteristics of the two conditions have been identified, notably aging and obesity as mutual risk factors. Both diseases are associated with various biological processes or molecular pathways, including mitochondrial dysfunction, reactive oxygen species production, the NF-kB pathway, HIF, IL-6, and IL-8. SAS serves as a risk factor for OA, and conversely, OA may influence the progression of SAS. The effects of OA on SAS are underreported in the literature and require more investigation. To effectively manage these patients, timely intervention for SAS is necessary while treating OA, with weight reduction being a primary requirement, alongside combined treatments such as Continuous positive airway pressure (CPAP) and medications. Additionally, numerous studies in drug development are now aimed at inhibiting or clearing certain molecular pathways, including ROS, NF-KB, IL-6, and IL-8. Improving mitochondrial function might represent a viable new strategy, with further research into mitochondrial updates or transplants being essential.
Collapse
Affiliation(s)
- Lian Weng
- Luzhou Longmatan District People's Hospital, Luzhou, China
| | - Yuxi Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiongjunjie Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Kaitao Yao
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qian Zhang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Junjie Tan
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yiran Yin
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Li J, Zhang M, Ye B, Lu M, Liao G. Association between estimation of pulse wave velocity and all-cause mortality in critically ill patients with non-traumatic subarachnoid hemorrhage: an analysis based on the MIMIC-IV database. Front Neurol 2024; 15:1451116. [PMID: 39148699 PMCID: PMC11324544 DOI: 10.3389/fneur.2024.1451116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Background Estimated pulse wave velocity (ePWV), which measures vascular aging, is an independent predictor of cardiovascular death. Nevertheless, the relationship between ePWV and all-cause mortality among patients suffering from non-traumatic subarachnoid hemorrhages (NSAH) remains obscure. Consequently, the objective of this study is to ascertain whether ePWV exerts influence on the prognosis of individuals afflicted with NSAH. Methods Through the Medical Information Mart for Intensive Care IV (MIMIC-IV) database, 644 eligible participants were included. The Kaplan-Meier survival curve method was employed to assess the disparity in survival status between the low and high ePWV cohorts. The Cox proportional hazard model was employed to investigate the association between ePWV and inpatient mortality among critically ill patients diagnosed with NSAH. The Restricted Cubic Spline (RCS) model was employed to examine the dose-response correlation. Subsequently, multivariate Cox regression analysis was performed to identify independent prognostic factors. Lastly, the impact of ePWV on inpatient mortality across various subgroups was evaluated through stratified analysis. Results Participants were categorized into two groups, delineated by their ePWV levels: a low ePWV level group and a high ePWV level group. Survival analysis unveiled that individuals with high ePWV exhibited a diminished survival rate compared to their counterparts with low ePWV. Following adjustment, low ePWV was significantly linked with a reduced risk of inpatient mortality among patients with NSAH (HR = 0.54, 95% CI = 0.32-0.89, p = 0.016). Simultaneously, analysis employing the RCS model further substantiated a linear escalation in the risk of inpatient mortality with increasing ePWV values. Conclusion Elevated ePWV levels have been identified as an independent risk factor for the rise in inpatient mortality among NSAH patients and as a significant predictor of the clinical outcome of NSAH.
