1
|
Gatasheh MK, Murugan N, Krishnamoorthy R, Alshuniaber MA, Malathi J, Umashankar V, Ramalingam G, Veeraraghavan VP, Jayaraman S. Identification, prioritization, and evaluation of RlpA protein as a target against multidrug-resistant Pseudomonas aeruginosa. Acta Trop 2024; 255:107216. [PMID: 38636584 DOI: 10.1016/j.actatropica.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
According to the World Health Organization, infectious diseases, particularly those caused by multidrug-resistant bacteria (MDR), are projected to claim the lives of 15 million people by 2050. Septicemia carries a higher morbidity and mortality rate than infections caused by susceptible Pseudomonas aeruginosa, and MDR-mediated ocular infections can lead to impaired vision and blindness. To identify and develop a potential drug against MDR P. aeruginosa, we employed in silico reverse genetics-based target mining, drug prioritization, and evaluation. Rare Lipoprotein A (RlpA) was selected as the target protein, and its crystal structure was geometrically optimized. Molecular docking and virtual screening analyses revealed that RlpA exhibits strong binding affinity with 11 compounds. Among these, 3-chlorophthalic acid was evaluated, and subsequent in vitro assays demonstrated significant anti-Pseudomonas activity with negligible cytotoxicity. The compound was further evaluated against both drug-susceptible and MDR P. aeruginosa strains in vitro, with cytotoxicity assessed using an MTT assay. The study demonstrated that 3-chlorophthalic acid exhibits potent anti-Pseudomonas activity with minimal toxicity to host cells. Consequently, this compound emerges as a promising candidate against MDR P. aeruginosa, warranting further investigation.
Collapse
Affiliation(s)
- Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nandagopal Murugan
- Department of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, 6000 06, India
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammad A Alshuniaber
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Jambulingam Malathi
- Department of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, 6000 06, India
| | - Vetrivel Umashankar
- Centre for Bioinformatics, Vision Research Foundation, Sankara Nethralaya, Chennai 600 006, India
| | - Gopinath Ramalingam
- Department of Microbiology, Government Theni Medical College and Hospital, Theni, Tamil Na-du 625512, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| |
Collapse
|
2
|
De K, Dey R, Acharya Y, Aswal VK, Haldar J. Cleavable Amphiphilic Biocides with Ester-Bearing Moieties: Aggregation Properties and Antibacterial Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38324708 DOI: 10.1021/acs.langmuir.3c02771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The rise of multidrug-resistant bacterial infections and the dwindling supply of newly approved antibiotics have emerged as a grave threat to public health. Toward the ever-growing necessity of the development of novel antimicrobial agents, herein, we synthesized a series of cationic amphiphilic biocides featuring two cationic headgroups separated by different hydrophobic spacers, accompanied by the inclusion of two lipophilic tails through cleavable ester functionality. The detailed aggregation properties offered by these biocides were investigated by small-angle neutron scattering (SANS) and conductivity. The critical micellar concentration of the biocides and the size and shape of the micellar aggregates differed with variation of pendant and spacer hydrophobicity. Furthermore, the aggregation number and size of the micelles were found to vary with changing concentration and temperature. These easily synthesized biocides exhibited potent antibacterial properties against various multidrug-resistant bacteria. The optimized biocides with minimum hematotoxicity and potent antibacterial activity against methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii exhibited rapid killing kinetics against planktonic bacteria. Also, these membrane-active agents were able to eradicate preformed biofilms. The enzymatic and acidic degradation profile further offered proof of gradual degradation. Collectively, these cleavable amphiphilic biocides demonstrated excellent potency for combating the multidrug-resistant bacterial infection.
