1
|
Binabaj MM, Asgharzadeh F, Rahmani F, Al-Asady AM, Hashemzehi M, Soleimani A, Avan A, Mehraban S, Ghorbani E, Ryzhikov M, Khazaei M, Hassanian SM. Vactosertib potently improves anti-tumor properties of 5-FU for colon cancer. Daru 2023; 31:193-203. [PMID: 37740873 PMCID: PMC10624787 DOI: 10.1007/s40199-023-00474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/22/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Several studies have shown that the TGF-β signaling pathway plays a critical role in colorectal cancer (CRC) pathogenesis. The aim of the current study is to investigate the therapeutic potential of Vactosertib (EW-7197), a selective inhibitor of TGF-β receptor type I, either alone or in combination with the standard first-line chemotherapeutic treatment, 5-Fluorouracil (5-FU), in CRC progression in both cellular and animal models. METHODS Real-Time PCR, Zymography, enzyme-linked immunosorbent assay (ELISA), Hematoxylin and Eosin (H&E) tissue staining, and Flow cytometry techniques were applied to determine the anti-tumor properties of this novel TGF-β inhibitor in in vitro (CT-26 cell line) and in vivo (inbred BALB/C mice) samples. RESULTS Our findings showed that Vactosertib decreased cell proliferation and induced spheroid shrinkage. Moreover, this inhibitor suppressed the cell cycle and its administration either alone or in combination with 5-FU induced apoptosis by regulating the expression of p53 and BAX proteins. It also improved 5-FU anti-cancer effects by decreasing the tumor volume and weight, increasing tumor necrosis, and regulating tumor fibrosis and inflammation in an animal model. Vactosertib also enhanced the inhibitory effect of 5-FU on invasive behavior of CRC cells by upregulating the expression of E-cadherin and inhibiting MMP-9 enzymatic activity. CONCLUSION This study demonstrating the potent anti-tumor effects of Vactosertib against CRC progression. Our results clearly suggest that this inhibitor could be a promising agent reducing CRC tumor progression when administered either alone or in combination with standard treatment in CRC patients.
Collapse
Affiliation(s)
- Maryam Moradi Binabaj
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Kashmar School of Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdulridha Mohammed Al-Asady
- Department of Medical Sciences, Faculty of Nursing, University of Warith Al-Anbiyaa, Kerbala, Iraq
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Kerbala, Iraq
| | | | - Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Department of Human Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Mehraban
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Zhou G, Lv X, Zhong X, Ying W, Li W, Feng Y, Xia Q, Li J, Jian S, Leng Z. Suspension culture strategies to enrich colon cancer stem cells. Oncol Lett 2023; 25:116. [PMID: 36844615 PMCID: PMC9950343 DOI: 10.3892/ol.2023.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 11/16/2021] [Indexed: 02/09/2023] Open
Abstract
How to efficiently obtain high-purity cancer stem cells (CSCs) has been the basis of CSC research, but the optimal conditions for serum-free suspension culture of CSCs are still unclear. The present study aimed to define the optimal culture medium composition and culture time for the enrichment of colon CSCs via suspension culture. Suspension cell cultures of colon cancer DLD-1 cells were prepared using serum-free medium (SFM) containing variable concentrations of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) to produce spheroids. Culture times were set at 10, 20 and 30 days. A total of nine different concentrations of EGF and bFGF were added to SFM to generate nine experimental groups. The proportions of CD44+, CD133+, and CD44+CD133+ double-positive spheroid cells were detected via flow cytometry. mRNA expression of stemness-, epithelial-mesenchymal transition- and Wnt/β-catenin pathway-associated genes was determined via reverse transcription-quantitative PCR. Self-renewal ability was evaluated by a sphere-forming assay. Tumorigenesis was studied in vitro using a colony formation assay and in vivo via subcutaneous cell injection in nude mice. It was found that the highest expression proportions of CD133+ and CD44+ spheroid cells were observed in group (G)9 (20 ng/ml EGF + 20 ng/ml bFGF) at 30 days (F=123.554 and 99.528, respectively, P<0.001), CD133+CD44+ cells were also observed in G9 at 30 days (and at 10 days in G3 and 20 days in G6; F=57.897, P<0.001). G9 at 30 days also displayed the highest expression of Krüppel-like factor 4, leucine-rich repeat-containing G protein-coupled receptor 5, CD44, CD133, Vimentin and Wnt-3a (F=22.682, 25.401, 3.272, 7.852, 13.331 and 17.445, respectively, P<0.001) and the lowest expression of E-cadherin (F=10.851, P<0.001). G9 at 30 days produced the highest yield of cell spheroids, as determined by a sphere forming assay (F=19.147, P<0.001); colony formation assays also exhibited the greatest number of colonies derived from G9 spheroids at 30 days (F=60.767, P<0.01), which also generated the largest mean tumor volume in the subcutaneous tumorigenesis xenograft model (F=12.539, P<0.01). In conclusion, 20 ng/ml EGF + 20 ng/ml bFGF effectively enriched colon CSCs when added to suspension culture for 30 days, and conferred the highest efficiency compared with other combinations.