Collapse
Affiliation(s)
- Jianquan Li
- Department of Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Meimei Zhang
- Department of Neonatology, Shanghai Children's Medical Center Guizhou Hospital, Guiyang, Guizhou, China
| | - Baning Ye
- Department of Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Mingjie Lu
- Department of Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Gang Liao
- Department of Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
4
|
Wang S, Tan J, Zhang Q. Cytosolic Escape of Mitochondrial DNA Triggers cGAS-STING Pathway-Dependent Neuronal PANoptosis in Response to Intermittent Hypoxia. Neurochem Res 2024; 49:2228-2248. [PMID: 38833090 DOI: 10.1007/s11064-024-04151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
Intermittent hypoxia (IH) is the predominant pathophysiological disturbance in obstructive sleep apnea (OSA), characterized by neuronal cell death and neurocognitive impairment. We focus on the accumulated mitochondrial DNA (mtDNA) in the cytosol, which acts as a damage-associated molecular pattern (DAMP) and activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, a known trigger for immune responses and neuronal death in degenerative diseases. However, the specific role and mechanism of the mtDNA-cGAS-STING axis in IH-induced neural damage remain largely unexplored. Here, we investigated the involvement of PANoptosis, a novel type of programmed cell death linked to cytosolic mtDNA accumulation and the cGAS-STING pathway activation, in neuronal cell death induced by IH. Our study found that PANoptosis occurred in primary cultures of hippocampal neurons and HT22 cell lines exposed to IH. In addition, we discovered that during IH, mtDNA released into the cytoplasm via the mitochondrial permeability transition pore (mPTP) activates the cGAS-STING pathway, exacerbating PANoptosis-associated neuronal death. Pharmacologically inhibiting mPTP opening or depleting mtDNA significantly reduced cGAS-STING pathway activation and PANoptosis in HT22 cells under IH. Moreover, our findings indicated that the cGAS-STING pathway primarily promotes PANoptosis by modulating endoplasmic reticulum (ER) stress. Inhibiting or silencing the cGAS-STING pathway substantially reduced ER stress-mediated neuronal death and PANoptosis, while lentivirus-mediated STING overexpression exacerbated these effects. In summary, our study elucidates that cytosolic escape of mtDNA triggers cGAS-STING pathway-dependent neuronal PANoptosis in response to IH, mainly through regulating ER stress. The discovery of the novel mechanism provides theoretical support for the prevention and treatment of neuronal damage and cognitive impairment in patients with OSA.
Collapse
Affiliation(s)
- Shuying Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China.
| |
Collapse
|
5
|
Mao Z, Zheng P, Zhu X, Wang L, Zhang F, Liu H, Li H, Zhou L, Liu W. Obstructive sleep apnea hypopnea syndrome and vascular lesions: An update on what we currently know. Sleep Med 2024; 119:296-311. [PMID: 38723575 DOI: 10.1016/j.sleep.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is the most prevalent sleep and respiratory disorder. This syndrome can induce severe cardiovascular and cerebrovascular complications, and intermittent hypoxia is a pivotal contributor to this damage. Vascular pathology is closely associated with the impairment of target organs, marking a focal point in current research. Vascular lesions are the fundamental pathophysiological basis of multiorgan ailments and indicate a shared pathogenic mechanism among common cardiovascular and cerebrovascular conditions, suggesting their importance as a public health concern. Increasing evidence shows a strong correlation between OSAHS and vascular lesions. Previous studies predominantly focused on the pathophysiological alterations in OSAHS itself, such as intermittent hypoxia and fragmented sleep, leading to vascular disruptions. This review aims to delve deeper into the vascular lesions affected by OSAHS by examining the microscopic pathophysiological mechanisms involved. Emphasis has been placed on examining how OSAHS induces vascular lesions through disruptions in the endothelial barrier, metabolic dysregulation, cellular phenotype alterations, neuroendocrine irregularities, programmed cell death, vascular inflammation, oxidative stress and epigenetic modifications. This review examines the epidemiology and associated risk factors for OSAHS and vascular diseases and subsequently describes the existing evidence on vascular lesions induced by OSAHS in the cardiovascular, cerebrovascular, retinal, renal and reproductive systems. A detailed account of the current research on the pathophysiological mechanisms mediating vascular lesions caused by OSAHS is provided, culminating in a discussion of research advancements in therapeutic modalities to mitigate OSAHS-related vascular lesions and the implications of these treatment strategies.