Collapse
Affiliation(s)
- Kathakali De
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Rajib Dey
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Yash Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Vinod Kumar Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, Maharashtra, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
3
|
Nazli A, Tao W, You H, He X, He Y. Treatment of MRSA Infection: Where are We? Curr Med Chem 2024; 31:4425-4460. [PMID: 38310393 DOI: 10.2174/0109298673249381231130111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 02/05/2024]
Abstract
Staphylococcus aureus is a leading cause of septicemia, endocarditis, pneumonia, skin and soft tissue infections, bone and joint infections, and hospital-acquired infections. In particular, methicillin-resistant Staphylococcus aureus (MRSA) is associated with high morbidity and mortality, and continues to be a major public health problem. The emergence of multidrug-resistant MRSA strains along with the wide consumption of antibiotics has made anti-MRSA treatment a huge challenge. Novel treatment strategies (e.g., novel antimicrobials and new administrations) against MRSA are urgently needed. In the past decade, pharmaceutical companies have invested more in the research and development (R&D) of new antimicrobials and strategies, spurred by favorable policies. All research articles were collected from authentic online databases, including Google Scholar, PubMed, Scopus, and Web of Science, by using different combinations of keywords, including 'anti-MRSA', 'antibiotic', 'antimicrobial', 'clinical trial', 'clinical phase', clinical studies', and 'pipeline'. The information extracted from articles was compared to information provided on the drug manufacturer's website and Clinical Trials.gov (https://clinicaltrials.gov/) to confirm the latest development phase of anti-MRSA agents. The present review focuses on the current development status of new anti-MRSA strategies concerning chemistry, pharmacological target(s), indications, route of administration, efficacy and safety, pharmacokinetics, and pharmacodynamics, and aims to discuss the challenges and opportunities in developing drugs for anti-MRSA infections.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Wenlan Tao
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Hengyao You
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaoli He
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
4
|
Ramappa VK, Singh V, Srivastava D, Kumar D, Verma A, Verma D, Fatima E, Chaudhary P, Kumar U, Kumar D. Fabrication of mulberry leaf extract (MLE)- and tasar pupal oil (TPO)-loaded silk fibroin (SF) hydrogels and their antimicrobial properties. 3 Biotech 2023; 13:37. [PMID: 36632367 PMCID: PMC9826775 DOI: 10.1007/s13205-022-03443-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/17/2022] [Indexed: 01/09/2023] Open
Abstract
Biocomposites have gained tremendous advantages over synthetic composites due to their biocompatibility, sustainable degradation, and ability to easily combine with other substances. In the present study, we have prepared silk fibroin (SF) hydrogel, mulberry leaf extract (MLE), tasar pupal oil (TPO), and their composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, and characterized them by using a phase contrast microscope (PCM), scanning electron microscope (SEM) SEM- EDX, and Fourier transform infrared spectroscopy (FTIR). In addition, 1H-NMR was used for profiling of mulberry leaf extract and GC-MS was used to find tasar pupal oil composition. Further, the disc diffusion method evaluated their antimicrobial activities against S. aureus, E. coli, A. flavus, and A. brassicae. PCM, SEM, and FTIR results validated the conjugation of MLE and SF hydrogel composite; 1H-NMR confirmed the 41 metabolites in MLE, and GC-MS established the composition of tasar pupal oil. Since both composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, reduced the S. aureus and E. coli activities at all tested concentrations, the antibacterial results were unambiguous in their conclusion. S. aureus could only be inhibited by SF hydrogel at a high concentration (300 g/ml), despite suppressing E. coli growth at all tested concentrations. At 300 g/ml, MLE demonstrated antibacterial action against S. aureus. Furthermore, at a dosage of 300 g/ml, TPO inhibited both S. aureus and E. coli. Both mulberry leaf extract (at 200 and 300 g/ml) and the MLE-loaded SF hydrogel composite displayed antifungal activity against A. flavus at all tested concentrations (100, 200, and 300 g/ml).
