1
|
Ontawong A, Wongputtisin P, Thim-Uam A, Pengnet S, Munkong N, Kuntakhut K, Riyamongkhol P, Mann D, Amornlerdpison D. Subchronic oral toxicity study of the synbiotic mulberry in male and female Wistar rats. Food Chem Toxicol 2024; 190:114843. [PMID: 38944142 DOI: 10.1016/j.fct.2024.114843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Mulberry (Morus alba L) fruit is traditionally used in Chinese medicine and has several beneficial effects, such as hypoglycemic, hypolipidemic, and anti-oxidative effects. We previously developed the synbiotic mulberry (SM) containing probiotic Lactobacilli, prebiotic inulin, and mulberry powder. In food supplement development, toxicity is the most important criterion in food and drug regulations before commercialization. Thus, this study aimed to investigate the subchronic toxicity of SM in male and female Wistar rats to evaluate its biosafety. The subchronic toxicity study was conducted by daily oral administration of SM at doses of 250, 500, and 1000 mg/kgBW for 90 days. Male and female rats were evaluated for body weight, organ coefficients, biochemical and hematological parameters, and vital organ histology. The results showed no mortality or toxic changes in the subchronic toxicity study. These results suggested that no observed adverse effect level (NOAEL) of SM in male and female rats has been considered at 1000 mg/kgBW for subchronic toxicity study.
Collapse
Affiliation(s)
- Atcharaporn Ontawong
- Division of Physiology, School of Medical Sciences, University of Phayao, 19 Moo 2 Mae-Ka District, Muang, Phayao, 56000, Thailand
| | - Pairote Wongputtisin
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, 50290, Thailand
| | - Arthid Thim-Uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, 19 Moo 2 Mae-Ka District, Muang, Phayao, 56000, Thailand
| | - Sirinat Pengnet
- Division of Physiology, School of Medical Sciences, University of Phayao, 19 Moo 2 Mae-Ka District, Muang, Phayao, 56000, Thailand
| | - Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, 19 Moo 2 Mae-Ka District, Muang, Phayao, 56000, Thailand
| | - Kullanat Kuntakhut
- Center of Excellence in Agricultural Innovation for Graduate Entrepreneur, Maejo University, 63, Sansai-Phrao Street, Sansai, Chiang Mai, 50290, Thailand
| | | | - Dej Mann
- Laboratory Animal Research Center, University of Phayao, Phayao, 56000, Thailand
| | - Doungporn Amornlerdpison
- Center of Excellence in Agricultural Innovation for Graduate Entrepreneur, Maejo University, 63, Sansai-Phrao Street, Sansai, Chiang Mai, 50290, Thailand; Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand.
| |
Collapse
|
2
|
He Q, Liang S, Luo J, Yin X, Sun J, Bai W. Stabilization effect and interaction mechanism of mannoprotein on anthocyanins in mulberry juice. Int J Biol Macromol 2024; 273:133133. [PMID: 38876233 DOI: 10.1016/j.ijbiomac.2024.133133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
This study aimed to investigate the problem of color instability in mulberry juice, examine the effect of mannoprotein (MP) dosage on improving the stability of anthocyanins in mulberry juice, and explore the molecular binding mechanism between them. As the mass ratio of anthocyanins to MP of 1.07 × 10-3: 1-1.65 × 10-3: 1, the retention rates of anthocyanins in mulberry juice and simulated system were significantly improved in the photostability experiment, with the highest increase of 128.89 % and 24.11 %, respectively. In the thermal stability experiment, it increased by 7.96 % and 18.49 %, respectively. The synergistic effect of combining MP with anthocyanins has been demonstrated to greatly enhance their antioxidant capacity, as measured by ABTS, FRAP, and potassium ferricyanide reduction method. Furthermore, MP stabilized more anthocyanins to reach the intestine in simulated in vitro digestion. MP and cyanidin-3-glucoside (C3G) interacted with each other through hydrogen bonding and hydrophobic interactions. Specific amino acid residues involved of MP in binding process were identified as threonine (THR), isoleucine (ILE) and arginine (ARG). The identification of the effective mass concentration ratio range and binding sites of MP and anthocyanins provided valuable insights for the application of MP in mulberry juice.
Collapse
Affiliation(s)
- Qianqian He
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Shuyan Liang
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Jielin Luo
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Xiang Yin
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
3
|
An H, Wang D, Yu L, Wu H, Qin Y, Zhang S, Ji X, Xin Y, Li X. Potential Involvement of MnCYP710A11 in Botrytis cinerea Resistance in Arabidopsis thaliana and Morus notabilis. Genes (Basel) 2024; 15:853. [PMID: 39062632 PMCID: PMC11275358 DOI: 10.3390/genes15070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP) is a crucial oxidoreductase enzyme that plays a significant role in plant defense mechanisms. In this study, a specific cytochrome P450 gene (MnCYP710A11) was discovered in mulberry (Morus notabilis). Bioinformatic analysis and expression pattern analysis were conducted to elucidate the involvement of MnCYP710A11 in combating Botrytis cinerea infection. After the infection of B. cinerea, there was a notable increase in the expression of MnCYP710A11. MnCYP710A11 is overexpressed in Arabidopsis and mulberry and strongly reacts to B. cinerea. The overexpression of the MnCYP710A11 gene in Arabidopsis and mulberry led to a substantial enhancement in resistance against B. cinerea, elevated catalase (CAT) activity, increased proline content, and reduced malondialdehyde (MDA) levels. At the same time, H2O2 and O2- levels in MnCYP710A11 transgenic Arabidopsis were decreased, which reduced the damage of ROS accumulation to plants. Furthermore, our research indicates the potential involvement of MnCYP710A11 in B. cinerea resistance through the modulation of other resistance-related genes. These findings establish a crucial foundation for gaining deeper insights into the role of cytochrome P450 in mulberry plants.
Collapse
Affiliation(s)
- Hui An
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Donghao Wang
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Lin Yu
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Hongshun Wu
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Yue Qin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Shihao Zhang
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Xianling Ji
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Youchao Xin
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Xiaodong Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| |
Collapse
|
4
|
Dao TNP, Onikanni SA, Fadaka AO, Sibuyi NRS, Le MH, Chang HH. Phytotherapeutic potential of compounds identified from fractionated extracts of Morus alba L., as an inhibitor of interleukin-6 in the treatment of rheumatoid arthritis: computational approach. J Biomol Struct Dyn 2024:1-14. [PMID: 38525928 DOI: 10.1080/07391102.2024.2330713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
The presence of HLA-DRB1 alleles that encode critical points associated with environmental interactions is associated with increased risk of rheumatoid arthritis caused by anti-citrullinated protein antibodies. Therefore, interleukin-6 (IL-6), a multifunctional cytokine that controls both local and systemic acute inflammatory responses through its ability to induce a phase response, plays a serious role. Its overexpression leads to pathological challenges such as rheumatoid arthritis and menopausal osteoporosis. However, targeting the IL-6 receptor and its region could be the major step in controlling the overexpression of this cytokine for therapeutic importance. Therefore, our research explored the computational insight needed to investigate the anti-RFA potential of phytochemicals from fractionated extracts of Morus alba L. against receptors, which have been implicated as druggable targets for the treatment of rheumatoid arthritis. In this study, fifty-nine (59) previously isolated and characterized phytochemicals from M. alba L. were identified from the literature and retrieved from the PubChem database. In silico screening was used to assess the mode of action of these phytochemicals from M. alba L. against receptors that may serve as therapeutic targets for rheumatoid arthritis. Molecular docking studies, toxicity prediction, drug visualization and molecular dynamics simulation (MD) of the ligands together with the receptor-identified target were carried out using the Schrodinger Molecular Drug Discovery Suite. The findings indicated that a selected group of ligands displayed significant binding strength to specific amino acid residues, revealing an important link between the building blocks of proteins (amino acids) and ligands at the inhibitor binding site through traditional chemical interactions, such as interactions between hydrophobic and hydrogen bonds. The binding affinities of the receptors were carefully checked via comparison with those of the approved ligands, and the results suggested structural and functional changes in the lead compounds. Therefore, the bioactive component from M. alba L. could be a lead foot interleukin-6 (IL-6) inhibitor and could be a promising lead compound for the treatment of rheumatoid arthritis and related challenges.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tran Nhat Phong Dao
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan (ROC)
- Faculty of Traditional Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Sunday Amos Onikanni
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taiwan (ROC)
- Department of Chemical Sciences, Biochemistry Unit, Afe-Babalola University, Ado-Ekiti, Nigeria
| | | | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, University of the Western Cape, Bellville, South Africa
| | - Minh Hoang Le
- Faculty of Traditional Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Hen-Hong Chang
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan (ROC)
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan (ROC)
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan (ROC)
| |
Collapse
|
5
|
Ji M, Gong J, Tian Y, Ao C, Li Y, Tan J, Du G. Comparison of microbial communities and volatile profiles of wines made from mulberry and grape. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12632-y. [PMID: 37382613 DOI: 10.1007/s00253-023-12632-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
In this study, three kinds of wines separately made from mulberry (MW), grape (GW), or mulberry/grape (MGW) were developed and their enological parameters, sensory scores, volatile components, and microbiota were investigated and compared. Contrary to the order of residual sugar and acidity of the three kinds of wines, the order of alcohol content from high to low is GW, MW, and MGW. A total of 60 volatile components (VCs), including esters (17), alcohols (12), acids (6), aldehydes (7), ketones (3), alkenes (3), amines (3), alkanes (4), pyrazines (2), benzene (1), sulfide (1), and thiazole (1), were identified by gas chromatography-ion mobility spectrometer (GC-IMS). The fingerprint of VCs and principal component analysis revealed that the volatile profiles of MGW and GW were more similar in comparison to that of MW and were significantly correlated with the mass ratio of mulberry to grape. Lactobacillus, Weissella, Pantoea, Leuconostoc, Lactococcus, Paenibacillus, Pediococcus, and Saccharomyces were identified as the main microflora at the genus level shared by the MW, MGW, and GW, suggesting that the heterolactic bacteria may contribute more to the high content of volatile acids in MW and MGW. The heatmap of core microbiota and main VCs of MW, MGW, and GW suggested the complicated and significant correlation between them. The above data implied that the volatile profiles were more closely related to the raw materials of winemaking and markedly affected by the fermentation microorganisms. This study provides references for evaluation and characterization of MGW and MW and improvement of MGW and MW winemaking process. KEY POINTS: • Fruit wine enological parameters, volatile profile, and microbiota were compared. • Sixty volatile compounds were identified by GC-IMS in three types of fruit wines. • Winemaking materials and microbiota affect volatile profiles of the fruit wines.