Collapse
Affiliation(s)
- Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Zhu
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengqin Zhang
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai Li
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
6
|
Wei J, Zheng W, Teng C, An X, Li L, Zhong P, Peng C, Zhuge S, Akoto Ampadu J, Yu C, Cai X. Exogenous NADPH could mitigate pyroptosis-induced brain injury in fetal mice exposed to gestational intermittent hypoxia. Int Immunopharmacol 2024; 135:112311. [PMID: 38781607 DOI: 10.1016/j.intimp.2024.112311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Obstructive Sleep Apnea (OSA) during pregnancy is characterized by intermittent hypoxia (IH) during sleep and will lead to the rise of oxidative stress in the fetal body. Pyroptosis, a type of inflammatory and programmable cell death mediated by Gasdermin D (GSDMD), plays a substantial role in oxygen deprivation's contribution to neural system damage. Existing research shows that Nicotinamide Adenine Dinucleotide Phosphate (NADPH) plays a protective role in alleviating brain tissue pyroptosis. We speculate that exogenous NADPH may play a protective role in OSA during pregnancy. METHODS A model of GIH group was established to simulate the pathophysiological mechanisms of OSA during pregnant and AIR group was established by giving the same frequency. Sham group was established by injecting NS and the NADPH group was established and given exogenous NADPH. We utilized the Morris Water Maze to assess cognitive function impairment, Luxol Fast Blue (LBF) staining to confirm myelin sheath formation, TUNEL staining to examine cell death in fetal mice brain tissue, and Western blotting to detect pertinent protein expressions. RESULTS The GIH group offspring exhibited decreases in spatial learning and memory abilities, reduced numbers of oligodendrocytes and formed myelin, as well as increased expression of pyroptosis-related proteins. The NADPH group offspring showed restoration in spatial learning and memory abilities increased counts of oligodendrocytes and formed myelin sheaths, in addition to decreased expression of pyroptosis-related. CONCLUSIONS This study demonstrates that early injection of exogenous NADPH can alleviate the damage to fetal brain development caused by gestational intermittent hypoxia (GIH).
Collapse
Affiliation(s)
- Jiayun Wei
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Weikun Zheng
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Chenjiong Teng
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xueqian An
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Lingling Li
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Peipei Zhong
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Chenlei Peng
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Shurui Zhuge
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Janet Akoto Ampadu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Chenyi Yu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| | - Xiaohong Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
7
|
He Y, Dong N, Wang X, Lv RJ, Yu Q, Yue HM. Obstructive sleep apnea affects cognition: dual effects of intermittent hypoxia on neurons. Sleep Breath 2024; 28:1051-1065. [PMID: 38308748 DOI: 10.1007/s11325-024-03001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Obstructive sleep apnea (OSA) is a common respiratory disorder. Multiple organs, especially the central nervous system (CNS), are damaged, and dysfunctional when intermittent hypoxia (IH) occurs during sleep for a long time. The quality of life of individuals with OSA is significantly impacted by cognitive decline, which also escalates the financial strain on their families. Consequently, the development of novel therapies becomes imperative. IH induces oxidative stress, endoplasmic reticulum stress, iron deposition, and neuroinflammation in neurons. Synaptic dysfunction, reactive gliosis, apoptosis, neuroinflammation, and inhibition of neurogenesis can lead to learning and long-term memory impairment. In addition to nerve injury, the role of IH in neuroprotection was also explored. While causing neuron damage, IH activates the neuronal self-repairing mechanism by regulating antioxidant capacity and preventing toxic protein deposition. By stimulating the proliferation and differentiation of neural stem cells (NSCs), IH has the potential to enhance the ratio of neonatal neurons and counteract the decline in neuron numbers. This review emphasizes the perspectives and opportunities for the neuroprotective effects of IH and informs novel insights and therapeutic strategies in OSA.
Collapse
Affiliation(s)
- Yao He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Na Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ren-Jun Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Qin Yu
- Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hong-Mei Yue
- Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
8
|
Ding M, Jin L, Wei B, Cheng W, Liu W, Li X, Duan C. Tumor necrosis factor-stimulated gene-6 ameliorates early brain injury after subarachnoid hemorrhage by suppressing NLRC4 inflammasome-mediated astrocyte pyroptosis. Neural Regen Res 2024; 19:1064-1071. [PMID: 37862209 PMCID: PMC10749632 DOI: 10.4103/1673-5374.385311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 10/22/2023] Open
Abstract
Subarachnoid hemorrhage is associated with high morbidity and mortality and lacks effective treatment. Pyroptosis is a crucial mechanism underlying early brain injury after subarachnoid hemorrhage. Previous studies have confirmed that tumor necrosis factor-stimulated gene-6 (TSG-6) can exert a neuroprotective effect by suppressing oxidative stress and apoptosis. However, no study to date has explored whether TSG-6 can alleviate pyroptosis in early brain injury after subarachnoid hemorrhage. In this study, a C57BL/6J mouse model of subarachnoid hemorrhage was established using the endovascular perforation method. Our results indicated that TSG-6 expression was predominantly detected in astrocytes, along with NLRC4 and gasdermin-D (GSDMD). The expression of NLRC4, GSDMD and its N-terminal domain (GSDMD-N), and cleaved caspase-1 was significantly enhanced after subarachnoid hemorrhage and accompanied by brain edema and neurological impairment. To explore how TSG-6 affects pyroptosis during early brain injury after subarachnoid hemorrhage, recombinant human TSG-6 or a siRNA targeting TSG-6 was injected into the cerebral ventricles. Exogenous TSG-6 administration downregulated the expression of NLRC4 and pyroptosis-associated proteins and alleviated brain edema and neurological deficits. Moreover, TSG-6 knockdown further increased the expression of NLRC4, which was accompanied by more severe astrocyte pyroptosis. In summary, our study revealed that TSG-6 provides neuroprotection against early brain injury after subarachnoid hemorrhage by suppressing NLRC4 inflammasome activation-induced astrocyte pyroptosis.