Collapse
Affiliation(s)
- Guojun Zhou
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaojiang Lv
- Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaorong Zhong
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Wei Ying
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Wenbo Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yanchao Feng
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qinghua Xia
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Jianshui Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Shunhai Jian
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Professor Shunhai Jian, Department of Pathology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, Sichuan 637000, P.R. China, E-mail:
| | - Zhengwei Leng
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Correspondence to: Professor Zhengwei Leng, Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, 234, Fujiang Road, Nanchong, Sichuan 637000, P.R. China, E-mail:
| |
Collapse
|
3
|
Liang H, Lin Z, Ye Y, Luo R, Zeng L. ARRB2 promotes colorectal cancer growth through triggering WTAP. Acta Biochim Biophys Sin (Shanghai) 2021; 53:85-93. [PMID: 33367479 DOI: 10.1093/abbs/gmaa151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 01/14/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal cancers worldwide. The expression of β-arrestin2 (β-Arr2, ARRB2) in CRC has been well investigated; however, its exact mechanism causing the cancer progression remains unclear. In this study, we discovered that the expression level of ARRB2 was significantly upregulated in CRC as compared to the normal tissues by employing the Cancer Genome Atlas (TCGA) data, western blot analysis, and immunohistochemistry. Furthermore, the level of ARRB2 was correlated with the patients' overall survival by Kaplan-Meier analysis. The higher expression of ARRB2 promoted CRC cell growth, enhanced the cell motility, and blocked cell apoptosis, which is crucial for tumor growth. Lastly, the suppression of ARRB2 expression was enough to attenuate the progression of CRC induced by azoxymethane/dextran sodium sulfate. Interestingly, we also found that the knockdown of ARRB2 decreased several cancer pathways mediated by the expression of Wilms tumor 1 associated protein (WTAP), which led to the inhibition of cell proliferation and migration. Altogether, our results demonstrated that ARRB2 promoted the growth and migration of CRC cells by regulating the WTAP expression.
Collapse
Affiliation(s)
- Hongguang Liang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Thoracic Surgery, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510168, China
| | - Zelong Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Rongcheng Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Thoracic Surgery, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510168, China
| | - Lixian Zeng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| |
Collapse
|
4
|
Kvietkauskas M, Zitkute V, Leber B, Strupas K, Stiegler P, Schemmer P. The role of melatonin in colorectal cancer treatment: a comprehensive review. Ther Adv Med Oncol 2020; 12:1758835920931714. [PMID: 32733605 PMCID: PMC7370547 DOI: 10.1177/1758835920931714] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer worldwide, known as the second leading cause of cancer-related deaths annually. Currently, multimodal treatment strategies, including surgical resection, combined with chemotherapy and radiotherapy, have been used as conventional treatments in patients with CRC. However, clinical outcome of advanced stage disease remains relatively discouraging, due mainly to appearance of CRC chemoresistance, toxicity, and other detrimental side effects. New strategies to overcome these limitations are essential. During the last decades, melatonin (MLT) has been shown to be a potent antiproliferative, anti-metastatic agent with cytotoxic effects on different types of human malignancies, including CRC. Hence, this comprehensive review compiles the available experimental and clinical data analyzing the effects of MLT treatment in CRC patients and its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Mindaugas Kvietkauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Viktorija Zitkute
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | | | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Transplant Center Graz, Medical University of Graz, Auenbruggerplatz 29, Graz, 8036, Austria
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
5
|
Ding Y, Fan J, Deng L, Huang B, Zhou B. Antitumor efficacy of cytosine deaminase-armed vaccinia virus plus 5-fluorocytosine in colorectal cancers. Cancer Cell Int 2020; 20:243. [PMID: 32549790 PMCID: PMC7296660 DOI: 10.1186/s12935-020-01340-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Background Vaccinia viruses have emerged as attractive therapeutic candidates for cancer treatment due to their inherent ability of tumor tropism and oncolytic property. Cytosine deaminase (CD), which is derived from bacteria or yeast, can convert a relatively nontoxic prodrug 5-fluorocytosine (5-FC) into the active anticancer drug 5-Fluorouracil (5-FU). Vaccinia virus armed with the prodrug-activator CD gene would result in augmented antitumor effects that combined the effect of vaccinia virus and 5-FU together, and particularly limited the anticancer drug to tumor regions. Methods The attenuated vaccinia Tian Tan strain Guang 9 (VG9), with active yeast CD expression and thymidine kinase (TK) deficiency, was successfully constructed. Then, in vitro and in vivo antitumor efficacy of vaccinia VG9-CD plus 5-FC administration was evaluated in colorectal cancer cells. Results Vaccinia viruses displayed different oncolytic potency in vitro cells, no relationship with whether they were cancer cells or normal cells. In colorectal tumor models, mice treated with vaccinia VG9-TK- showed better tumor remission ability and prolonged survival. Moreover, vaccinia VG9-CD in combination with gavage administration of 5-FC displayed the best antitumor efficacy, especially for the prolongation of survival. Conclusions Vaccinia VG9-CD in combination with 5-FC plays combined effect of vaccinia virus and chemotherapy, and becomes a promising virotherapy for cancer.