Collapse
Affiliation(s)
- Mingyue Ji
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jiangang Gong
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Yiling Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Changwei Ao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Yue Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jianxin Tan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| | - Guoqiang Du
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| |
Collapse
|
6
|
Li X, Hua Y, Yang C, Liu S, Tan L, Guo J, Li Y. Polysaccharides extracted from mulberry fruits (Morus nigra L.): antioxidant effect of ameliorating H 2O 2-induced liver injury in HepG2 cells. BMC Complement Med Ther 2023; 23:112. [PMID: 37046263 PMCID: PMC10091537 DOI: 10.1186/s12906-023-03925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Mori Fructus is an economical and readily available traditional Chinese medicine and food. Polysaccharides in Mori Fructus have clear antioxidant activity and have been found to alleviate oxidative stress (OS)-induced liver damage in experimental studies. The mechanism of regulation of cellular antioxidant activity by mulberry polysaccharides has been suggested to be Nrf2, but it is not clear whether the Nrf2 pathway is mediated by activation of other targets, and the exact process of effects in hepatocytes has yet to be elucidated. METHODS In this study, the basic characterization of total polysaccharides extracted from mulberry fruits (Morus nigra Linn.) was analyzed. A model of oxidative damage induced by H2O2 in HepG2 cells was established. The levels of cellular oxidation-related markers, including ROS, SOD and Gpx, were then examined. Furthermore, Q-PCR and Western-blot were used to detect the expression of genes and proteins related to the PI3K/Akt-mediated Nrf2 signaling pathway. RESULTS The results showed that a total mulberry polysaccharides (TMP) has a molecular weight of 57.5 kDa with a pyranose ring mainly composed of glucose (48.81%), galactose (22.79%) and mannose (18.2%). TMP reduced the accumulation of ROS in HepG2 cells after H2O2 treatment and modulated the activity of SOD and Gpx. Q-PCR and Western-blot showed that TMP could up-regulate the expression of p-PI3K, p-AKT, Nrf2, NQO1 and HO-1. CONCLUSIONS This study demonstrates that TMP can reduce ROS accumulation in H2O2-treated HepG2 cells and restore cell viability by activating the PI3K/AKT-mediated Nrf2 pathway. TMP may be a potent antioxidant agent that could slow down oxidative damage to the liver.
Collapse
Affiliation(s)
- Xinle Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Yanan Hua
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Caixia Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Sijing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Li Tan
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China.
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China.
| | - Yang Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China.
| |
Collapse
|
7
|
Wani MY, Ganie NA, Wani DM, Wani AW, Dar SQ, Khan AH, A Khan N, Manzar MS, Dehghani MH. The phenolic components extracted from mulberry fruits as bioactive compounds against cancer: A review. Phytother Res 2023; 37:1136-1152. [PMID: 36592613 DOI: 10.1002/ptr.7713] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 01/03/2023]
Abstract
In Asia, mulberry has long been used to treat various infectious and internal ailments as a traditional medication. The compounds found in it have the potential to improve human health. Because there is no approved and defined evaluation procedure, it has not been formally or scientifically recognized. As a result of these investigations, a new frontier in traditional Chinese medicine has opened up, with the possibility of modernization, for the interaction between active components of mulberry and their biological activities. These studies have used current biotechnological technologies. For ages, mulberry has been used as an herbal remedy in Asia to cure various diseases and internal disorders. It has a high concentration of bioactive chemicals that benefit human health. The most abundant phenolic components extracted from white mulberry leaves are flavonoids (Kuwanons, Moracinflavans, Moragrols, and Morkotins), phenolic acids, alkaloids, and so forth. Flavonoids, benzofurans, chalcones, and alkaloids have been discovered to have cytotoxic effects on human cancer cell lines. There is growing evidence that mulberry fruits can potentially prevent cancer and other aging-related disorders due to their high concentration of bioactive polyphenolic-rich compounds and macro and micronutrients. Anthocyanins are rapidly absorbed after eating, arriving in the plasmalemma within 15-50 min and entirely removed after 6-8 hr. Due to a lack of an approved and consistent technique for its examination, it has yet to be formally or scientifically recognized. The mulberry plant is commercially grown for silkworm rearing, and less attention is paid to its bioactive molecules, which have a lot of applications in human health. This review paper discusses the phenolic compounds of white mulberry and black mulberry in detail concerning their role in cancer prevention.
Collapse
Affiliation(s)
- Mohd Younus Wani
- College of Temperate Sericulture, Mirgund, SKUAST-Kashmir, Shalimar, India
| | - N A Ganie
- College of Temperate Sericulture, Mirgund, SKUAST-Kashmir, Shalimar, India
| | - D M Wani
- Division of Entomology, SKUAST-Kashmir, Shalimar, India
| | - Ab Waheed Wani
- Division of Fruit Science, SKUAST-Kashmir, Shalimar, India
| | - S Q Dar
- Division of Fruit Science, SKUAST-Kashmir, Shalimar, India
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, Jizan, Saudi Arabia
| | - Nadeem A Khan
- Civil Engineering Department, Mewat Engineering College, New Delhi, India
| | - Mohammad Saood Manzar
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
MnASI1 Mediates Resistance to Botrytis cinerea in Mulberry (Morus notabilis). Int J Mol Sci 2022; 23:ijms232113372. [PMID: 36362160 PMCID: PMC9656013 DOI: 10.3390/ijms232113372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Six α-amylase/subtilisin inhibitor genes (MnASIs) were identified from mulberry (Morus notabilis). In this study, bioinformatics and expression pattern analysis of six MnASIs were performed to determine their roles in resistance to B. cinerea. The expression of all six MnASIs was significantly increased under Botrytis cinerea infection. MnASI1, which responded strongly to B. cinerea, was overexpressed in Arabidopsis and mulberry. The resistance of Arabidopsis and mulberry overexpressing MnASI1 gene to B. cinerea was significantly improved, the catalase (CAT) activity was increased, and the malondialdehyde (MDA) content was decreased after inoculation with B. cinerea. At the same time, H2O2 and O2− levels were reduced in MnASI1 transgenic Arabidopsis, reducing the damage of ROS accumulation to plants. In addition, MnASI1 transgenic Arabidopsis increased the expression of the salicylic acid (SA) pathway-related gene AtPR1. This study provides an important reference for further revealing the function of α-amylase/subtilisin inhibitors.
Collapse
|
9
|
Hu Y, Liu L, Wang Z, Jiang CP, Zhu Z, Li H, Zeng Q, Xue Y, Wu Y, Wang Y, Yi Y, Zhu H, Shen C, Liu Q. Network pharmacology, molecular docking and in vivo and in vitro experiments to explore the molecular mechanism of licorice green tea beverage to scavenge oxygen free radicals. J Food Biochem 2022; 46:e14315. [PMID: 35855584 DOI: 10.1111/jfbc.14315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Excessive oxygen free radicals can lead to aging, cancer, and other diseases. Therefore, searching for effective antioxidants to scavenge oxygen free radicals has become the focus of modern medicine. In this study, the molecular mechanism of Licorice Green Tea Beverage (LGTB) in scavenging oxygen free radicals was investigated by means of network pharmacology, molecular docking and experimental verification. Network pharmacology studies have shown that paeonol, eugenol, cinnamaldehyde, swertisin, rutin, glycyrrhetinic acid, oleic, pelargonidin-3-O-glucoside and quercetin, kaferempol were the main active components of LGTB, and SOD and CAT are important targets for LGTB in scavenging oxygen free radicals. The results of molecular docking showed that these representative compounds had good affinity to SOD and CAT target proteins. In vitro free radical scavenging experiments showed that LTGB had significant scavenging effects on both DPPH and ABTS radicals, and had strong total reducing power. In vitro cell experiments showed that LGTB could protect HaCaT cells from oxidative stress induced by H2 O2 . The mechanism of LGTB was related to the increase of SOD and CAT activity. Western blotting showed that LGTB could inhibit PI3K/AKT/HIF-1 signaling pathway and improve the antioxidant capacity of HaCaT cells. In vivo experiments showed that LGTB could significantly increase mouse visceral index, increase serum SOD and GSH-Px activity, decrease the content of MDA, and improve liver and kidney pathological state. This study reported the molecular mechanism of LTGB scavenging oxygen free radicals, which provided scientific basis for the treatment and clinical research of aging and other diseases caused by excessive free radicals. PRACTICAL APPLICATIONS: Free radicals are produced by the normal response of cells during aerobic respiration and perform various functions, such as signaling and providing protection against infection. However, excessive free radicals can lead to aging, cancer, and other diseases. The antioxidant can overcome the harm caused by excessive free radicals. In this study, we investigated the molecular mechanism of scavenging oxygen free radicals of Licorice Green Tea Beverage (LGTB) through network pharmacology and molecular docking, and its efficacy was verified by free radical scavenging experiment in vitro, HaCaT cell oxidative stress injury induced by H2 O2 , D-galactose to establish an aging model in mice and Western blotting experiment. It not only elucidates its mechanism at the system level, but also proves its validity at the biological level. It provides the theoretical basis and experimental evidence for the follow-up research and promotion of the product.