Collapse
Affiliation(s)
- Mingxiang Ding
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Cerebrovascular Intervention, Zhongshan City People’s Hospital, Zhongshan, Guangdong Province, China
| | - Lei Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Boyang Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wenping Cheng
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Zhang J, Zhu Q, Wang J, Peng Z, Zhuang Z, Hang C, Li W. Mitochondrial dysfunction and quality control lie at the heart of subarachnoid hemorrhage. Neural Regen Res 2024; 19:825-832. [PMID: 37843218 PMCID: PMC10664111 DOI: 10.4103/1673-5374.381493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 10/17/2023] Open
Abstract
The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow. Mitochondria are directly affected by direct factors such as ischemia, hypoxia, excitotoxicity, and toxicity of free hemoglobin and its degradation products, which trigger mitochondrial dysfunction. Dysfunctional mitochondria release large amounts of reactive oxygen species, inflammatory mediators, and apoptotic proteins that activate apoptotic pathways, further damaging cells. In response to this array of damage, cells have adopted multiple mitochondrial quality control mechanisms through evolution, including mitochondrial protein quality control, mitochondrial dynamics, mitophagy, mitochondrial biogenesis, and intercellular mitochondrial transfer, to maintain mitochondrial homeostasis under pathological conditions. Specific interventions targeting mitochondrial quality control mechanisms have emerged as promising therapeutic strategies for subarachnoid hemorrhage. This review provides an overview of recent research advances in mitochondrial pathophysiological processes after subarachnoid hemorrhage, particularly mitochondrial quality control mechanisms. It also presents potential therapeutic strategies to target mitochondrial quality control in subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jiatong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qi Zhu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chunhua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
10
|
Que Y, Meng H, Ding Y, Fan J, Du Y, Xu G. Investigation of the shared gene signatures and molecular mechanisms between obstructive sleep apnea syndrome and asthma. Gene 2024; 896:148029. [PMID: 38007161 DOI: 10.1016/j.gene.2023.148029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Obstructive sleep apnea syndrome (OSAS) is highly related with asthma from the epidemiology to pathogenesis, while the underlying mechanism is still unclear. Herein, we aimed to reveal the shared gene signatures and molecular mechanisms underlying the coexistence of OSAS and asthma and verified relating pathway in mouse models. We downloaded GSE75097 of OSAS and GSE165934 of asthma from GEO database and performed differential expression analysis and functional enrichment analysis to screen differentially expressed genes (DEGs) and potential pathogenic pathway. PPI network was constructed with the STRING database. Hub genes were identified with cytoHubba and immune infiltration analysis was performed with cibersort for further verification. Potential drugs were screened with Comparative Toxicogenomics Database and miRNA-gene network was constructed. Besides, to test the pulmonary function and inflammatory cytokine, mouse models with OSAS and asthma were constructed, followed by validating the involvement of NOD1/NOD2-RIPK2-NF-κB-MCPIP-1 pathway in associated diseases. RESULTS In total, 104 DEGs were identified, in which PLAUR, RIPK2, PELI1, ZC3H12A, and TNFAIP8 are the hub genes, while NOD-like receptor signaling pathway and apoptosis signaling pathway were the potential influential pathways. Increased γδT cells and neutrophils were detected in asthma patients through immune infiltration analysis. Significant difference was detected among genders in OSAS, and acetaminophen is a potential drug in the comorbidity by screening the drugs in the Comparative Toxicogenomics Database. Mice with OSAS and asthma presented with worse pulmonary function and higher levels of inflammatory cytokines. The relative proteins, including NOD1, NOD2, RIPK2, NF-κB, and MCPIP-1, were up-regulated in mice with the OSAS and asthma. CONCLUSIONS This research firstly elucidates NOD1/NOD2-RIPK2-NF-κB-MCPIP-1 pathway as the shared pathway in the development of OSAS and asthma through bioinformatics and experimental methods. There is an interactive deterioration model between OSAS and asthma. This study may provide some potential biomarkers in the future research of the underlying pathogenesis and treatment of comorbidity of OSAS and asthma.