Collapse
Affiliation(s)
- Yuedi Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 Jiangsu China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| | - Jun Fan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 Jiangsu China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| | - Lili Deng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 Jiangsu China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| | - Biao Huang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 Jiangsu China
| | - Bin Zhou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 Jiangsu China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
6
|
Yuan Y, Li B, Kuang Y, Ni S, Zhuge A, Yang J, Lv L, Gu S, Yan R, Li Y, Wang K, Yang L, Zhu X, Wu J, Bian X, Li L. The fiber metabolite butyrate reduces gp130 by targeting TRAF5 in colorectal cancer cells. Cancer Cell Int 2020; 20:212. [PMID: 32518521 PMCID: PMC7271451 DOI: 10.1186/s12935-020-01305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background Dietary fiber is effective for colorectal cancer (CRC) treatment. Interleukin-6 (IL-6) and its adaptors are potential targets for CRC therapy. Butyrate, a metabolite of dietary fiber, is a new, highly safe type of targeted drug. Methods In this study, Cell Counting Kit-8 cell viability and wound healing assays, western blot analysis, immunofluorescence staining, and xenograft tumor mouse models were used to evaluate the anticancer effect of butyrate and its possible mechanism in vivo and in vitro. Results Dietary fiber and sodium butyrate (NaB) decreased CRC burden by decreasing IL-6 receptor gp130 and blocking IL-6/JAK2/STAT3 axis activation in vitro and in vivo. Furthermore, NaB reduced the gp130 protein level by regulating its degradation rate via targeting TRAF5. Conclusions The fiber metabolite butyrate inhibits CRC development by reducing gp130 via TRAF5.
Collapse
Affiliation(s)
- Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Bo Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yanbin Kuang
- Department of Respiratory Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Ni
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xueling Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
7
|
Tang Q, Yin D, Wang Y, Du W, Qin Y, Ding A, Li H. Cancer Stem Cells and Combination Therapies to Eradicate Them. Curr Pharm Des 2020; 26:1994-2008. [PMID: 32250222 DOI: 10.2174/1381612826666200406083756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) show self-renewal ability and multipotential differentiation, like normal stem or progenitor cells, and which proliferate uncontrollably and can escape the effects of drugs and phagocytosis by immune cells. Traditional monotherapies, such as surgical resection, radiotherapy and chemotherapy, cannot eradicate CSCs, however, combination therapy may be more effective at eliminating CSCs. The present review summarizes the characteristics of CSCs and several promising combination therapies to eradicate them.
Collapse
Affiliation(s)
- Qi Tang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yao Wang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenxuan Du
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuhan Qin
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Anni Ding
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Hanmei Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
8
|
Razi E, Radak M, Mahjoubin-Tehran M, Talebi S, Shafiee A, Hajighadimi S, Moradizarmehri S, Sharifi H, Mousavi N, Sarvizadeh M, Nejati M, Taghizadeh M, Ghasemi F. Cancer stem cells as therapeutic targets of pancreatic cancer. Fundam Clin Pharmacol 2019; 34:202-212. [PMID: 31709581 DOI: 10.1111/fcp.12521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
The discovery of stem cells and their potential abilities in self-renewal and differentiation has opened a new horizon in medicine. Scientists have found a small population of stem cells in some types of cancers with the same functions as normal stem cells. There are two models for tumor progression: clonal (stochastic) and cancer stem cell (CSCs) models. According to the first model, all transformed cells in the tumor have carcinogenic potential and are able to proliferate and produce the same cells. The latter model, which has received more attention recently, considers the role of CSCs in drug resistance and tumor metastasis. Following the model, researchers have found that targeting CSCs may be a promising way in cancer therapy. This review describes CSC characteristics in general, while also focusing on CSC properties in the context of pancreatic cancer.