Collapse
Affiliation(s)
- Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Cui Ping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Hui Li
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Yankui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
10
|
Bang SI, Kim HY, Seo WT, Lee AY, Cho EJ. Mulberry vinegar attenuates lipopolysaccharide and interferon gamma-induced inflammatory responses in C6 glial cells. J Food Biochem 2022; 46:e14197. [PMID: 35471556 DOI: 10.1111/jfbc.14197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
The present study evaluated the effect of mulberry vinegar (MV) on the regulation of the inflammatory responses using C6 glial cells. Treatment with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) induced the nitric oxide and reactive oxygen species generation, while pre-incubation with MV inhibited these formations in a concentration-dependent manner. MV treatment also decreased the production of pro-inflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α in C6 glial cells stimulated by LPS/IFN-γ. Compared to the LPS/IFN-γ-treated control group, the MV-treated group exerts downregulation in the protein expressions of inducible nitric oxide synthase and cyclooxygenase-2, through inhibition of nuclear factor-κB activation. Protein expressions of glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 were also decreased in the MV-treated group. These findings suggest that MV prevents neuroinflammation by regulating the NF-κB signaling pathway and glial activation. PRACTICAL APPLICATION: Mulberry fruits (Morus alba L.) have been commonly consumed as juice or jam. It is a rich source of anthocyanins that might be associated with beneficial effects on human health, including the anti-oxidant, anti-inflammatory, anti-obesity, and anti-diabetic effects. Mulberry vinegar was produced by alcohol and acetic fermentation of mulberry juice, and they possessed a protective effect against LPS/IFN-γ-stimulated inflammatory responses in glial cells via regulation of glial activation and NF-κB signaling pathway (i.e., downregulation of iNOS, COX-2, TLR4, p-IκB, and NF-κB p65 protein expressions). Although further research especially animal and clinical trials are still necessary, the present study will be helpful to scale-up the production of functional vinegar with neuroprotective and anti-inflammatory properties using mulberry.
Collapse
Affiliation(s)
- Se In Bang
- Department of Food Science and Nutrition, Pusan National University, Busan, South Korea
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju, South Korea
| | - Weon Tack Seo
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju, South Korea
| | - Ah Young Lee
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju, South Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan, South Korea
| |
Collapse
|
11
|
Chen T, Shuang FF, Fu QY, Ju YX, Zong CM, Zhao WG, Zhang DY, Yao XH, Cao FL. Evaluation of the Chemical Composition and Antioxidant Activity of Mulberry ( Morus alba L.) Fruits from Different Varieties in China. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092688. [PMID: 35566039 PMCID: PMC9102544 DOI: 10.3390/molecules27092688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Mulberry (Morus alba L.) fruit is a fruit with nutritional and medicinal value. It is widely cultivated in different regions of China, which may result in differences in its chemical composition. In this research, 25 mulberry fruit samples from six provinces in China were investigated. The contents of anthocyanins were evaluated by high-performance liquid chromatography (HPLC). The contents of two main anthocyanins, cyanidin-3-O-glucoside (C3G) and cyanidin-3-O-rutinoside (C3R), ranged from 0.656 ± 0.006 mg/g to 4.367 ± 0.243 mg/g and from 0.226 ± 0.007 mg/g to 1.649 ± 0.013 mg/g, respectively. Additionally, the contents of total phenolic, total flavonoid, vitamin C, titratable acids, reducing sugars and antioxidant capacity (FRAP, DPPH, scavenging and hydroxyl radical scavenging activity) were also assessed. The results and principal component analysis showed that the Zhongsang 5801 variety from Sichuan, Dechang had the greatest health value with the highest active compound contents. Based on our analysis, the variety from Sichuan, Dechang is a high-quality plant source for mulberry fruit cultivation. This research provides a basis for the rational development and utilization of mulberry fruit resources in China.
Collapse
Affiliation(s)
- Tao Chen
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (T.C.); (F.-F.S.); (Q.-Y.F.); (Y.-X.J.); (C.-M.Z.); (W.-G.Z.); (D.-Y.Z.)
| | - Fei-Fan Shuang
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (T.C.); (F.-F.S.); (Q.-Y.F.); (Y.-X.J.); (C.-M.Z.); (W.-G.Z.); (D.-Y.Z.)
| | - Qing-Yue Fu
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (T.C.); (F.-F.S.); (Q.-Y.F.); (Y.-X.J.); (C.-M.Z.); (W.-G.Z.); (D.-Y.Z.)
| | - Yu-Xiong Ju
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (T.C.); (F.-F.S.); (Q.-Y.F.); (Y.-X.J.); (C.-M.Z.); (W.-G.Z.); (D.-Y.Z.)
| | - Chen-Man Zong
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (T.C.); (F.-F.S.); (Q.-Y.F.); (Y.-X.J.); (C.-M.Z.); (W.-G.Z.); (D.-Y.Z.)
| | - Wei-Guo Zhao
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (T.C.); (F.-F.S.); (Q.-Y.F.); (Y.-X.J.); (C.-M.Z.); (W.-G.Z.); (D.-Y.Z.)
| | - Dong-Yang Zhang
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (T.C.); (F.-F.S.); (Q.-Y.F.); (Y.-X.J.); (C.-M.Z.); (W.-G.Z.); (D.-Y.Z.)
| | - Xiao-Hui Yao
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (T.C.); (F.-F.S.); (Q.-Y.F.); (Y.-X.J.); (C.-M.Z.); (W.-G.Z.); (D.-Y.Z.)
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (X.-H.Y.); (F.-L.C.); Tel./Fax: +86-511-8561-6673 (X.-H.Y.)
| | - Fu-Liang Cao
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (X.-H.Y.); (F.-L.C.); Tel./Fax: +86-511-8561-6673 (X.-H.Y.)
| |
Collapse
|
12
|
Zabady S, Mahran N, Soltan MA, Alaa Eldeen M, Eid RA, Albogami S, Fayad E, Matboli M, Habib EK, Hasanin AH, A. Ali M, Mesbah NM, Abo-Elmatty DM, Abdel-Hamed AR. Cyanidin-3-Glucoside Modulates hsa_circ_0001345/miRNA106b/ATG16L1 Axis Expression as a Potential Protective Mechanism against Hepatocellular Carcinoma. Curr Issues Mol Biol 2022; 44:1677-1687. [PMID: 35723373 PMCID: PMC9164082 DOI: 10.3390/cimb44040115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of malignancy in the liver. Autophagy was found to have a significant effect in controlling HCC. Anthocyanins, which are naturally occurring pigments in a variety of fruits and vegetables, have been thoroughly documented to be involved in a variety of bioactive activities and are widely employed for their antioxidant capabilities. Cyanidin-3-glucoside (C3G) extracted from Morus alba L. has promising antioxidant and anti-tumour activities. The current study aims to examine the protective action of C3G against hepatocellular carcinoma through the investigation of the autophagy protein ATG16L1 expression along with its related RNA molecules (hsa_circ_0001345 and miRNA106b) in Wistar rats. In vivo precancerous lesions (PCL) were induced using diethylnitrosamine (DEN) and acetamidofluorene (2-AAF). Rats were treated with C3G (10, 15, and 20 mg/kg; 4 times weekly) for 112 days (16 weeks). Liver function tests, alfa fetoprotein, ATG16L1 expression, hsa_circ_0001345, and miRNA106b differential expression were examined. Liver sections were examined by histological and immunohistochemical approaches. The current study’s findings indicated that C3G administration protects against the negative effects of DEN-2-AAF on liver functions and liver histopathological sections, which nominated C3G as a potential prophylactic agent against HCC.
Collapse
Affiliation(s)
- Shaimaa Zabady
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Ismailia 16020, Egypt;
| | - Nievin Mahran
- Department of Biochemistry, Faculty of Dentistry, Sinai University, Ismailia 16020, Egypt;
| | - Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia 16020, Egypt
- Correspondence: (M.A.S.); (M.A.E.); Tel.: +20-1004185481 (M.A.S.); +20-1090036420 (M.A.E.)
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Zoology Department, Faculty of Science, Zagazig University, Alsharquia 44519, Egypt
- Correspondence: (M.A.S.); (M.A.E.); Tel.: +20-1004185481 (M.A.S.); +20-1090036420 (M.A.E.)
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha 12573, Saudi Arabia;
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (S.A.); (E.F.)
| | - Eman Fayad
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (S.A.); (E.F.)
| | - Marwa Matboli
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Eman K. Habib
- Faculty of Medicine, Galala University, Galala City 43511, Egypt;
- Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Amany H. Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Mahmoud A. Ali
- Department of Molecular Microbiology, Faculty of Medicine, Armed Forces College, Cairo 11566, Egypt;
| | - Noha M. Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (N.M.M.); (D.M.A.-E.); (A.R.A.-H.)
| | - Dina M. Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (N.M.M.); (D.M.A.-E.); (A.R.A.-H.)
| | - Asmaa R. Abdel-Hamed
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (N.M.M.); (D.M.A.-E.); (A.R.A.-H.)
| |
Collapse
|
13
|
The Mulberry SPL Gene Family and the Response of MnSPL7 to Silkworm Herbivory through Activating the Transcription of MnTT2L2 in the Catechin Biosynthesis Pathway. Int J Mol Sci 2022; 23:ijms23031141. [PMID: 35163065 PMCID: PMC8835075 DOI: 10.3390/ijms23031141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, as unique plant transcription factors, play important roles in plant developmental regulation and stress response adaptation. Although mulberry is a commercially valuable tree species, there have been few systematic studies on SPL genes. In this work, we identified 15 full-length SPL genes in the mulberry genome, which were distributed on 4 Morus notabilis chromosomes. Phylogenetic analysis clustered the SPL genes from five plants (Malus × domestica Borkh, Populus trichocarpa, M. notabilis, Arabidopsis thaliana, and Oryza sativa) into five groups. Two zinc fingers (Zn1 and Zn2) were found in the conserved SBP domain in all of the MnSPLs. Comparative analyses of gene structures and conserved motifs revealed the conservation of MnSPLs within a group, whereas there were significant structure differences among groups. Gene quantitative analysis showed that the expression of MnSPLs had tissue specificity, and MnSPLs had much higher expression levels in older mulberry leaves. Furthermore, transcriptome data showed that the expression levels of MnSPL7 and MnSPL14 were significantly increased under silkworm herbivory. Molecular experiments revealed that MnSPL7 responded to herbivory treatment through promoting the transcription of MnTT2L2 and further upregulating the expression levels of catechin synthesis genes (F3′H, DFR, and LAR).