Collapse
Affiliation(s)
- Venkatesh Kumar Ramappa
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Vandana Singh
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Devika Srivastava
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Devarsh Kumar
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Anshika Verma
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Darshika Verma
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Eram Fatima
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Priyanka Chaudhary
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Umesh Kumar
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Dinesh Kumar
- Centre for Biomedical Research, SGPGIMS Campus, Raibereli Road, Lucknow, UP 226014 India
| |
Collapse
|
5
|
Dhonnar SL, Adole VA, More RA, Sadgir NV, Jagdale BS, Pawar TB, Elzagheid MI, Rhyman L, Ramasami P. Synthesis, molecular structure, electronic, spectroscopic, NLO and antimicrobial study of N-benzyl-2-(5-aryl-1,3,4-oxadiazol-2-yl)aniline derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Dhonnar SL, More RA, Adole VA, Jagdale BS, Sadgir NV, Chobe SS. Synthesis, spectral analysis, antibacterial, antifungal, antioxidant and hemolytic activity studies of some new 2,5-disubstituted-1,3,4-oxadiazoles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Kaur R, Rani P, Atanasov AG, Alzahrani Q, Gupta R, Kapoor B, Gulati M, Chawla P. Discovery and Development of Antibacterial Agents: Fortuitous and Designed. Mini Rev Med Chem 2021; 22:984-1029. [PMID: 34939541 DOI: 10.2174/1570193x19666211221150119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
Today, antibacterial drug resistance has turned into a significant public health issue. Repeated intake, suboptimal and/or unnecessary use of antibiotics, and, additionally, the transfer of resistance genes are the critical elements that make microorganisms resistant to conventional antibiotics. A substantial number of antibacterials that were successfully utilized earlier for prophylaxis and therapeutic purposes have been rendered inadequate due to this phenomenon. Therefore, the exploration of new molecules has become a continuous endeavour. Many such molecules are at various stages of investigation. A surprisingly high number of new molecules are currently in the stage of phase 3 clinical trials. A few new agents have been commercialized in the last decade. These include solithromycin, plazomicin, lefamulin, omadacycline, eravacycline, delafloxacin, zabofloxacin, finafloxacin, nemonoxacin, gepotidacin, zoliflodacin, cefiderocol, BAL30072, avycaz, zerbaxa, vabomere, relebactam, tedizolid, cadazolid, sutezolid, triclosan and afabiacin. This article aims to review the investigational and recently approved antibacterials with a focus on their structure, mechanisms of action/resistance, and spectrum of activity. Delving deep, their success or otherwise in various phases of clinical trials is also discussed while attributing the same to various causal factors.
Collapse
Affiliation(s)
- Ravleen Kaur
- Department of Health Sciences, Cape Breton University, Sydney, Nova Scotia. Canada
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara. India
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute of Digital Health and Patient Safety, Medical University of Vienna, Vienna. Austria
| | - Qushmua Alzahrani
- Department of Pharmacy/Nursing/Medicine Health and Environment, University of the Region of Joinville (UNIVILLE) volunteer researcher, Joinville. Brazil
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan Moga, Punjab 142001. India
| |
Collapse
|
8
|
Pagna JIM, Mbekou IMK, Tsamo AT, Mkounga P, Frese M, Stammler HG, Fekam FB, Lenta BN, Sewald N, Nkengfack AE. Antibacterial activity of some chemical constituents from Trichilia prieuriana (Meliaceae). ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The chemical study of hydroethanolic extracts from different parts of Trichilia prieuriana (Meliaceae) led to the isolation and identification of 22 compounds: 2β,3β,4β-trihydroxypregnan-16-one (1), prieurianin (2), flindissone (3), deoxyflindissone (4), picraquassin E (5), ursolic acid (6), 3β-acetoxy-11α-hydroxyurs-12-en (7), 3β-acetoxy-urs-12-en-11-one (8), 3β-acetoxy-β-amyrin (9), friedelin-3-ol (10), 3-oxo, friedelin (11), 3-oxo, fridelin-28-ol (12), oleanolic acid (13), hederagenin (14), mixture of stigmasterol (15), β-sitosterol (16), β-sitosterol-3-O-β-glucopyranoside (17) and stigmasterol-3-O-β-glucopyranoside (18), erythrodiol (19), scopoletin (20), 4-hydroxy-3,5-dimethoxybenzoic acid (21) and shikimic acid (22). The absolute configurations and crystal structures of compounds 1 and 2 are reported herein for the first time. Crude extracts, fractions and isolated compounds were evaluated for their antibacterial activities against nine bacterial strains. Crude extracts from the root wood of T. prieuriana exhibited good antibacterial potency with minimal inhibitory concentration (MIC) values ranging from 31.25 to 500 µg mL−1 on the test bacteria. The ethyl acetate fraction from root wood and n-hexane-ethyl acetate (3:1) fraction from leaves showed a moderate antibacterial activity with MIC value of 250 μg mL−1 on all test bacteria. Isolated compounds exhibited significant antibacterial activity with MIC values ranging from 4.09 to 71.8 µm. Compounds 3, 6 and 7 were the most active with a broad spectrum of activities.