Collapse
Affiliation(s)
- Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Mehran Radak
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Talebi
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Hossein Sharifi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Nousin Mousavi
- Department of Surgery, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
9
|
Wang S, Yin CH, Zhang XY, Shang ZM, Huang LM, Luo N, Wang AQ, Dong LL, Liu HX, Zhu JY. Conversion to resectability using transcatheter arterial chemoembolization alternating with mFOLFOX6 in patients with colorectal liver metastases. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2019; 24:92. [PMID: 31741664 PMCID: PMC6856540 DOI: 10.4103/jrms.jrms_879_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/31/2017] [Accepted: 01/30/2019] [Indexed: 11/10/2022]
Abstract
Background: Colorectal cancer is one of the most common malignancies in the world, and about 25% of colorectal cancer patients present with colorectal cancer liver metastases (CRCLM) even at new diagnosis. The study was to evaluate the safety and efficacy of transcatheter arterial chemoembolization (TACE) alternating with mFOLFOX6 in Chinese patients with unresectable CRCLM. Materials and Methods: In this study, by combining the systemic and regional treatment, the resectability rate, overall survival, and progression-free survival were measured with addition of TACE. Included patients had Eastern Cooperative Oncology Group performance status 0–2. Sixty-two patients received mFOLFOX6 plus one TACE after 2 weeks of chemotherapy; after 2 weeks, the next periodical treatment repeated. Patients received operation when the liver metastases were converted to resectability or severe tumor-associated complications occurred. Results: We found that 28 patients (45.2%) patients received operation after the treatment of TACE combined with systemic chemotherapy. The median time from initial treatment to the operation was 6 months. The median follow-up period was 41 months in all the patients. The 3-year survival rate of resected patients and unresected patients was 54% and 17%, respectively. Post-TACE syndrome was the major adverse reaction (81%). Other adverse reactions were neutropenia, nausea, and neurotoxicity. No patient died of the adverse reactions. The resection rate was related to hepatic segments and vasculature involvement. Conclusion: Taken together, TACE alternating with mFOLFOX6 has been proved to be safe and effective for CRCLM treatment to improve resection rate and prolong the survival time.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Laboratory, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, Weifang, People's Republic of China.,Department of Laboratory, Qingdao Cancer Institute, Qingdao, Weifang, People's Republic of China.,Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, People's Republic of China
| | - Chun Hui Yin
- Department of Intervention, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, People's Republic of China
| | - Xin Yan Zhang
- Department of Intervention, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong, People's Republic of China
| | - Zhi Mei Shang
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, People's Republic of China
| | - Li Min Huang
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, People's Republic of China
| | - Nan Luo
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, People's Republic of China
| | - An Quan Wang
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, People's Republic of China
| | - Ling Ling Dong
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, People's Republic of China
| | - Hong Xing Liu
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, People's Republic of China
| | - Jing Yan Zhu
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, People's Republic of China
| |
Collapse
|
10
|
Bagheri M, Tabatabae Far MA, Mirzaei H, Ghasemi F. Evaluation of antitumor effects of aspirin and LGK974 drugs on cellular signaling pathways, cell cycle and apoptosis in colorectal cancer cell lines compared to oxaliplatin drug. Fundam Clin Pharmacol 2019; 34:51-64. [PMID: 31233627 DOI: 10.1111/fcp.12492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 01/06/2023]
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies. Despite recent advances in the treatment for CRC, resistance to chemotherapy drugs and recurrence of the tumor are among the main problems for treatment in this cancer. The MTT assay was performed to assess the cytotoxic effects of drugs on CRC cell lines (SW742 and SW480) and normal colon cells. Three-dimensional culture (spheroid) was also used to evaluate the effect of drugs on tumor cell masses. The rate of expression of genes was also evaluated using Real-Time PCR. The analysis of the results demonstrated that aspirin and LGK974 have cytotoxic effects on CRC cell lines, and in the IC50 dose, they disintegrate the cancerous cell masses. These drugs reduce the invasion and increase apoptosis in SW742 and SW480 cell lines. A decrease in the expression of WNT, AXIN, TCF and APC genes and an increase in the expression of β-catenin gene in the WNT signaling pathway were revealed. The genes involved in the MAPK signaling pathway such as ERK, JNK, KRAS and MEK showed a decrease in expression and a increase in expression of RAF gene. In the apoptotic pathway, increased expression of BAX and decreased expression of BCL-2 were reported. Also, decreased expression of P53, cyclin D1 and COX-2 was observed. This study demonstrates that aspirin and LGK974 could be effective in inhibiting the signaling pathways of WNT and MAPK, arresting cell cycle and inducing apoptosis in CRC cell lines.
Collapse
Affiliation(s)
- Malihe Bagheri
- Department of Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, 38481-7-6941, Iran
| | - Mohamad Amin Tabatabae Far
- Department of Genetics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8415683111, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, 87159-88141, Iran
| | - Faezeh Ghasemi
- Molecular and Medicine Research Centre, Faculty of Medicine, Arak University of Medical Sciences, Arak, 38481-7-6941, Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Next to Milad Tower, Tehran, 1497716316, Iran
| |
Collapse
|
11
|
Hesari A, Rajab S, Rezaei M, Basam M, Golmohamadi S, Ghasemi F. Knockdown of Sal-like 4 expression by siRNA induces apoptosis in colorectal cancer. J Cell Biochem 2019; 120:11531-11538. [PMID: 30771239 DOI: 10.1002/jcb.28433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 01/24/2023]
Abstract
Colorectal cancer (CRC) is known as the third most common malignancies among men and women and is also the second leading cause of cancer-related deaths worldwide. It has been indicated that a variety of risk factors are involved in the pathogenesis of CRC. Spalt-like transcription factor 4 (SALL4) is known as a transcription factor that plays an important role in the proliferation of cancerous cells. In this study, using a specific sequence of small interfering RNA (siRNA) against the sequence of SALL4, its activity is investigated in the CRC cell line (sw742). The CRC cells (sw742) were cultured and then, using a specific anti-SALL4 siRNA, their toxic doses were determined. Then, the gene is transfected into the cell. Proliferation and expression of the SALL4 and Bcl-2 gene were measured using the real-time polymerase chain reaction method. Cell death was evaluated by propidium iodide staining and fluorescence-activated cell sorting analysis. Our results indicated that the specific concentration of siRNA of the SALL4 gene was 62.5 nmole. Gene expression of SALL4 and Bcl-2 results showed that expression of Bcl-2 gene in the siRNA group was significantly reduced. In conclusion, our finding indicated that it could be used as a therapeutic and diagnostic biomarker in the treatment of patients with CRC.