Collapse
|
14
|
Ma Z, Liu Y, Feng X, Ibrahim SA, Huang W. Effects of different carriers on physicochemical and antioxidant properties of freeze‐dried mulberry powder. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhili Ma
- School of Laboratory Medicine Hubei University of Chinese Medicine Wuhan China
| | - Yu Liu
- College of Food Science and Technology Huazhong Agricultural University Wuhan China
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging San Jose State University San Jose California USA
| | - Salam A. Ibrahim
- Department of Family and Consumer Sciences North Carolina A&T State University Greensboro North Carolina USA
| | - Wen Huang
- College of Food Science and Technology Huazhong Agricultural University Wuhan China
| |
Collapse
|
15
|
Characterization of the Chitinase Gene Family in Mulberry (Morus notabilis) and MnChi18 Involved in Resistance to Botrytis cinerea. Genes (Basel) 2021; 13:genes13010098. [PMID: 35052438 PMCID: PMC8774697 DOI: 10.3390/genes13010098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Chitinase is a hydrolase that uses chitin as a substrate. It plays an important role in plant resistance to fungal pathogens by degrading chitin. Here, we conducted bioinformatics analysis and transcriptome data analysis of the mulberry (Morus notabilis) chitinase gene family to determine its role in the resistance to Botrytis cinerea. A total of 26 chitinase genes were identified, belonging to the GH18 and GH19 families. Among them, six chitinase genes were differentially expressed under the infection of B. cinerea. MnChi18, which significantly responded to B. cinerea, was heterologously expressed in Arabidopsis (Arabidopsis thaliana). The resistance of MnChi18 transgenic Arabidopsis to B. cinerea was significantly enhanced, and after inoculation with B. cinerea, the activity of catalase (CAT) increased and the content of malondialdehyde (MDA) decreased. This shows that overexpression of MnChi18 can protect cells from damage. In addition, our study also indicated that MnChi18 may be involved in B. cinerea resistance through other resistance-related genes. This study provides an important basis for further understanding the function of mulberry chitinase.
Collapse
|
16
|
Chuah HQ, Tang PL, Ang NJ, Tan HY. Submerged fermentation improves bioactivity of mulberry fruits and leaves. CHINESE HERBAL MEDICINES 2021; 13:565-572. [PMID: 36119358 PMCID: PMC9476717 DOI: 10.1016/j.chmed.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Objective Mulberry (Morus spp.) fruits and leaves have been proven to possess nutraceutical properties. Due to its fast and easy growing characteristics, mulberry fruits (MF) and leaves (ML) potentially emerge as a great source of functional foods. This study aims to enhance bioactivities (antioxidant, anti-inflammation, and hypoglycemic activity) of MF and ML via submerged fermentation using bacteria (Lactobacillus plantarum TAR 4), yeast (Baker’s yeast and red yeast) and fungi (Tempeh and Tapai starter). Methods In this study, 25% (mass to volume ratio) of MF and ML were fermented (48 h) with 1% (mass to volume ratio) of different microbial cultures, respectively. Effects of different fermentations on MF and ML were determined based on the changes of total phenolics (TPC), flavonoids (TFC), anthocyanins, total sugar, DPPH activity, ferric reducing antioxidant power (FRAP), albumin denaturation inhibition activity (ADI), anti-lipoxygenase activity and α-amylase inhibition activity (AI). Results Generally, ML had higher AI than MF. However, MF exhibited higher DPPH, FRAP and anti-lipoxygenase activity than ML. After all forms of fermentation, DPPH and AI activity of MF and ML were increased significantly (P < 0.05). However, the effects of fermentation on TPC, FRAP, ADI and anti-lipoxygenase activity of MF were in contrast with ML. TPC, FRAP and anti-lipoxygenase activity of ML were enhanced, but reduced in MF after fermentation. Although the effects exerted by different microorganisms in MF and ML fermentation were different, the bioactivities of MF and ML were generally improved after fermentation. Fermentation by Tempeh starter enhanced TPC (by 2-fold), FRAP (by 2.3-fold), AI (at 10% increment) and anti-lipoxygenase activity (by 5-fold) of ML, whereas Tapai fermentation effectively enhanced the DPPH (at 17% increment) and ADI (by 2-fold) activity of MF. Conclusion Findings of this study provide an insight into the future process design of MF and ML processing into novel functional foods.
Collapse
|
17
|
Pang Z, Zhu Q. Traditional Chinese Medicine is an Alternative Therapeutic Option for Treatment of Pseudomonas aeruginosa Infections. Front Pharmacol 2021; 12:737252. [PMID: 34512364 PMCID: PMC8429605 DOI: 10.3389/fphar.2021.737252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing life-threatening infections in cystic fibrosis patients and immunocompromised individuals, and it is a leading cause of nosocomial infections associated with significant morbidity and mortality. Treatment of P. aeruginosa infections is challenging due to the antibiotic resistance to most of the conventional antibiotics. Development of alternative therapeutic options is urgently demanded for the patients who have antibiotic-resistant infections. Traditional Chinese medicine (TCM) has a clinical history of thousands of years for prevention and treatment of infectious diseases in China, taking advantages of improving clinical outcomes, producing less side effects, inhibiting pathogen, and modulating host immunity. Recent research has revealed a variety of natural products derived from TCM showing significant antimicrobial effects on antibiotic-resistant strains of P. aeruginosa alone or combined with antibiotics in vitro or in animal models, suggesting that TCM is a promising complementary and alternative therapeutic approach for treatment of chronic P. aeruginosa infections. This review summarizes the recent findings attempting to dissect the mechanisms of TCM combating P. aeruginosa infections and highlights the molecular targets of TCM on P. aeruginosa and host.
Collapse
Affiliation(s)
- Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
18
|
Chang BY, Koo BS, Kim SY. Pharmacological Activities for Morus alba L., Focusing on the Immunostimulatory Property from the Fruit Aqueous Extract. Foods 2021; 10:foods10081966. [PMID: 34441742 PMCID: PMC8393821 DOI: 10.3390/foods10081966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
Depending on the extraction method, numerous compounds that have specific pharmacological effects can be obtained from M. alba L. There is a growing scientific interest in health problems related to aging. Efforts to develop safe immune-enhancing pharmaceuticals are increasing. This review aims to summarize and critically discuss the immunity enhancement effects and pharmaceutical efficacy of M. alba L. extracts. The scientific database search was conducted using Google Scholar, Web of Science, and PubMed until May 2021. Additional articles were identified and obtained from references in the retrieved articles. Ethanol or methanol extraction of various parts of M. alba L. identified a large amount of phenols and flavonoids, which are effective for immunosuppression, antioxidants, and cardiovascular diseases, and are antibacterial, and anticancer. Water extraction of M. alba L. enhanced the innate immune response based on immune cell activation. A polysaccharide and an alkaloid related to increased macrophage activity were isolated from M. alba L. fruit extracts. M. alba L. fruit water extracts primarily induced the production of pro-inflammatory substances, in model organisms, via TLR4 in immune cells. Water extracts have been shown to be effective in pathogen defense and tumor suppression by enhancing macrophage activity. Based on our literature review on the bioactivity of M. alba L. fruit extracts, particularly in relation to their immunity enhancement activity, we anticipate that M. alba-derived pharmaceuticals will have excellent potential in future medical research.