Collapse
Affiliation(s)
- Yifan Que
- Health Management Institute, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hao Meng
- Health Management Institute, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yongkai Ding
- Department of Disease Prevention and Control, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jiao Fan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yingzhen Du
- Department of Disease Prevention and Control, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Guogang Xu
- Health Management Institute, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
11
|
Zhu Y, Li X, Wen D, Huang Z, Yan J, Zhang Z, Wang Y, Guo Z. Remote Ischemic Post-conditioning Reduces Cognitive Impairment in Rats Following Subarachnoid Hemorrhage: Possible Involvement in STAT3/STAT5 Phosphorylation and Th17/Treg Cell Homeostasis. Transl Stroke Res 2024:10.1007/s12975-024-01235-y. [PMID: 38356020 DOI: 10.1007/s12975-024-01235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The inflammatory response following subarachnoid hemorrhage (SAH) may lead to Early Brain Injury and subsequently contribute to poor prognosis such as cognitive impairment in patients. Currently, there is a lack of effective strategies for SAH to ameliorate inflammation and improve cognitive impairment in clinical. This study aims to examine the inhibitory impact of remote ischemic post-conditioning (RIPostC) on the body's inflammatory response by regulating Th17/Treg cell homeostasis after SAH. The ultimate goal is to search for potential early treatment targets for SAH. The rat SAH models were made by intravascular puncture of the internal carotid artery. The intervention of RIPostC was administered for three consecutive days immediately after successful modeling. Behavioral experiments including the Morris water maze and Y-maze tests were conducted to assess cognitive functions such as spatial memory, working memory, and learning abilities 2 weeks after successful modeling. The ratio of Th17 cells and Treg cells in the blood was detected using flow cytometry. Immunofluorescence was used to observe the infiltration of neutrophils into the brain. Signal transducers and activators of transcription 5 (STAT5) and signal transducers and activators of transcription 3 (STAT3) phosphorylation levels, receptor-related orphan receptor gamma-t (RORγt), and forkhead box protein P3 (Foxp3) levels were detected by Western blot. The levels of anti-inflammatory factors (IL-2, IL-10, IL-5, etc.) and pro-inflammatory factors (IL-6, IL-17, IL-18, TNF-α, IL-14, etc.) in blood were detected using Luminex Liquid Suspension Chip Assay. RIPostC significantly improved the cognitive impairment caused by SAH in rats. The results showed that infiltration of Th17 cells and neutrophils into brain tissue increased after SAH, leading to the release of pro-inflammatory factors (IL-6, IL-17, IL-18, and TNF-α). This response can be inhibited by RIPostC. Additionally, RIPostC facilitates the transfer of Treg from blood to the brain and triggers the release of anti-inflammatory (IL-2, IL-10, and IL-5) factors to suppress the inflammation following SAH. Finally, it was found that RIPostC increased the phosphorylation of STAT5 while decreasing the phosphorylation of STAT3. RIPostC reduces inflammation after SAH by partially balancing Th17/Treg cell homeostasis, which may be related to downregulation of STAT3 and upregulation of STAT5 phosphorylation, which ultimately alleviates cognitive impairment in rats. Targeting Th17/Treg cell homeostasis may be a promising strategy for early SAH treatment.