Collapse
Affiliation(s)
- AmirReza Hesari
- Department of Biotechnology, Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shadi Rajab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Marzieh Rezaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Basam
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Sara Golmohamadi
- Department of Biotechnology, Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Department of Biotechnology, Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
12
|
Jalaeikhoo H, Zokaasadi M, Khajeh-Mehrizi A, Rajaeinejad M, Mousavi SA, Vaezi M, Fumani HK, Keyhani M, Alimoghaddam K, Ghavamzadeh A. Effectiveness of adjuvant chemotherapy in patients with Stage II colorectal cancer: A multicenter retrospective study. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2019; 24:39. [PMID: 31160906 PMCID: PMC6540777 DOI: 10.4103/jrms.jrms_106_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 12/19/2018] [Accepted: 02/18/2019] [Indexed: 12/31/2022]
Abstract
Background: Adjuvant chemotherapy (ACT) for patients with Stage II colorectal cancer (CRC) is an area of controversy in oncology. International guidelines recommend the use of ACT in patients with specific high-risk features. This study aimed to investigate the effectiveness of ACT in improving survival in patients with and without high-risk features. Materials and Methods: A total of 225 patients with Stage II CRC who underwent primary tumor resection were included in this study. Patients with one or more high-risk features including T4 tumor, poor differentiation, lymphovascular invasion, perineural invasion, bowel obstruction, local perforation, positive resection margins, or suboptimal lymph node sampling (fewer than 12 nodes) were classified as high risk. The survival analysis was performed between patients who only received curative surgery and those received single-agent (5-fluorouracil [5-FU] and leucovorin [LV] or capecitabine) or multiagent ACT (oxaliplatin and 5-FU + LV or oxaliplatin and capecitabine). Results: The 5-year overall survival (OS) rate was 88.4%, and the 5-year disease-free survival (DFS) rate was 80.4%. The 5-year OS and DFS rates improved insignificantly with ACT (89.8% vs. 81.2%, P = 0.59 and 81.3% vs. 74.6%, P = 0.41, respectively); however, multiagent ACT results to inferior 5-year OS and DFS compared to single-agent ACT (82.1 vs. 92.8%, P = 0.14 and 70.1% vs. 86%, P = 0.07, respectively). ACT was associated with insignificant improved OS and DFS in both high-risk and low-risk groups, but high-risk patients who received multiagent ACT had a significant inferior OS and DFS in comparison with those received single-agent ACT. T4 tumor and obstruction were independent poor prognostic factors affecting OS and DFS. Conclusion: In our population, the improvement of OS and DFS with ACT was not statistically significant in high-risk and low-risk patients with Stage II CRC.
Collapse
Affiliation(s)
- Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Zokaasadi
- AJA Cancer Epidemiology Research and Treatment Center, AJA University of Medical Sciences, Tehran, Iran
| | - Ahmad Khajeh-Mehrizi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center, AJA University of Medical Sciences, Tehran, Iran
| | - Seied Asadollah Mousavi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Kmranzadeh Fumani
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Manoutchehr Keyhani
- Hematology and Oncology Research Center, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghaddam
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Sarvizadeh M, Ghasemi F, Tavakoli F, Sadat Khatami S, Razi E, Sharifi H, Biouki NM, Taghizadeh M. Vaccines for colorectal cancer: an update. J Cell Biochem 2018; 120:8815-8828. [PMID: 30536960 DOI: 10.1002/jcb.28179] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022]
Abstract
Colorectal cancer (CRC) is known as the third most common and fourth leading cancer associated death worldwide. The occurrence of metastasis has remained as a critical challenge in CRC, so that distant metastasis (mostly to the liver) has been manifested in about 20%-25% of patients. Several screening approaches have introduced for detecting CRC in different stages particularly in early stages. The standard treatments for CRC are surgery, chemotherapy and radiotherapy, in alone or combination. Immunotherapy is a set of novel approaches with the aim of remodeling the immune system battle with metastatic cancer cells, such as immunomodulatory monoclonal antibodies (immune checkpoint inhibitors), adoptive cell transfer (ACT) and cancer vaccine. Cancer vaccines are designed to trigger the intense response of immune system to tumor-specific antigens. In two last decades, introduction of new cancer vaccines and designing several clinical trials with vaccine therapy, have been taken into consideration in colon cancer patients. This review will describe the treatment approaches with the special attention to vaccines applied to treat colorectal cancer.