Collapse
Affiliation(s)
- Bo-Yoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Jeonbuk, Iksan 54538, Korea;
| | - Bong-Seong Koo
- ForBioKorea Co., Ltd., Geumcheon-gu, Seoul 08592, Korea;
| | - Sung-Yeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Jeonbuk, Iksan 54538, Korea;
- Correspondence: ; Tel.: +82-63-850-6806
| |
Collapse
|
19
|
Li H, Luo Y, Ma B, Hu J, Lv Z, Wei W, Hao H, Yuan J, He N. Hierarchical Action of Mulberry miR156 in the Vegetative Phase Transition. Int J Mol Sci 2021; 22:ijms22115550. [PMID: 34074049 PMCID: PMC8197408 DOI: 10.3390/ijms22115550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 02/03/2023] Open
Abstract
The vegetative phase transition is a prerequisite for flowering in angiosperm plants. Mulberry miR156 has been confirmed to be a crucial factor in the vegetative phase transition in Arabidopsis thaliana. The over-expression of miR156 in transgenic Populus × canadensis dramatically prolongs the juvenile phase. Here, we find that the expression of mno-miR156 decreases with age in all tissues in mulberry, which led us to study the hierarchical action of miR156 in mulberry. Utilizing degradome sequencing and dual-luciferase reporter assays, nine MnSPLs were shown to be directly regulated by miR156. The results of yeast one-hybrid and dual-luciferase reporter assays also revealed that six MnSPLs could recognize the promoter sequences of mno-miR172 and activate its expression. Our results demonstrate that mno-miR156 performs its role by repressing MnSPL/mno-miR172 pathway expression in mulberry. This work uncovered a miR156/SPLs/miR172 regulation pathway in the development of mulberry and fills a gap in our knowledge about the molecular mechanism of vegetative phase transition in perennial woody plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ningjia He
- Correspondence: ; Tel.: +86-23-6825-0797; Fax: +86-23-6825-1128
| |
Collapse
|
20
|
Tam DNH, Nam NH, Elhady MT, Tran L, Hassan OG, Sadik M, Tien PTM, Elshafei GA, Huy NT. Effects of Mulberry on The Central Nervous System: A Literature Review. Curr Neuropharmacol 2020; 19:193-219. [PMID: 32379591 PMCID: PMC8033976 DOI: 10.2174/1570159x18666200507081531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/09/2022] Open
Abstract
Background Mulberry, including several species belonging to genus Morus, has been widely used as a traditional medicine for a long time. Extracts and active components of mulberry have many positive neurological and biological effects and can become potential candidates in the search for new drugs for neurological disorders. Objectives We aimed to systematically review the medical literature for evidence of mulberry effects on the central nervous system. Methods We conducted a systematic search in nine databases. We included all in vivo studies investigating the effect of mulberry on the central nervous system with no restrictions. Results We finally included 47 articles for quality synthesis. Our findings showed that mulberry and its components possessed an antioxidant effect, showed a reduction in the cerebral infarct volume after stroke. They also improved the cognitive function, learning process, and reduced memory impairment in many animal models. M. alba and its extracts ameliorated Parkinson's disease-like behaviors, limited the complications of diabetes mellitus on the central nervous system, possessed anti-convulsant, anti-depressive, and anxiolytic effects. Conclusion Mulberry species proved beneficial to many neurological functions in animal models. The active ingredients of each species, especially M. alba, should be deeper studied for screening potential candidates for future treatments.
Collapse
Affiliation(s)
| | - Nguyen Hai Nam
- Department of General Surgery, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam
| | | | - Linh Tran
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
| | | | - Mohamed Sadik
- Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | | | | - Nguyen Tien Huy
- Evidence Based Medicine Research Group, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
21
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
22
|
Muhonja L, Yamanouchi H, Yang CC, Kuwazaki S, Yokoi K, Kameda T, Sezutsu H, Jouraku A. Genome-wide SNP marker discovery and phylogenetic analysis of mulberry varieties using double-digest restriction site-associated DNA sequencing. Gene 2020; 726:144162. [DOI: 10.1016/j.gene.2019.144162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022]
|
23
|
Cheng KC, Wang CJ, Chang YC, Hung TW, Lai CJ, Kuo CW, Huang HP. Mulberry fruits extracts induce apoptosis and autophagy of liver cancer cell and prevent hepatocarcinogenesis in vivo. J Food Drug Anal 2020; 28:84-93. [DOI: 10.1016/j.jfda.2019.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/15/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
|
24
|
He X, Chen X, Ou X, Ma L, Xu W, Huang K. Evaluation of flavonoid and polyphenol constituents in mulberry leaves using HPLC fingerprint analysis. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering China Agricultural University Beijing 100083China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) Ministry of Agriculture Beijing 100083China
| | - Xu Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering China Agricultural University Beijing 100083China
| | - Xiaoqun Ou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering China Agricultural University Beijing 100083China
| | - Liyan Ma
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) Ministry of Agriculture Beijing 100083China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering China Agricultural University Beijing 100083China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) Ministry of Agriculture Beijing 100083China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering China Agricultural University Beijing 100083China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) Ministry of Agriculture Beijing 100083China
| |
Collapse
|
25
|
Zoofishan Z, Kúsz N, Csorba A, Tóth G, Hajagos-Tóth J, Kothencz A, Gáspár R, Hunyadi A. Antispasmodic Activity of Prenylated Phenolic Compounds from the Root Bark of Morus nigra. Molecules 2019; 24:E2497. [PMID: 31288489 PMCID: PMC6659382 DOI: 10.3390/molecules24132497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Black mulberry is a widely acknowledged ancient traditional medicine. Its extract and constituents have been reported to exert various bioactivities including antimicrobial, hypotensive, analgesic etc. effects. While black mulberry preparations are also used as antispasmodic agents in folk medicine, no related studies are available on its isolated constituents. Through an extensive chromatographic purification, seven phenolic compounds were isolated from the methanol extract of Morus nigra root bark, including morusin (1), kuwanon U (2), kuwanon E (3), moracin P (4), moracin O (5), albanol A (6), and albanol B (7). A complete NMR signal assignment of moracin P and O was achieved, and related literature errors confusing the identity of moracin derivatives are hereby clarified. Compounds 2, 5 and 7 were identified as strong antispasmodic agents on isolated rat ileum and tracheal smooth muscles, while compound 3, a methoxy derivative of 2, was inactive. Moracin O (5) inhibited the ileal and tracheal smooth muscle contractions with Emax values of 85% and 302 mg, respectively. Those actions were superior as compared with papaverine. Our findings demonstrate that prenylated arylbenzofurans, geranylated flavonoids and Diels-Alder adducts from Morus nigra are valuable antispasmodic agents. Compounds 2, 5 and 7 are suggested as marker compounds for quality control of antispasmodic mulberry preparations. Moracin O (5) is a new lead compound for related drug development initiatives.
Collapse
Affiliation(s)
- Zoofishan Zoofishan
- Institute of Pharmacognosy, Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary
| | - Norbert Kúsz
- Institute of Pharmacognosy, Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary
| | - Attila Csorba
- Institute of Pharmacognosy, Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor Tóth
- NMR Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért Sq. 4, H-1111 Budapest, Hungary
| | - Judit Hajagos-Tóth
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, H-670 Szeged, Hungary
| | - Anna Kothencz
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, H-670 Szeged, Hungary
| | - Róbert Gáspár
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, H-670 Szeged, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary.
- Interdisciplinary Centre for Natural Products, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
26
|
Wongwat T, Srihaphon K, Pitaksutheepong C, Boonyo W, Pitaksuteepong T. Suppression of inflammatory mediators and matrix metalloproteinase (MMP)-13 by Morus alba stem extract and oxyresveratrol in RAW 264.7 cells and C28/I2 human chondrocytes. J Tradit Complement Med 2019; 10:132-140. [PMID: 32257876 PMCID: PMC7109470 DOI: 10.1016/j.jtcme.2019.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/25/2023] Open
Abstract
This study aimed to investigate the effects of Morus alba stem extract (MSE) and oxyresveratrol on the suppression of pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophages and IL-1β-stimulated C28/I2 human chondrocyte cell line. The chondroprotective effect was also investigated using the chondrocyte cell line. First, MSE was prepared and analyzed for the amount of oxyresveratrol. The anti-inflammatory effects of MSE at various concentrations were evaluated through the inhibition of nitric oxide (NO), prostaglandin (PG)-E2 and cyclooxygenase (COX)-2 production. Oxyresveratrol at the equivalent amount found in the extract was investigated in the same manner. The chondroprotective effect was investigated through the suppression of MMP-13 production. The results showed that oxyresveratrol content in MSE was 15%. In RAW 264.7 cells, MSE (5-50 μg/mL) could inhibit the NO (24-30%) and PGE2 (11-82%) production. Oxyresveratrol at 0.75 and 7.5 μg/mL could suppress NO and also inhibited PGE2 but at only at high concentration. In the chondrocyte cell line, MSE at 5-100 μg/mL significantly decreased the PGE2 and COX-2 production by 44-93% and 17-65%, respectively. Again, oxyresveratrol at both concentrations could significantly inhibit PGE2 production by 50-92% but it inhibited COX-2 only at high concentration. In addition, MSE and oxyresveratrol was shown to significantly inhibit MMP-13 production by 14-57% and 16-56%, depending on their concentrations. The MSE demonstrates the potential to be used as an alternative treatment for reducing inflammation and preventing cartilage degradation. Its component, oxyresveratrol, may exert these effects to some extent.
Collapse
Affiliation(s)
- Thidarat Wongwat
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Tha Pho, Mueang Phitsanulok, Phitsanulok, 65000, Thailand
| | - Kanyarat Srihaphon
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Tha Pho, Mueang Phitsanulok, Phitsanulok, 65000, Thailand
| | - Chetsadaporn Pitaksutheepong
- Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Worawan Boonyo
- Department of Pharmacy Technician, Sirindhorn College of Public Health, Wangthong, Phitsanulok, 65130, Thailand
| | - Tasana Pitaksuteepong
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Tha Pho, Mueang Phitsanulok, Phitsanulok, 65000, Thailand
- Corresponding author.
| |
Collapse
|
27
|
Naseri R, Farzaei F, Haratipour P, Nabavi SF, Habtemariam S, Farzaei MH, Khodarahmi R, Tewari D, Momtaz S. Anthocyanins in the Management of Metabolic Syndrome: A Pharmacological and Biopharmaceutical Review. Front Pharmacol 2018; 9:1310. [PMID: 30564116 PMCID: PMC6288909 DOI: 10.3389/fphar.2018.01310] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
The term "metabolic syndrome" (MetS) refers to a combination of diabetes, high blood pressure, and obesity. The origin of MetS includes a combination of multiple factors, such as sedentary lifestyle, unhealthy diet choice, and genetic factors. MetS is highly prevalent and adversely affects the general population by elevating risk of cardiovascular complications, organ failure, and much other pathology associated with late-stage diabetes. Anthocyanins (ANTs) are health-promoting bioactive compounds belonging to the flavonoids subclass of polyphenols. Numerous studies have reported the potential therapeutic benefits on MetS syndrome and diabetes from fruits rich in ANTs. This review summarizes the role of several dietary ANTs on preventing and managing MetS as well as the pharmacological mechanisms and biopharmaceutical features of their action. We also discuss potential nanoformulation and encapsulation approaches that may enhance the bioefficacy of ANTs in MetS. Experiments have demonstrated that ANTs may attenuate the symptoms of MetS via improving insulin resistance, impaired glucose tolerance, dyslipidaemia, cholesterol levels, hypertension, blood glucose, protecting β cells, and preventing free radical production. In brief, the intake of ANT-rich supplements should be considered due to their plausible ability for prevention and management of MetS. Additionally, randomized double-blind clinical trials are obligatory for evaluating the bioefficacy and pharmacological mechanisms of ANTs and their pharmaceutical formulations in patients with MetS.