Collapse
Affiliation(s)
- Yajun Zhu
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Xiaoguo Li
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - DaoChen Wen
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zichao Huang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Jin Yan
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zhaosi Zhang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Yingwen Wang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zongduo Guo
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
12
|
Yuan Z, Zhou X, Zou Y, Zhang B, Jian Y, Wu Q, Chen S, Zhang X. Hypoxia Aggravates Neuron Ferroptosis in Early Brain Injury Following Subarachnoid Hemorrhage via NCOA4-Meditated Ferritinophagy. Antioxidants (Basel) 2023; 12:2097. [PMID: 38136217 PMCID: PMC10740655 DOI: 10.3390/antiox12122097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The occurrence of early brain injury (EBI) significantly contributes to the unfavorable prognosis observed in patients with subarachnoid hemorrhage (SAH). During the process of EBI, a substantial quantity of iron permeates into the subarachnoid space and brain tissue, thereby raising concerns regarding its metabolism. To investigate the role and metabolic processes of excessive iron in neurons, we established both in vivo and in vitro models of SAH. We substantiated that ferritinophagy participates in iron metabolism disorders and promotes neuronal ferroptosis using an in vivo model, as detected by key proteins such as ferritin heavy chain 1, glutathione peroxidase 4, autophagy related 5, nuclear receptor coactivator 4 (NCOA4), LC3B, and electron microscopy results. By interfering with NCOA4 expression in vitro and in vivo, we confirmed the pivotal role of elevated NCOA4 levels in ferritinophagy during EBI. Additionally, our in vitro experiments demonstrated that the addition of oxyhemoglobin alone did not result in a significant upregulation of NCOA4 expression. However, simultaneous addition of oxyhemoglobin and hypoxia exposure provoked a marked increase in NCOA4 expression and heightened ferritinophagy in HT22 cells. Using YC-1 to inhibit hypoxia signaling in in vitro and in vitro models effectively attenuated neuronal ferroptosis. Collectively, we found that the hypoxic microenvironment during the process of EBI exaggerates iron metabolism abnormalities, leading to poor prognoses in SAH. The findings also offer a novel and potentially effective foundation for the treatment of SAH, with the aim of alleviating hypoxia.
Collapse
Affiliation(s)
- Zixuan Yuan
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (Z.Y.); (X.Z.); (Y.Z.); (B.Z.); (Y.J.); (Q.W.); (S.C.)
| | - Xiaoming Zhou
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (Z.Y.); (X.Z.); (Y.Z.); (B.Z.); (Y.J.); (Q.W.); (S.C.)
| | - Yan Zou
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (Z.Y.); (X.Z.); (Y.Z.); (B.Z.); (Y.J.); (Q.W.); (S.C.)
| | - Bingtao Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (Z.Y.); (X.Z.); (Y.Z.); (B.Z.); (Y.J.); (Q.W.); (S.C.)
| | - Yao Jian
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (Z.Y.); (X.Z.); (Y.Z.); (B.Z.); (Y.J.); (Q.W.); (S.C.)
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Qi Wu
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (Z.Y.); (X.Z.); (Y.Z.); (B.Z.); (Y.J.); (Q.W.); (S.C.)
| | - Shujuan Chen
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (Z.Y.); (X.Z.); (Y.Z.); (B.Z.); (Y.J.); (Q.W.); (S.C.)
| | - Xin Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (Z.Y.); (X.Z.); (Y.Z.); (B.Z.); (Y.J.); (Q.W.); (S.C.)
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210000, China
| |
Collapse
|
13
|
Rodriguez-Duboc A, Basille-Dugay M, Debonne A, Rivière MA, Vaudry D, Burel D. Apnea of prematurity induces short and long-term development-related transcriptional changes in the murine cerebellum. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100113. [PMID: 38020806 PMCID: PMC10663136 DOI: 10.1016/j.crneur.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Apnea of prematurity (AOP) affects more than 50% of preterm infants and leads to perinatal intermittent hypoxia (IH) which is a major cause of morbimortality worldwide. At birth, the human cerebellar cortex is still immature, making it vulnerable to perinatal events. Additionally, studies have shown a correlation between cerebellar functions and the deficits observed in children who have experienced AOP. Yet, the cerebellar alterations underpinning this link remain poorly understood. To gain insight into the involvement of the cerebellum in perinatal hypoxia-related consequences, we developed a mouse model of AOP. Our previous research has revealed that IH induces oxidative stress in the developing cerebellum, as evidenced by the over-expression of genes involved in reactive oxygen species production and the under-expression of genes encoding antioxidant enzymes. These changes suggest a failure of the defense system against oxidative stress and could be responsible for neuronal death in the cerebellum. Building upon these findings, we conducted a transcriptomic study of the genes involved in the processes that occur during cerebellar development. Using real-time PCR, we analyzed the expression of these genes at different developmental stages and in various cell types. This enabled us to pinpoint a timeframe of vulnerability at P8, which represents the age with the highest number of downregulated genes in the cerebellum. Furthermore, we discovered that our IH protocol affects several molecular pathways, including proliferation, migration, and differentiation. This indicates that IH can impact the development of different cell types, potentially contributing to the histological and behavioral deficits observed in this model. Overall, our data strongly suggest that the cerebellum is highly sensitive to IH, and provide valuable insights into the cellular and molecular mechanisms underlying AOP. In the long term, these findings may contribute to the identification of novel therapeutic targets for improving the clinical management of this prevalent pathology.