Collapse
Affiliation(s)
- Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Fatemeh Tavakoli
- Department of Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Sadat Khatami
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Hossein Sharifi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Nousin Moussavi Biouki
- Department of Surgery, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
14
|
Sarvizadeh M, Malekshahi ZV, Razi E, Sharifi H, Moussavi N, Taghizadeh M. MicroRNA: A new player in response to therapy for colorectal cancer. J Cell Physiol 2018; 234:8533-8540. [PMID: 30478837 DOI: 10.1002/jcp.27806] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/07/2018] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is one of the important malignancies that result in cancer-related deaths worldwide. Multiple lines of evidence have indicated that different responses to therapy in CRC cells led to the failure of the current therapies. Hence, identification of the underlying cellular and molecular pathways involved in the emergence of different responses from CRC cells could contribute to finding and designing new therapeutic platforms to overcome the present limitations. Among the various targets involved in CRC pathogenesis, microRNAs (miRNAs) have key roles in many signaling pathways that are associated with the initiation and progression of CRC. Increasing evidence has confirmed that miRNAs as epigenetic regulators could play critical roles in the response (resistance or sensitivity) to therapy. Cancer stem cells are well-known players in resistance to therapy in CRC. They have been shown to play significant roles via inhibition and activation of many miRNA networks. Hence, miRNAs could be involved in the resistance and sensitivity of therapy in CRC cells via affecting different mechanisms, such as activation of cancer stem cells. Here, we summarized the role of various miRNAs in response to therapy of CRC cells. Moreover, we highlighted the roles of these molecules in the function of cancer stem cells, which are known as important players in the resistance to therapy in CRC.
Collapse
Affiliation(s)
- Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Ziba V Malekshahi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Hossein Sharifi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Nousin Moussavi
- Department of Surgery, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Ahmadi A, Salehi F, Ahmadimirghaed Z. Cancer trends in a province of Southwest of Iran, 2003-2016. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2018; 23:80. [PMID: 30294348 PMCID: PMC6161484 DOI: 10.4103/jrms.jrms_68_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Background: Awareness of the trends of cancer incidence in each geographic region is an important. The aim of present study was to determine the incidence trends of cancer in Chaharmahal and Bakhtiari (Ch and B) province in Southwest of Iran. Materials and Methods: In this secondary data analysis, retrospective existing data were used from cancer registry reports in Ch and B in Southwest of Iran in 2003–2016. Data on epidemiologic trend were analyzed using Joinpoint software package and annual percentage change (APC) with 95% confidence interval (95% CI) was computed. Results: Age-standardized incidence rate per 100,000 persons in the province in 2003 was 31.74 that increased to 147.14 in 2016. APC during 2003–2016 was 12.58% (CI: 9.3–16) and significant, which was 10.22% (7.4–13.1) and 14.47% (10.2–18.9) in men and women, respectively. Incidence of the stomach, breast, colorectal, thyroid, lymph node, and ovarian cancers is increasing and the highest incidence was observed in two age groups of 25–34 and 55–64 years. Conclusion: In general, cancers are of increasing trend. Surveillance and monitoring the incidence of cancer and studying the causes of environmental or genetic in the cancer changes can help for cancer prevention and control.
Collapse
Affiliation(s)
- Ali Ahmadi
- Modeling in Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Epidemiology and Biostatistics, School of Public Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Salehi
- Modeling in Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zenab Ahmadimirghaed
- Modeling in Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
16
|
Marjaneh RM, Rahmani F, Hassanian SM, Rezaei N, Hashemzehi M, Bahrami A, Ariakia F, Fiuji H, Sahebkar A, Avan A, Khazaei M. Phytosomal curcumin inhibits tumor growth in colitis‐associated colorectal cancer. J Cell Physiol 2018; 233:6785-6798. [DOI: 10.1002/jcp.26538] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/06/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Reyhaneh Moradi Marjaneh
- Department of Physiology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Farzad Rahmani
- Department of Medical Biochemistry, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Metabolic syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Nastaran Rezaei
- Department of Physiology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Milad Hashemzehi
- Department of Physiology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center Birjand University of Medical Sciences Birjnad Iran
| | - Fatemeh Ariakia
- Medical Toxicology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Hamid Fiuji
- Metabolic syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhosein Sahebkar
- Department of Medical Biotechnology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Amir Avan
- Metabolic syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Cancer Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Metabolic syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
17
|
Gang W, Wang JJ, Guan R, Yan S, Shi F, Zhang JY, Li ZM, Gao J, Fu XL. Strategy to targeting the immune resistance and novel therapy in colorectal cancer. Cancer Med 2018; 7:1578-1603. [PMID: 29658188 PMCID: PMC5943429 DOI: 10.1002/cam4.1386] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Assessing the CRC subtypes that can predict the outcome of colorectal cancer (CRC) in patients with immunogenicity seems to be a promising strategy to develop new drugs that target the antitumoral immune response. In particular, the disinhibition of the antitumoral T‐cell response by immune checkpoint blockade has shown remarkable therapeutic promise for patients with mismatch repair (MMR) deficient CRC. In this review, the authors provide the update of the molecular features and immunogenicity of CRC, discuss the role of possible predictive biomarkers, illustrate the modern immunotherapeutic approaches, and introduce the most relevant ongoing preclinical study and clinical trials such as the use of the combination therapy with immunotherapy. Furthermore, this work is further to understand the complex interactions between the immune surveillance and develop resistance in tumor cells. As expected, if the promise of these developments is fulfilled, it could develop the effective therapeutic strategies and novel combinations to overcome immune resistance and enhance effector responses, which guide clinicians toward a more “personalized” treatment for advanced CRC patients.