Collapse
Affiliation(s)
- Rozita Naseri
- Internal Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pouya Haratipour
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
- Phyto Pharmacology Interest Group, Universal Scientific Education and Research Network, Los Angeles, CA, United States
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Kent, United Kingdom
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Nainital, India
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Ma Q, Santhanam RK, Xue Z, Guo Q, Gao X, Chen H. Effect of different drying methods on the physicochemical properties and antioxidant activities of mulberry leaves polysaccharides. Int J Biol Macromol 2018; 119:1137-1143. [PMID: 30098363 DOI: 10.1016/j.ijbiomac.2018.08.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 01/20/2023]
Abstract
This study aimed to optimize the suitable drying method to obtain high yield of polysaccharides from mulberry leaves and to determine their structural characterization and antioxidant activities. The effects of three different drying methods such as air dried, hot air dried (55 °C, 65 °C & 75 °C) and freeze dried on the physicochemical and antioxidant properties of mulberry leaves polysaccharides were studied using gas chromatography, high performance gel permeation chromatography, Fourier transform infrared spectroscopy, scanning electron micrography and antioxidant assays. Results revealed that pre-treatment remarkably influenced the changes in their physicochemical and antioxidant properties. In comparison with the other drying techniques, freeze dried polysaccharides showed more rough morphologies and significant antioxidant property. The yield of polysaccharides from the freeze dried sample was about 28.88% higher than the yield of hot air dried sample. The MDA activity of freeze dried sample was about 95.45%. Overall, the results suggested that the freeze drying technique was the appropriate method to extract polysaccharides from mulberry leaves that offered significant biological properties.
Collapse
Affiliation(s)
- Qiqi Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ramesh Kumar Santhanam
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Qingwen Guo
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
29
|
Abstract
This study was conducted to investigate the effects of ultrasonic treatments on the extraction yield and the quality of mulberry juice. The mulberry mash was treated with ultrasound at different incubation times from 30 to 120 min and different temperatures from 30 to 75 °C. The determination of the juice yield, total phenolic content, total anthocyanin content, antioxidant capacity, l-ascorbic acid content, total soluble solids, and the titratable acidity of the juice were carried out. Overall, applying ultrasound at 45 °C for 60 min resulted in the highest juice yield and antioxidant contents for the mulberry juice. The ultrasonic treatment increased the extraction yield (29.6%), the total soluble solid (8.7%), the titratable acidity (39.3%), the l-ascorbic acid content (94.3%), total phenolic content (174.1%), total anthocyanin content (156.9%) and the antioxidant capacity (40.7%) of the mulberry juice as compared to pressing only. A strong positive correlation between the total phenolic content and the antioxidant capacity indicated that phenolic compounds were the main antioxidants in the beverage.
Collapse
|
30
|
|
31
|
Zhang H, Ma ZF, Luo X, Li X. Effects of Mulberry Fruit ( Morus alba L.) Consumption on Health Outcomes: A Mini-Review. Antioxidants (Basel) 2018; 7:E69. [PMID: 29883416 PMCID: PMC5981255 DOI: 10.3390/antiox7050069] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/25/2022] Open
Abstract
Mulberry (Morus alba L.) belongs to the Moraceae family and is widely planted in Asia. Mulberry fruits are generally consumed as fresh fruits, jams and juices. They contain considerable amounts of biologically active ingredients that might be associated with some potential pharmacological activities that are beneficial for health. Therefore, they have been traditionally used in traditional medicine. Studies have reported that the presence of bioactive components in mulberry fruits, including alkaloids and flavonoid, are associated with bioactivities such as antioxidant. One of the most important compounds in mulberry fruits is anthocyanins which are water-soluble bioactive ingredients of the polyphenol class. Studies have shown that mulberry fruits possess several potential pharmacological health benefits including anti-cholesterol, anti-obesity and hepatoprotective effects which might be associated with the presence of some of these bioactive compounds. However, human intervention studies on the pharmacological activities of mulberry fruits are limited. Therefore, future studies should explore the effect of mulberry fruit consumption on human health and elucidate the detailed compounds. This paper provides an overview of the pharmacological activities of mulberry fruits.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand.
| | - Zheng Feei Ma
- Department of Public Health, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 15200, Malaysia.
| | - Xiaoqin Luo
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| | - Xinli Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
32
|
Yu MH, Yang TY, Ho HH, Huang HP, Chan KC, Wang CJ. Mulberry Polyphenol Extract Inhibits FAK/Src/PI3K Complex and Related Signaling To Regulate the Migration in A7r5 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3860-3869. [PMID: 29606008 DOI: 10.1021/acs.jafc.8b00958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atherosclerosis is characterized by the buildup of plaque inside arteries. Our recent studies demonstrated that polyphenolic natural products can reduce oxidative stress, inflammation, angiogenesis, hyperlipidemia, and hyperglycemia. A previous study also showed that mulberry water extract (MWE) can inhibit atherosclerosis and contains considerable amounts of polyphenols. Therefore, in the present study, we investigated whether mulberry polyphenol extract (MPE) containing high levels of polyphenolic compounds could affect vascular smooth muscle cell (VSMC; A7r5 cell) motility. We found that MPE inhibited expression of FAK, Src, PI3K, Akt, c-Raf, and suppressed FAK/Src/PI3K interaction. Further investigations showed that MPE reduced expression of small GTPases (RhoA, Cdc42, and Rac1) to affect F-actin cytoskeleton rearrangement, down-regulated expression of MMP2 and vascular endothelial growth factor (VEGF) mRNA through NFκB signaling, and thereby inhibited A7r5 cell migration. Taken together, these findings highlight MPE inhibited migration in VSMC through FAK/Src/PI3K signaling pathway.
Collapse
|
33
|
Luo Y, Li H, Xiang Z, He N. Identification of Morus notabilis MADS-box genes and elucidation of the roles of MnMADS33 during endodormancy. Sci Rep 2018; 8:5860. [PMID: 29643336 PMCID: PMC5895635 DOI: 10.1038/s41598-018-23985-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/22/2018] [Indexed: 11/24/2022] Open
Abstract
The MADS-box genes encode transcriptional regulators with various functions especially during floral development. A total of 54 putative Morus notabilis MADS-box genes (MnMADSs) were identified and phylogenetically classified as either type I (17 genes) or type II (37 genes). The detected genes included three FLOWERING LOCUS C-like (MnFLC-like) genes, MnMADS33, MnMADS50, and MnMADS7. MnFLC-like proteins could directly or indirectly repress promoter activity of the mulberry FLOWERING LOCUS T-like (MnFT) gene. Transgenic Arabidopsis thaliana overexpressing MnFLC-like genes exhibited delayed flowering and down-regulated expression of FT and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). The gene expression analyses in floral bud indicated that MnMADS33 expression increased, while MnFT expression decreased during the induction of dormancy in response to cold conditions. Dormancy release resulted in the down-regulation of MnMADS33 expression and the up-regulation of MnFT expression. Furthermore, abscisic acid promoted the transcription of MnMADS33 and MnFT, although the expression level of MnFT gradually decreased. These results are consistent with the hypothesis that MnMADS33 negatively regulated the expression of MnFT to repress dormancy release and flowering in mulberry. This study may be relevant for future investigations regarding the effects of MnMADS genes on mulberry flowering development.
Collapse
Affiliation(s)
- Yiwei Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Hongshun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, P. R. China.
| |
Collapse
|
34
|
Lee D, Yu JS, Lee SR, Hwang GS, Kang KS, Park JG, Kim HY, Kim KH, Yamabe N. Beneficial Effects of Bioactive Compounds in Mulberry Fruits against Cisplatin-Induced Nephrotoxicity. Int J Mol Sci 2018; 19:ijms19041117. [PMID: 29642519 PMCID: PMC5979275 DOI: 10.3390/ijms19041117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/01/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Mulberry, the fruit of white mulberry tree (Morus alba L., Moraceae), is commonly used in traditional Chinese medicines as a sedative, tonic, laxative, and emetic. In our continuing research of the bioactive metabolites from mulberry, chemical analysis of the fruits led to the isolation of five compounds, 1–5. The compounds were identified as butyl pyroglutamate (1), quercetin 3-O-β-d-glucoside (2), kaempferol 3-O-β-d-rutinoside (3), rutin (4), and 2-phenylethyl d-rutinoside (5) by spectroscopic data analysis, comparing their nuclear magnetic resonance (NMR) data with those in published literature, and liquid chromatography–mass spectrometry analysis. The isolated compounds 1–5 were evaluated for their effects on anticancer drug-induced side effects by cell-based assays. Compound 1 exerted the highest protective effect against cisplatin-induced kidney cell damage. This effect was found to be mediated through the attenuation of phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, p38, mitogen-activated protein kinase, and caspase-3 in cisplatin-induced kidney cell damage.