Collapse
Affiliation(s)
- A. Rodriguez-Duboc
- Univ Rouen Normandie, Inserm, U1245, Normandie Univ, F-76000, Rouen, France
| | - M. Basille-Dugay
- Univ Rouen Normandie, Inserm, U1239, Normandie Univ, F-76000, Rouen, France
| | - A. Debonne
- Univ Rouen Normandie, Inserm, U1245, Normandie Univ, F-76000, Rouen, France
- Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, Normandie Univ, F-76000, Rouen, France
| | - M.-A. Rivière
- Univ Rouen Normandie, UR 4108, LITIS Lab, INSA Rouen, NormaSTIC, CNRS 3638, Normandie Univ, F-76000, Rouen, France
| | - D. Vaudry
- Univ Rouen Normandie, Inserm, U1245, Normandie Univ, F-76000, Rouen, France
- Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, Normandie Univ, F-76000, Rouen, France
| | - D. Burel
- Univ Rouen Normandie, Inserm, U1245, Normandie Univ, F-76000, Rouen, France
- Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, Normandie Univ, F-76000, Rouen, France
| |
Collapse
|
14
|
Kong D, Hu C, Zhu H. Oxygen desaturation index, lowest arterial oxygen saturation and time spent below 90% oxygen saturation as diagnostic markers for obstructive sleep apnea. Am J Transl Res 2023; 15:3597-3606. [PMID: 37303658 PMCID: PMC10250969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/19/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) syndrome is associated with a high mortality, and blood oxygen indexes play an important role in evaluating this disease. The objective of this study was to explore the value of blood oxygen indexes, including minimum oxygen saturation (LSpO2), oxygen reduction index (ODI) and time spent with oxygen saturation below 90% (TS 90%), as diagnostic markers for OSA syndrome. METHODS In this retrospective study, 320 patients with OSA treated in Ningbo First Hospital from June 2018 to June 2021 were included and divided into mild, moderate, and severe groups according to the severity of the condition (n = 104, 92, and 124, respectively). The blood oxygen indexes as well as the apnea-hypopnea index (AHI) were compared. The Spearman correlation analysis was performed to explore the relationship between the parameters. Receiver operating characteristic curves were generated to evaluate the diagnostic value of the blood oxygen indexes for OSA syndrome. RESULTS There were significant differences in body weight, body mass index, and blood pressure before and after sleep among the groups (P < 0.05). LSpO2 levels followed a pattern with the severe group showing the lowest values, followed by the moderate group, and then the mild group, whereas ODI and TS 90% levels showed the opposite (P < 0.05). Spearman correlation analysis showed that AHI, ODI, TS 90% were positively correlated with severity of OSA, whereas LSpO2 was negatively correlated with severity of OSA. ODI showed a high diagnostic value for OSA (area under curve (AUC) = 0.823, 95% CI: 0.730-0.917). TS 90% showed a high diagnostic value for OSA (AUC = 0.872, 95% CI: 0.794-0.950). LSpO2 showed high accuracy in diagnostic value for OSA (AUC = 0.716, 95% CI: 0.596-0.835). The combination of the 3 indexes demonstrated a high diagnostic value for OSA (AUC = 0.939, 95% CI: 0.890-0.989). The diagnostic value of the combined signature was found to be significantly higher compared to the value of individual indexes (P < 0.05). CONCLUSION The evaluation of the severity of OSA should not rely solely on a single observation index, but rather on a combination of ODI, LSpO2 and TS 90%. This combined diagnostic signature can provide a more comprehensive assessment of the patient's condition and serve as an alternative diagnostic basis to ensure timely diagnosis and appropriate clinical treatment for OSA.