Collapse
Affiliation(s)
- Wang Gang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Rui Guan
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province, 442000, China
| | - Sun Yan
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province, 442000, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| | - Jia-Yan Zhang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Zi-Meng Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| |
Collapse
|
18
|
Zhou Y, Xia L, Wang H, Oyang L, Su M, Liu Q, Lin J, Tan S, Tian Y, Liao Q, Cao D. Cancer stem cells in progression of colorectal cancer. Oncotarget 2017; 9:33403-33415. [PMID: 30279970 PMCID: PMC6161799 DOI: 10.18632/oncotarget.23607] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is one of the most common cancers worldwide with high mortality. Distant metastasis and relapse are major causes of patient death. Cancer stem cells (CSCs) play a critical role in the metastasis and relapse of colorectal cancer. CSCs are a subpopulation of cancer cells with unique properties of self-renewal, infinite division and multi-directional differentiation potential. Colorectal CSCs are defined with a group of cell surface markers, such as CD44, CD133, CD24, EpCAM, LGR5 and ALDH. They are highly tumorigenic, chemoresistant and radioresistant and thus are critical in the metastasis and recurrence of colorectal cancer and disease-free survival. This review article updates the colorectal CSCs with a focus on their role in tumor initiation, progression, drug resistance and tumor relapse.
Collapse
Affiliation(s)
- Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Heran Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qiang Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jingguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA
| |
Collapse
|
19
|
Veisi Malekshahi Z, Amani J, Negahdari B, Rajabibazl M, Ebrahimizadeh W. Design, expression and evaluation of novel chimeric protein constructed from colorectal tumor-associated antigen. J Cell Biochem 2017; 119:3464-3473. [PMID: 29144000 DOI: 10.1002/jcb.26518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
There were 134,000 new diagnosis and 49,000 deaths in 2016 due to colorectal cancer. Similar to most cancers, early diagnosis increases the chance of successful treatment. Detection of tumor-associated antigens or the immune response against such markers is one of the most common methods of diagnosis. In that regard, we aimed to design and express a chimeric protein from the most common tumor-associated antigens in colorectal cancer and assess its ability to detect the immune response in comparison with the parental tumor-associated antigens in patient's sera. Through bioinformatics approaches a chimeric protein from carcinoembryonic antigen (CEA) and carbohydrate antigen 19.9 (CA19-9) was designed and expressed in E. coli (BL21DE3). Proper folding, expression levels and immune reactivity were assessed by western blot, ELISA and immunohistochemistry. Recombinant proteins functionality and immune reactivity were confirmed by ELISA and Western blot. Results showed that recombinant CEA, recombinant CA19.9 and chimeric protein of CEA- CA19.9 have strong reactivity with antibodies in the sera of colorectal cancer patients, whereas no reactivity was seen with the sera of healthy volunteers. Significantly stronger immune reactivity was seen with the chimeric protein than each of the CEA or CA19.9 alone. Overall, it was concluded that the designed recombinant proteins in this study could be used to detect autoantibodies produced against the colorectal tumor-associated antigens. The chimeric CEA-CA19.9 protein shows a stronger reactivity with the sera antibodies of colorectal cancer patients that CEA or CA19.9 alone.
Collapse
Affiliation(s)
- Ziba Veisi Malekshahi
- Department of medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Walead Ebrahimizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Masoudi MS, Mehrabian E, Mirzaei H. MiR-21: A key player in glioblastoma pathogenesis. J Cell Biochem 2017; 119:1285-1290. [PMID: 28727188 DOI: 10.1002/jcb.26300] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiform (GBM) is one of common cancers worldwide which has high rate among various populations. Despite serious efforts worldwide, GBM remains a deadly disease which is associated with poor prognosis. Multiple lines evidence indicated that deregulation of a variety of cellular and molecular pathways are related with GBM pathogenesis. Among of various targets involved in GBM pathogenesis, microRNAs (miRNAs) have been emerged as targets which deregulation of them are related with various stages of GBM. These molecules are small non-coding RNAs which could affect on a variety of cellular and molecular pathways involved in GBM. It has been showed that deregulation of them are associated with initiation and progression of GBM. MiR-21 is one of important miRNAs involved in GBM pathogenesis. A large number studies indicated that this miRNA could affect on a variety of cellular and molecular pathways such as insulin-like growth factor (IGF)-binding protein-3 (IGFBP3), RECK, and TIMP3. Exosomes are one of important players in GBM pathogenesis. Among of various exosomes, exosomal miR-21 may has key roles in GBM pathogenesis. These findings indicated that miR-21 has critical roles in GBM pathogenesis and could be used as diagnostic and therapeutic biomarkers for GBM patients. Here, we summarized the roles of miR-21 and exosomal miR-21 in GBM pathogenesis. Moreover, we highlighted utilization of miR-21 as diagnostic and therapeutic biomarker for GBM patients.