Collapse
Affiliation(s)
- Julio Issah Mawouma Pagna
- Department of Organic Chemistry , Faculty of Science, University of Yaoundé I , P.O. Box 812 , Yaoundé , Cameroon
| | - Ines Michèle Kanko Mbekou
- Department of Biochemistry , Faculty of Science, The University of Yaoundé I , P.O. Box 812 Yaoundé , Cameroon
| | - Armelle Tontsa Tsamo
- Department of Organic Chemistry , Faculty of Science, University of Yaoundé I , P.O. Box 812 , Yaoundé , Cameroon
| | - Pierre Mkounga
- Department of Organic Chemistry , Faculty of Science, University of Yaoundé I , P.O. Box 812 , Yaoundé , Cameroon
| | - Marcel Frese
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University , D-33501 Bielefeld , Germany
| | - Hans-Georg Stammler
- Inorganic and Structural Chemistry, Faculty of Chemistry, Bielefeld University , D-33501 Bielefeld , Germany
| | - Fabrice Boyom Fekam
- Department of Biochemistry , Faculty of Science, The University of Yaoundé I , P.O. Box 812 Yaoundé , Cameroon
| | - Bruno Ndjakou Lenta
- Department of Chemistry , Higher Teacher Training College, University of Yaoundé I , P.O. Box 47 , Yaoundé , Cameroon
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University , D-33501 Bielefeld , Germany
| | - Augustin Ephrem Nkengfack
- Department of Organic Chemistry , Faculty of Science, University of Yaoundé I , P.O. Box 812 , Yaoundé , Cameroon
| |
Collapse
|
9
|
Sathish M, Gobinath T, Sundaramanickam A, Saranya K, Nithin A, Surya P. Biomedical applications of carrageenan hydrogel impregnated with zinc oxide nanoparticles. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1952243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M. Sathish
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, India
| | - T. Gobinath
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, India
| | - A. Sundaramanickam
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, India
| | - K. Saranya
- CSIR – Central Leather Research Institute (CLRI), Chennai, Tamil Nadu, India
| | - A. Nithin
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, India
| | - P. Surya
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, India
| |
Collapse
|
10
|
Wei L, Gao R, Wang M, Wang Y, Shi Y, Gu M, Cai J. Dimeric lipo-α/sulfono-γ-AA hybrid peptides as broad-spectrum antibiotic agents. Biomater Sci 2021; 9:3410-3424. [PMID: 33949388 PMCID: PMC8903075 DOI: 10.1039/d0bm01955k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
There is an urgent need to develop novel antibiotic agents that can combat emerging drug resistance. Herein, we report the design and investigation of a class of short dimeric antimicrobial lipo-α/sulfono-γ-AA hybrid peptides. Some of these peptides exhibit potent and broad-spectrum antimicrobial activity toward both clinically related Gram-positive and Gram-negative bacteria. The TEM study suggests that these hybrid peptides can compromise bacterial membranes and lead to bacterial death. Membrane depolarization and fluorescence microscopy studies also indicate that the mechanism of action is analogous to host-defense peptides (HDPs). Furthermore, the lead compound shows the ability to effectively inhibit biofilms formed from MRSA and E. coli. Further development of the short dimeric lipo-α/sulfono-γ-AA hybrid peptides may lead to a new generation of antimicrobial biomaterials to combat drug resistance.
Collapse
Affiliation(s)
- Lulu Wei
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Minghui Wang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Yafeng Wang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Yan Shi
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Meng Gu
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| |
Collapse
|
11
|
Antibacterial activity and physicochemical characterization of calcium-aluminium-ciprofloxacin-layered double hydroxide. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Baruah S, Nayak B, Puzari A. Physicochemical characterization of SnO2 grafted Poly p-phenylenediamine hybrid Nanocomposites and their enhanced antibacterial properties. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02477-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Kim B, Yang Q, Chan LW, Bhatia SN, Ruoslahti E, Sailor MJ. Fusogenic porous silicon nanoparticles as a broad-spectrum immunotherapy against bacterial infections. NANOSCALE HORIZONS 2021; 6:330-340. [PMID: 33599221 PMCID: PMC8098644 DOI: 10.1039/d0nh00624f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial infections are re-emerging as substantial threats to global health due to the limited selection of antibiotics that are capable of overcoming antibiotic-resistant strains. By deterring such mutations whilst minimizing the need to develop new pathogen-specific antibiotics, immunotherapy offers a broad-spectrum therapeutic solution against bacterial infections. In particular, pathology resulting from excessive immune response (i.e. fibrosis, necrosis, exudation, breath impediment) contributes significantly to negative disease outcome. Herein, we present a nanoparticle that is targeted to activated macrophages and loaded with siRNA against the Irf5 gene. This formulation is able to induce >80% gene silencing in activated macrophages in vivo, and it inhibits the excessive inflammatory response, generating a significantly improved therapeutic outcome in mouse models of bacterial infection. The versatility of the approach is demonstrated using mice with antibiotic-resistant Gram-positive (methicillin-resistant Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) muscle and lung infections, respectively. Effective depletion of the Irf5 gene in macrophages is found to significantly improve the therapeutic outcome of infected mice, regardless of the bacteria strain and type.