Collapse
Affiliation(s)
- Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Jae Gyu Park
- Advanced Bio Convergenve Center, Pohang Technopark, Pohang 37668, Korea.
| | - Hyun Young Kim
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| |
Collapse
|
35
|
Ganesan P, Ramalingam P, Karthivashan G, Ko YT, Choi DK. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomedicine 2018; 13:1569-1583. [PMID: 29588585 PMCID: PMC5858819 DOI: 10.2147/ijn.s155593] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Solid lipid nanoparticle (SLN) delivery systems have a wide applicability in the delivery of phyto-bioactive compounds to treat various chronic diseases, including diabetes, cancer, obesity and neurodegenerative diseases. The multiple benefits of SLN delivery include improved stability, smaller particle size, leaching prevention and enhanced lymphatic uptake of the bioactive compounds through oral delivery. However, the burst release makes the SLN delivery systems inadequate for the oral delivery of various phyto-bioactive compounds that can treat such chronic diseases. Recently, the surface-modified SLN (SMSLN) was observed to overcome this limitation for oral delivery of phyto-bioactive compounds, and there is growing evidence of an enhanced uptake of curcumin delivered orally via SMSLNs in the brain. This review focuses on different SLN and SMSLN systems that are useful for oral delivery of phyto-bioactive compounds to treat various chronic diseases.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
- Nanotechnology Research Center and Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
| | - Prakash Ramalingam
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Govindarajan Karthivashan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
- Nanotechnology Research Center and Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
36
|
Ho L, Cheng H, Wang J, Simon JE, Wu Q, Zhao D, Carry E, Ferruzzi MG, Faith J, Valcarcel B, Hao K, Pasinetti GM. A Comprehensive Database and Analysis Framework To Incorporate Multiscale Data Types and Enable Integrated Analysis of Bioactive Polyphenols. Mol Pharm 2018; 15:840-850. [PMID: 28665131 DOI: 10.1021/acs.molpharmaceut.7b00412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of a given botanical preparation for eventual clinical application requires extensive, detailed characterizations of the chemical composition, as well as the biological availability, biological activity, and safety profiles of the botanical. These issues are typically addressed using diverse experimental protocols and model systems. Based on this consideration, in this study we established a comprehensive database and analysis framework for the collection, collation, and integrative analysis of diverse, multiscale data sets. Using this framework, we conducted an integrative analysis of heterogeneous data from in vivo and in vitro investigation of a complex bioactive dietary polyphenol-rich preparation (BDPP) and built an integrated network linking data sets generated from this multitude of diverse experimental paradigms. We established a comprehensive database and analysis framework as well as a systematic and logical means to catalogue and collate the diverse array of information gathered, which is securely stored and added to in a standardized manner to enable fast query. We demonstrated the utility of the database in (1) a statistical ranking scheme to prioritize response to treatments and (2) in depth reconstruction of functionality studies. By examination of these data sets, the system allows analytical querying of heterogeneous data and the access of information related to interactions, mechanism of actions, functions, etc., which ultimately provide a global overview of complex biological responses. Collectively, we present an integrative analysis framework that leads to novel insights on the biological activities of a complex botanical such as BDPP that is based on data-driven characterizations of interactions between BDPP-derived phenolic metabolites and their mechanisms of action, as well as synergism and/or potential cancellation of biological functions. Out integrative analytical approach provides novel means for a systematic integrative analysis of heterogeneous data types in the development of complex botanicals such as polyphenols for eventual clinical and translational applications.
Collapse
Affiliation(s)
- Lap Ho
- Department of Neurology , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States.,Geriatric Research, Education & Clinical Center , James J. Peters Veterans Affairs Medical Center , Bronx , New York 10468 , United States
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States.,Icahn Institute of Genomics and Multiscale Biology , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jun Wang
- Department of Neurology , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - James E Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology , Rutgers University , New Brunswick , New Jersey 08901 , United States
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology , Rutgers University , New Brunswick , New Jersey 08901 , United States
| | - Danyue Zhao
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology , Rutgers University , New Brunswick , New Jersey 08901 , United States
| | - Eileen Carry
- Department of Medicinal Chemistry , Ernest Mario School of Pharmacy , Piscataway , New Jersey 08854 , United States
| | - Mario G Ferruzzi
- Plants for Human Health Institute , North Carolina State University , Kannapolis , North Carolina 27695 , United States
| | - Jeremiah Faith
- Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Breanna Valcarcel
- Department of Neurology , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Ke Hao
- Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States.,Icahn Institute of Genomics and Multiscale Biology , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Giulio M Pasinetti
- Department of Neurology , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States.,Geriatric Research, Education & Clinical Center , James J. Peters Veterans Affairs Medical Center , Bronx , New York 10468 , United States
| |
Collapse
|
37
|
Liao S, Liu J, Xu M, Zheng J. Evaluation of the Liver Cancer Prevention of Anthocyanin Extracts from Mulberry (<i>Morus alba</i> L.) Variety PR-01. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/abb.2018.99030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Mascarello A, Orbem Menegatti AC, Calcaterra A, Martins PGA, Chiaradia-Delatorre LD, D'Acquarica I, Ferrari F, Pau V, Sanna A, De Logu A, Botta M, Botta B, Terenzi H, Mori M. Naturally occurring Diels-Alder-type adducts from Morus nigra as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B. Eur J Med Chem 2018; 144:277-288. [DOI: 10.1016/j.ejmech.2017.11.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/14/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022]
|
39
|
Yan F, Chen X, Zheng X. Protective effect of mulberry fruit anthocyanin on human hepatocyte cells (LO2) and Caenorhabditis elegans under hyperglycemic conditions. Food Res Int 2017; 102:213-224. [DOI: 10.1016/j.foodres.2017.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 11/27/2022]
|
40
|
Yang J, Wen H, Zhang L, Zhang X, Fu Z, Li J. The influence of ripening stage and region on the chemical compounds in mulberry fruits (Morus atropurpurea Roxb.) based on UPLC-QTOF-MS. Food Res Int 2017; 100:159-165. [PMID: 28888436 DOI: 10.1016/j.foodres.2017.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/09/2017] [Accepted: 08/12/2017] [Indexed: 11/17/2022]
Abstract
Mulberries (Morus atropurpurea Roxb.) are rich in beneficial nutrients and secondary metabolites. Dramatic climate differences between western and eastern China lead to differences among the fruiting habits of mulberries grown in these regions. In this study, Xinjiang and Jiangsu, two regions in western and eastern China, respectively, were selected as sites where mulberry fruits (MFs) at different ripening stages were sampled. Their individual components, including both targeted and non-targeted chemical compounds, were detected by rapid ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Multivariate statistical analyses, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to compare MFs during ripening from these two regions. Potential biomarkers, which significantly contributed to the differentiation of the samples, were further identified or tentatively identified to determine the effects of ripening stages and regions on the chemical compounds in MFs. The results show that 43 compounds classified into nine different groups were identified in the MF samples from both the Xinjiang and Jiangsu regions. Among the compounds, all anthocyanins, carbohydrates and dihydroflavonols increased while phenolic acids and hydroxycoumarins decreased during ripening. Caffeoylquinic acids and some of anthocyanins could be regarded as important markers for MF ripening, and the accumulation of organic acids differentiated the samples from the two regions. Together, UPLC-QTOF-MS coupled with multivariate statistical analyses may be effective for metabolite profiling and identification of ripening degrees and cultivation regions.
Collapse
Affiliation(s)
- Jiufang Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 301, Beijing 100083, China
| | - Haichao Wen
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 301, Beijing 100083, China
| | - Lei Zhang
- Scientific Administration Division, Xinjiang Agricultural University, Urumqi 843399, China
| | - Xiaoxu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 301, Beijing 100083, China
| | - Zheng Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 301, Beijing 100083, China
| | - Jingming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 301, Beijing 100083, China.
| |
Collapse
|
41
|
Mulberry Anthocyanin Extract Ameliorates Oxidative Damage in HepG2 Cells and Prolongs the Lifespan of Caenorhabditis elegans through MAPK and Nrf2 Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7956158. [PMID: 28713491 PMCID: PMC5497675 DOI: 10.1155/2017/7956158] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/31/2017] [Accepted: 05/11/2017] [Indexed: 12/20/2022]
Abstract
Mulberry anthocyanins possess many pharmacological effects including liver protection, anti-inflammation, and anticancer. The aim of this study was to evaluate whether mulberry anthocyanin extract (MAE) exerts beneficial effects against oxidative stress damage in HepG2 cells and Caenorhabditis elegans. In vitro, MAE prevented cytotoxicity, increased glucose consumption and uptake, and eliminated excessive intracellular free radicals in H2O2-induced cells. Moreover, MAE pretreatment maintained Nrf2, HO-1, and p38 MAPK stimulation and abolished upregulation of p-JNK, FOXO1, and PGC-1α that were involved in oxidative stress and insulin signalling modulation. In vivo, extended lifespan was observed in C. elegans damaged by paraquat in the presence of MAE, while these beneficial effects were disappeared in pmk-1 and daf-16 mutants. PMK-1 and SKN-1 were activated after exposure to paraquat and MAE suppressed PMK-1 activation but enhanced SKN-1 stimulation. Our findings suggested that MAE recovered redox status in HepG2 cells and C. elegans that suffered from oxidative stress, which might be by targeting MAPKs and Nrf2.