Collapse
Affiliation(s)
- Mohammad Sadegh Masoudi
- Department of Neurosurgery and Neuroendoscopy, Shiraz University of Medical Sciences & Trauma Research Center of Aja University of Medical Sciences, Shiraz, Iran
| | | | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Bahrami A, Khazaei M, Hassanian SM, ShahidSales S, Joudi-Mashhad M, Maftouh M, Jazayeri MH, Parizade MR, Ferns GA, Avan A. Targeting the tumor microenvironment as a potential therapeutic approach in colorectal cancer: Rational and progress. J Cell Physiol 2017; 233:2928-2936. [DOI: 10.1002/jcp.26041] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Afsane Bahrami
- Department of Modern Sciences and Technologies; Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Committee; Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Majid Khazaei
- Department of Physiology; Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry; Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
- Metabolic Syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | | | - Mona Joudi-Mashhad
- Cancer Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mina Maftouh
- Metabolic Syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mir Hadi Jazayeri
- Immunology Research Center; Iran University of Medical Sciences; Tehran Iran
- Department of Immunology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Mohammad Reza Parizade
- Metabolic Syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Gordon A. Ferns
- Division of Medical Education; Brighton and Sussex Medical School; Falmer, Brighton, Sussex UK
| | - Amir Avan
- Metabolic Syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Cancer Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
22
|
Bahrami A, Hassanian SM, ShahidSales S, Farjami Z, Hasanzadeh M, Anvari K, Aledavood A, Maftouh M, Ferns GA, Khazaei M, Avan A. Targeting RAS signaling pathway as a potential therapeutic target in the treatment of colorectal cancer. J Cell Physiol 2017; 233:2058-2066. [PMID: 28262927 DOI: 10.1002/jcp.25890] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022]
Abstract
The V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) is frequently dysregulated in colorectal cancer (CRC). It is involved in the modulation of several downstream effectors, that include: Raf/Mek/Erk, PI3K/Akt, RalGDS/p38MAPK, and Rac/Rho, and thereby influences tumorigenesis, the invasive behaviors of tumor cell, and resistance to therapy. There is growing evidence exploring the use of drugs that target these pathways in the treatment of CRC. Cetuximab has been approved for CRC patients without a KRAS mutation, or for EGFR-expressing metastatic CRC, although some of the patients have a mutation of KRAS and NRAS. This review summarizes the recent knowledge about the therapeutic potential of targeting RAS with particular emphasis on recent preclinical and clinical studies in treatment of CRC.
Collapse
Affiliation(s)
- Afsane Bahrami
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soodabeh ShahidSales
- Cancer Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Farjami
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Hasanzadeh
- Department of Gynecology Oncology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kazem Anvari
- Cancer Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Aledavood
- Cancer Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftouh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Bahrami A, Amerizadeh F, Hassanian SM, ShahidSales S, Khazaei M, Maftouh M, Ghayour-Mobarhan M, Ferns GA, Avan A. Genetic variants as potential predictive biomarkers in advanced colorectal cancer patients treated with oxaliplatin-based chemotherapy. J Cell Physiol 2017; 233:2193-2201. [DOI: 10.1002/jcp.25966] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Afsane Bahrami
- Department of Modern Sciences and Technologies; Faculty of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Committee, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Forouzan Amerizadeh
- Department of Modern Sciences and Technologies; Faculty of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Committee, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Department of Medical Biochemistry, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | | | - Majid Khazaei
- Department of Physiology, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mina Maftouh
- Metabolic Syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School; Division of Medical Education; Falmer Brighton, Sussex UK
| | - Amir Avan
- Metabolic Syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
24
|
Saadatpour Z, Bjorklund G, Chirumbolo S, Alimohammadi M, Ehsani H, Ebrahiminejad H, Pourghadamyari H, Baghaei B, Mirzaei HR, Sahebkar A, Mirzaei H, Keshavarzi M. Molecular imaging and cancer gene therapy. Cancer Gene Ther 2016:cgt201662. [PMID: 27857058 DOI: 10.1038/cgt.2016.62] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 12/30/2022]
Abstract
Gene therapy is known as one of the most advanced approaches for therapeutic prospects ranging from tackling genetic diseases to combating cancer. In this approach, different viral and nonviral vector systems such as retrovirus, lentivirus, plasmid and transposon have been designed and employed. These vector systems are designed to target different therapeutic genes in various tissues and cells such as tumor cells. Therefore, detection of the vectors containing therapeutic genes and monitoring of response to the treatment are the main issues that are commonly faced by researchers. Imaging techniques have been critical in guiding physicians in the more accurate and precise diagnosis and monitoring of cancer patients in different phases of malignancies. Imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are non-invasive and powerful tools for monitoring of the distribution of transgene expression over time and assessing patients who have received therapeutic genes. Here, we discuss most recent advances in cancer gene therapy and molecular approaches as well as imaging techniques that are utilized to detect cancer gene therapeutics and to monitor the patients' response to these therapies worldwide, particularly in Iranian Academic Medical Centers and Hospitals.Cancer Gene Therapy advance online publication, 18 November 2016; doi:10.1038/cgt.2016.62.
Collapse
Affiliation(s)
- Z Saadatpour
- Bozorgmehr Imaging Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - G Bjorklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - S Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - M Alimohammadi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - H Ehsani
- Department of Periodontology, School of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - H Ebrahiminejad
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - H Pourghadamyari
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - B Baghaei
- Department of Endodontics, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - H R Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - A Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Keshavarzi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|