Collapse
Affiliation(s)
- Byungji Kim
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Utreja D, Kaur J, Kaur K, Jain P. Recent Advances in 1,3,5-Triazine Derivatives as Antibacterial Agents. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x17666200129094032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Triazine, one of the nitrogen containing heterocyclic compounds has attracted the considerable
interest of researchers due to the vast array of biological properties such as anti-viral, antitumor,
anti-convulsant, analgesic, antioxidant, anti-depressant, herbicidal, insecticidal, fungicidal,
antibacterial and anti-inflammatory activities offered by it. Various antibacterial agents have been
synthesized by researchers to curb bacterial diseases but due to rapid development in drug resistance,
tolerance and side effects, there had always been a need for the synthesis of a new class of antibacterial
agents that would exhibit improved pharmacological action. Therefore, this review mainly focuses
on the various methods for the synthesis of triazine derivatives and their antibacterial activity.
Collapse
Affiliation(s)
- Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana-141004, India
| | - Jagdish Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana-141004, India
| | - Komalpreet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana-141004, India
| | - Palak Jain
- Department of Chemistry, Punjab Agricultural University, Ludhiana-141004, India
| |
Collapse
|
15
|
El-Newehy MH, A. MM, Aldalbahi AK, Thamer BM, Mahmoud YAG, El-Hamshary H. Biocidal Polymers: Synthesis, Characterization and Antimicrobial Activity of Bis-Quaternary Onium Salts of Poly(aspartate- co-succinimide). Polymers (Basel) 2020; 13:polym13010023. [PMID: 33374723 PMCID: PMC7793505 DOI: 10.3390/polym13010023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/05/2023] Open
Abstract
Microbial multidrug resistance presents a real problem to human health. Therefore, water-soluble polymers based on poly(aspartate-co-succinimide) were synthesized via reaction of poly(aspartate-co-succinimide) with bis-quaternary ammonium or quaternary salts. The resultant copolymers were characterized by various techniques such as FTIR, TGA, 1HNMR, 13CNMR and elemental microanalysis. Antimicrobial activities of the new onium salts were investigated against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella typhi, and the fungi; Candida albicans,Aspergillus niger, Cryptococcus neoformans and Aspergillus flavus by agar diffusion method. Antimicrobial activity was studied in terms of inhibition zone diameters, in addition to the estimation of minimal inhibitory concentration (MIC) of the prepared compounds. A. niger and E. coli were the most affected microorganisms among the tested microorganisms with an inhibition zone of 19-21 (mm) in case of biocides, (V) and (VII). The obtained results showed that the quaternary onium salts have higher activity compared to the aspartate copolymer with MIC concentrations of 25 mg/mL for (VII) and (V) and 50 mg/mL for (VI) and (IV).
Collapse
Affiliation(s)
- Mohamed H. El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (A.K.A.); (B.M.T.); (H.E.-H.)
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Correspondence: ; Tel.: +966-11-4675894
| | - Meera Moydeen A.
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (A.K.A.); (B.M.T.); (H.E.-H.)
| | - Ali K. Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (A.K.A.); (B.M.T.); (H.E.-H.)
| | - Badr M. Thamer
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (A.K.A.); (B.M.T.); (H.E.-H.)
| | - Yehia A.-G. Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Hany El-Hamshary
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (A.K.A.); (B.M.T.); (H.E.-H.)