Collapse
|
42
|
Yan F, Zheng X. Anthocyanin-rich mulberry fruit improves insulin resistance and protects hepatocytes against oxidative stress during hyperglycemia by regulating AMPK/ACC/mTOR pathway. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
43
|
Mulberry and its main components protect against oxidized low-density lipoprotein-induced endothelial nitric oxide synthase uncoupling. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
44
|
Lee D, Kang KS, Lee S, Cho EJ, Kim HY. Cytotoxic Effects of Strawberry, Korean Raspberry, and Mulberry Extracts on Human Ovarian Cancer A2780 Cells. Prev Nutr Food Sci 2016; 21:384-388. [PMID: 28078263 PMCID: PMC5216892 DOI: 10.3746/pnf.2016.21.4.384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/29/2016] [Indexed: 11/30/2022] Open
Abstract
Reactive oxygen species are tumorigenic by their ability to increase cell proliferation, survival, and cellular migration. The purpose of the present study was to compare the antioxidant activity and cytotoxic effects of 3 berry extracts (strawberry, Korean raspberry, and mulberry) in A2780 human ovarian carcinoma cells. Except for raspberry, the ethyl acetate or methylene chloride fractions of berries containing phenolic compounds exerted dose dependent free radical scavenging activities. In the raspberry fractions, the hexane fraction also exhibited potent antioxidant activity. The cytotoxic effects of berries extracts in A2780 human ovarian carcinoma cells were measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Surprisingly, co-treatment with n-butanol (BuOH) fractions of berries showed stronger cytotoxic effects compared to the other fractions. These findings suggest that potent anticancer molecules are found in the BuOH fractions of berries that have stronger cytotoxic activity than antioxidants.
Collapse
Affiliation(s)
- Dahae Lee
- Department of Food Science, Gyeongnam National University of Science and Technology, Gyeongnam 52725, Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Gyeonggi 13120, Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung-Ang University, Gyeonggi 17546, Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
| | - Hyun Young Kim
- Department of Food Science, Gyeongnam National University of Science and Technology, Gyeongnam 52725, Korea
| |
Collapse
|
45
|
Yan F, Zhang J, Zhang L, Zheng X. Mulberry anthocyanin extract regulates glucose metabolism by promotion of glycogen synthesis and reduction of gluconeogenesis in human HepG2 cells. Food Funct 2016; 7:425-33. [PMID: 26467565 DOI: 10.1039/c5fo00841g] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mulberry has been demonstrated to possess important biological activities such as antioxidation and antiinflammation. However, research on the ability of mulberry for diabetes improvement mainly focuses on the leaves and less on the fruit. This study showed that a mulberry anthocyanin extract (MAE) had a significant effect on increasing the glucose consumption in HepG2 cells. The MAE enhanced the glycogen content and suppressed levels of glucose production. The enzyme activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were decreased in HepG2 cells after MAE treatment due to PPARγ coactivator 1α (PGC-1α) and forkhead box protein O1 (FOXO1) inhibition. Moreover, the phosphorylation of protein kinase B (AKT) and glycogen synthase kinase-3β (GSK-3β) was increased by the MAE, leading to an expression enhancement of glycogen synthase 2 (GYS2). And this effect was blocked by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. In summary, our results suggested that the MAE regulates glucose metabolism by activating the PI3K/AKT pathway that relates to glycogen synthesis as well as through the inhibition of key molecules that promote gluconeogenesis.
Collapse
Affiliation(s)
- Fujie Yan
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China. and Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ji Zhang
- Biology Lab Center, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lingxia Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China. and Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China. and Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
46
|
Yang J, Liu X, Zhang X, Jin Q, Li J. Phenolic Profiles, Antioxidant Activities, and Neuroprotective Properties of Mulberry (Morus atropurpurea
Roxb.) Fruit Extracts from Different Ripening Stages. J Food Sci 2016; 81:C2439-C2446. [DOI: 10.1111/1750-3841.13426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/08/2016] [Accepted: 07/20/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Jiufang Yang
- College of Food Science and Nutritional Engineering; China Agricultural Univ; Beijing 100083 China
| | - Xuanjun Liu
- College of Food Science and Nutritional Engineering; China Agricultural Univ; Beijing 100083 China
| | - Xiaoxu Zhang
- College of Food Science and Nutritional Engineering; China Agricultural Univ; Beijing 100083 China
| | - Qing Jin
- College of Food Science and Nutritional Engineering; China Agricultural Univ; Beijing 100083 China
| | - Jingming Li
- College of Food Science and Nutritional Engineering; China Agricultural Univ; Beijing 100083 China
| |
Collapse
|
47
|
Yan F, Dai G, Zheng X. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. J Nutr Biochem 2016; 36:68-80. [PMID: 27580020 DOI: 10.1016/j.jnutbio.2016.07.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/30/2016] [Accepted: 07/05/2016] [Indexed: 12/18/2022]
Abstract
This study evaluated the capacity of mulberry anthocyanin extract (MAE) on insulin resistance amelioration in HepG2 cells induced by high glucose and palmitic acid and diabetes-related metabolic changes in type 2 diabetic mice. In vitro, MAE alleviated insulin resistance in HepG2 cells and increased glucose consumption, glucose uptake and glycogen content. Enzyme activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were decreased due to PPARγ coactivator 1α (PGC-1α) and forkhead box protein O1 (FOXO1) inhibition. Furthermore, phosphorylation of protein kinase B (AKT) and glycogen synthase kinase-3β (GSK3β) in model cells was recovered after treated with MAE, leading to an up-regulation of glycogen synthase 2 (GYS2), and this effect was blocked by the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002. In vivo, MAE supplementation (50 and 125 mg/kg body weight per day) markedly decreased fasting blood glucose, serum insulin, leptin, triglyceride and cholesterol levels and increased adiponectin levels in db/db mice. The improvement of related metabolic parameters was in part associated with the impact of MAE on activating AKT and downstream targets in liver, skeletal muscle and adipose tissues. In summary, these findings suggest that MAEs have potential benefits on improving dysfunction in diabetic mice and mitigating insulin resistance in HepG2 cells via activation of PI3K/AKT pathways.
Collapse
Affiliation(s)
- Fujie Yan
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Guanhai Dai
- Institute of Basic Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
48
|
Chang YC, Yang MY, Chen SC, Wang CJ. Mulberry leaf polyphenol extract improves obesity by inducing adipocyte apoptosis and inhibiting preadipocyte differentiation and hepatic lipogenesis. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
49
|
Chan KC, Ho HH, Lin MC, Huang CN, Huang HP, Wang CJ. Impact of polyphenolic components from mulberry on apoptosis of vascular smooth muscle cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:381-391. [PMID: 25614977 DOI: 10.1002/jsfa.7100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/18/2015] [Accepted: 01/19/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Previous studies have shown that mulberry polyphenolic compounds have an anti-atherosclerotic effect in rabbits. Apoptosis of vascular smooth muscle cells (VSMCs) is the key determinant of the number of VSMCs in remodeling. To examine the effect of mulberry polyphenol extracts (MPEs) on the apoptosis of VSMCs and thus the prevention of atherosclerosis, this study investigated the ability of MPEs to induce apoptosis in vitro and the underlying mechanism. RESULTS It was found that MPEs initially activated JNK/p38 and p53, which in turn activated both Fas-ligand and mitochondrial pathways, thereby causing mitochondrial translocation of Bax and a reduction in Bcl-2. This then triggered the cleavage of procaspases, finally resulting in apoptosis of VSMCs. CONCLUSION This study shows that MPEs may suppress atherosclerosis through stimulating apoptosis of VSMCs via activating JNK/p38 and p53 signaling.
Collapse
Affiliation(s)
- Kuei-Chuan Chan
- Department of Internal Medicine, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Road, Taichung 402, Taiwan
- School of Medicine, Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Road, Taichung 402, Taiwan
| | - Hsieh-Hsun Ho
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Road, Taichung 402, Taiwan
| | - Ming-Cheng Lin
- Department of Internal Medicine, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Road, Taichung 402, Taiwan
- School of Medicine, Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Road, Taichung 402, Taiwan
| | - Chien-Ning Huang
- Department of Internal Medicine, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Road, Taichung 402, Taiwan
- School of Medicine, Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Road, Taichung 402, Taiwan
| | - Hui-Pei Huang
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Road, Taichung 402, Taiwan
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Road, Taichung 402, Taiwan
| | - Chau-Jong Wang
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Road, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Road, Taichung 402, Taiwan
| |
Collapse
|
50
|
Qian Z, Wu Z, Huang L, Qiu H, Wang L, Li L, Yao L, Kang K, Qu J, Wu Y, Luo J, Liu JJ, Yang Y, Yang W, Gou D. Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice. Sci Rep 2015; 5:17348. [PMID: 26615818 PMCID: PMC4663626 DOI: 10.1038/srep17348] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/28/2015] [Indexed: 02/07/2023] Open
Abstract
Here, we investigated the impact of mulberry fruit (MBF) extracts on lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 macrophages, and the therapeutic efficacy of MBF diet in mice with dextran sulfate sodium (DSS)-induced acute colitis and MUC2−/− mice with colorectal cancer. In vitro, LPS-induced nitric oxide (NO) production was significantly inhibited by MBF extracts via suppressing the expression of proinflammatory molecules, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-β) and IL-6. Particularly, a dose-dependent inhibition on LPS-induced inflammatory responses was observed following treatment with MBF dichloromethane extract (MBF-DE), in which linoleic acid and ethyl linolenate were identified as two active compounds. Moreover, we elucidated that MBF-DE attenuated LPS-induced inflammatory responses by blocking activation of both NF-κB/p65 and pERK/MAPK pathways. In vivo, DSS-induced acute colitis was significantly ameliorated in MBF-fed mice as gauged by weight loss, colon morphology and histological damage. In addition, MBF-fed MUC2−/− mice displayed significant decrease in intestinal tumor and inflammation incidence compared to control diet-fed group. Overall, our results demonstrated that MBF suppressed the development of intestinal inflammation and tumorgenesis both in vitro and in vivo, and supports the potential of MBF as a therapeutic functional food for testing in human clinical trials.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhiqin Wu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lian Huang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Huiling Qiu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Liyan Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Li Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lijun Yao
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Kang Kang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yonghou Wu
- College of Animal Science and Technology, Northwest A&F University,Yangling, 712100, Shaanxi, China
| | - Jun Luo
- College of Animal Science and Technology, Northwest A&F University,Yangling, 712100, Shaanxi, China
| | - Johnson J Liu
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052 Australia
| | - Yi Yang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wancai Yang
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|