Collapse
Affiliation(s)
- Deqiu Kong
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo First Hospital Ningbo, Zhejiang, China
| | - Cihao Hu
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo First Hospital Ningbo, Zhejiang, China
| | - Hualin Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo First Hospital Ningbo, Zhejiang, China
| |
Collapse
|
15
|
Xu XX, Shi RX, Fu Y, Wang JL, Tong X, Zhang SQ, Wang N, Li MX, Tong Y, Wang W, He M, Liu BY, Chen GL, Guo F. Neuronal nitric oxide synthase/reactive oxygen species pathway is involved in apoptosis and pyroptosis in epilepsy. Neural Regen Res 2022; 18:1277-1285. [PMID: 36453412 PMCID: PMC9838157 DOI: 10.4103/1673-5374.357906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Dysfunction of neuronal nitric oxide synthase contributes to neurotoxicity, which triggers cell death in various neuropathological diseases, including epilepsy. Studies have shown that inhibition of neuronal nitric oxide synthase activity increases the epilepsy threshold, that is, has an anticonvulsant effect. However, the exact role and potential mechanism of neuronal nitric oxide synthase in seizures are still unclear. In this study, we performed RNA sequencing, functional enrichment analysis, and weighted gene coexpression network analysis of the hippocampus of tremor rats, a rat model of genetic epilepsy. We found damaged hippocampal mitochondria and abnormal succinate dehydrogenase level and Na+-K+-ATPase activity. In addition, we used a pilocarpine-induced N2a cell model to mimic epileptic injury. After application of neuronal nitric oxide synthase inhibitor 7-nitroindazole, changes in malondialdehyde, lactate dehydrogenase and superoxide dismutase, which are associated with oxidative stress, were reversed, and the increase in reactive oxygen species level was reversed by 7-nitroindazole or reactive oxygen species inhibitor N-acetylcysteine. Application of 7-nitroindazole or N-acetylcysteine downregulated the expression of caspase-3 and cytochrome c and reversed the apoptosis of epileptic cells. Furthermore, 7-nitroindazole or N-acetylcysteine downregulated the abnormally high expression of NLRP3, gasdermin-D, interleukin-1β and interleukin-18. This indicated that 7-nitroindazole and N-acetylcysteine each reversed epileptic cell death. Taken together, our findings suggest that the neuronal nitric oxide synthase/reactive oxygen species pathway is involved in pyroptosis of epileptic cells, and inhibiting neuronal nitric oxide synthase activity or its induced oxidative stress may play a neuroprotective role in epilepsy.
Collapse
Affiliation(s)
- Xiao-Xue Xu
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China,Department of Neurology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Rui-Xue Shi
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Yu Fu
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Jia-Lu Wang
- Department of Neurology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xin Tong
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Shi-Qi Zhang
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Mei-Xuan Li
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Yu Tong
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Miao He
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Bing-Yang Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China,Correspondence to: Feng Guo, ; Gui-Lan Chen, ; Bing-Yang Liu, .
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan Province, China,Correspondence to: Feng Guo, ; Gui-Lan Chen, ; Bing-Yang Liu, .
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China,Correspondence to: Feng Guo, ; Gui-Lan Chen, ; Bing-Yang Liu, .
| |
Collapse
|
16
|
Li R, Zhao M, Yao D, Zhou X, Lenahan C, Wang L, Ou Y, He Y. The role of the astrocyte in subarachnoid hemorrhage and its therapeutic implications. Front Immunol 2022; 13:1008795. [PMID: 36248855 PMCID: PMC9556431 DOI: 10.3389/fimmu.2022.1008795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is an important public health concern with high morbidity and mortality worldwide. SAH induces cell death, blood−brain barrier (BBB) damage, brain edema and oxidative stress. As the most abundant cell type in the central nervous system, astrocytes play an essential role in brain damage and recovery following SAH. This review describes astrocyte activation and polarization after SAH. Astrocytes mediate BBB disruption, glymphatic–lymphatic system dysfunction, oxidative stress, and cell death after SAH. Furthermore, astrocytes engage in abundant crosstalk with other brain cells, such as endothelial cells, neurons, pericytes, microglia and monocytes, after SAH. In addition, astrocytes also exert protective functions in SAH. Finally, we summarize evidence regarding therapeutic approaches aimed at modulating astrocyte function following SAH, which could provide some new leads for future translational therapy to alleviate damage after SAH.
Collapse
Affiliation(s)
- Rong Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Ling Wang
- Department of Operating room, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yue He,
| |
Collapse
|