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
16
|
Dhingra S, Rahman NAA, Peile E, Rahman M, Sartelli M, Hassali MA, Islam T, Islam S, Haque M. Microbial Resistance Movements: An Overview of Global Public Health Threats Posed by Antimicrobial Resistance, and How Best to Counter. Front Public Health 2020; 8:535668. [PMID: 33251170 PMCID: PMC7672122 DOI: 10.3389/fpubh.2020.535668] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Antibiotics changed medical practice by significantly decreasing the morbidity and mortality associated with bacterial infection. However, infectious diseases remain the leading cause of death in the world. There is global concern about the rise in antimicrobial resistance (AMR), which affects both developed and developing countries. AMR is a public health challenge with extensive health, economic, and societal implications. This paper sets AMR in context, starting with the history of antibiotics, including the discovery of penicillin and the golden era of antibiotics, before exploring the problems and challenges we now face due to AMR. Among the factors discussed is the low level of development of new antimicrobials and the irrational prescribing of antibiotics in developed and developing countries. A fundamental problem is the knowledge, attitude, and practice (KAP) regarding antibiotics among medical practitioners, and we explore this aspect in some depth, including a discussion on the KAP among medical students. We conclude with suggestions on how to address this public health threat, including recommendations on training medical students about antibiotics, and strategies to overcome the problems of irrational antibiotic prescribing and AMR.
Collapse
Affiliation(s)
- Sameer Dhingra
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Nor Azlina A. Rahman
- Department of Physical Rehabilitation Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Ed Peile
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Motiur Rahman
- Oxford University Clinical Research Unit, Wellcome Trust Asia Programme, The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Massimo Sartelli
- Department of General and Emergency Surgery, Macerata Hospital, Macerata, Italy
| | - Mohamed Azmi Hassali
- The Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | | | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Rossi R, Ciofalo M. An Updated Review on the Synthesis and Antibacterial Activity of Molecular Hybrids and Conjugates Bearing Imidazole Moiety. Molecules 2020; 25:molecules25215133. [PMID: 33158247 PMCID: PMC7663458 DOI: 10.3390/molecules25215133] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/28/2023] Open
Abstract
The rapid growth of serious infections caused by antibiotic resistant bacteria, especially the nosocomial ESKAPE pathogens, has been acknowledged by Governments and scientists and is one of the world's major health problems. Various strategies have been and are currently investigated and developed to reduce and/or delay the bacterial resistance. One of these strategies regards the design and development of antimicrobial hybrids and conjugates. This unprecedented critical review, in which our continuing interest in the synthesis and evaluation of the bioactivity of imidazole derivatives is testified, aims to summarise and comment on the results obtained from the end of the 1900s until February 2020 in studies conducted by numerous international research groups on the synthesis and evaluation of the antibacterial properties of imidazole-based molecular hybrids and conjugates in which the pharmacophoric constituents of these compounds are directly covalently linked or connected through a linker or spacer. In this review, significant attention was paid to summarise the strategies used to overcome the antibiotic resistance of pathogens whose infections are difficult to treat with conventional antibiotics. However, it does not include literature data on the synthesis and evaluation of the bioactivity of hybrids and conjugates in which an imidazole moiety is fused with a carbo- or heterocyclic subunit.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi, 3, I-56124 Pisa, Italy
- Correspondence: (R.R.); (M.C.)
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Viale delle Scienze, Edificio 4, I-90128 Palermo, Italy
- Correspondence: (R.R.); (M.C.)
| |
Collapse
|
18
|
Nizami B, Tan W, Arias-Moreno X. In silico identification of novel PrfA inhibitors to fight listeriosis: A virtual screening and molecular dynamics studies. J Mol Graph Model 2020; 101:107728. [PMID: 32942202 DOI: 10.1016/j.jmgm.2020.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Listeria monocytogenes is considered to be one of the most dangerous foodborne pathogens as it can cause listeriosis, a life-threatening human disease. While the incidence of listeriosis is very low its fatality rate is exceptionally high. Because many multi-resistance Listeria monocytogenes strains that do not respond to conventional antibiotic therapy have been recently described, development of new antimicrobials to fight listeriosis is necessary. The positive regulatory factor A (PrfA) is a key homodimeric transcription factor that modulates the transcription of multiple virulence factors which are ultimately responsible of Listeria monocytogenes' pathogenicity. In the present manuscript we describe several new potential PrfA inhibitors that were identified after performing ligand-based virtual screening followed by molecular docking calculations against the wild-type PrfA structure. The three top-scored drug-likeness inhibitors bound to the wild-type PrfA structure were further assessed by Molecular Dynamics (MD) simulations. Besides, the three top-scored inhibitors were docked into a constitutive active apoPrfA mutant structure and the corresponding complexes were also simulated by MD. According to the obtained data, PUBChem 87534955 (P875) and PUBChem 58473762 (P584) may not only bind and inhibit wild-type PrfA but the aforementioned apoPrfA mutant as well. Therefore, P875 and P584 might represent good starting points for the development of a completely new set of antimicrobial agents to treat listeriosis.
Collapse
Affiliation(s)
- Bilal Nizami
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117, Budapest, Magyar Tudósok krt. 2, Hungary
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xabier Arias-Moreno
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Costa NCS, Piccoli JP, Santos-Filho NA, Clementino LC, Fusco-Almeida AM, De Annunzio SR, Fontana CR, Verga JBM, Eto SF, Pizauro-Junior JM, Graminha MAS, Cilli EM. Antimicrobial activity of RP-1 peptide conjugate with ferrocene group. PLoS One 2020; 15:e0228740. [PMID: 32214347 PMCID: PMC7098557 DOI: 10.1371/journal.pone.0228740] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/21/2020] [Indexed: 12/20/2022] Open
Abstract
Parasitic diseases are a neglected and serious problem, especially in underdeveloped countries. Among the major parasitic diseases, Leishmaniasis figures as an urgent challenge due to its high incidence and severity. At the same time, the indiscriminate use of antibiotics by the population is increasing together with resistance to medicines. To address this problem, new antibiotic-like molecules that directly kill or inhibit the growth of microorganisms are necessary, where antimicrobial peptides (AMPs) can be of great help. In this work, the ferrocene molecule, one active compound with low levels of in vivo toxicity, was coupled to the N-terminus of the RP1 peptide (derived from the human chemokine CXCL4), aiming to evaluate how this change modifies the structure, biological activity, and toxicity of the peptide. The peptide and the conjugate were synthesized using the solid phase peptide synthesis (SPPS). Circular dichroism assays in PBS showed that the RP1 peptide and its conjugate had a typical spectrum for disordered structures. The Fc-RP1 presented anti-amastigote activity against Leishmania amazonensis (IC50 = 0.25 μmol L–1). In comparison with amphotericin B, a second-line drug approved for leishmaniasis treatment, (IC50 = 0.63 μmol L-1), Fc-RP1 was more active and showed a 2.5-fold higher selectivity index. The RP1 peptide presented a MIC of 4.3 μmol L-1 against S. agalactiae, whilst Fc-RP1 was four times more active (MIC = 0.96 μmol L-1), indicating that ferrocene improved the antimicrobial activity against Gram-positive bacteria. The Fc-RP1 peptide also decreased the minimum inhibitory concentration (MIC) in the assays against E. faecalis (MIC = 7.9 μmol L-1), E. coli (MIC = 3.9 μmol L-1) and S. aureus (MIC = 3.9 μmol L-1). The cytotoxicity of the compounds was tested against HaCaT cells, and no significant activity at the highest concentration tested (500 μg. mL-1) was observed, showing the high potential of this new compound as a possible new drug. The coupling of ferrocene also increased the vesicle permeabilization of the peptide, showing a direct relation between high peptide concentration and high carboxyfluorescein release, which indicates the action mechanism by pore formation on the vesicles. Several studies have shown that ferrocene destabilizes cell membranes through lipid peroxidation, leading to cell lysis. It is noteworthy that the Fc-RP1 peptide synthesized here is a prototype of a bioconjugation strategy, but it still is a compound with great biological activity against neglected and fish diseases.
Collapse
Affiliation(s)
- Natalia C. S. Costa
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Julia P. Piccoli
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Norival A. Santos-Filho
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Leandro C. Clementino
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Ana M. Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Sarah R. De Annunzio
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Carla R. Fontana
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Juliane B. M. Verga
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Silas F. Eto
- Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - João M. Pizauro-Junior
- Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marcia A. S. Graminha
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
- * E-mail: (EMC); (MASG)
| | - Eduardo M. Cilli
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
- * E-mail: (EMC); (MASG)
| |
Collapse
|
20
|
Chemical Composition and Antibacterial Activity of Essential Oils from the Algerian Endemic Origanum glandulosum Desf. against Multidrug-Resistant Uropathogenic E. coli Isolates. Antibiotics (Basel) 2020; 9:antibiotics9010029. [PMID: 31952165 PMCID: PMC7169401 DOI: 10.3390/antibiotics9010029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 11/28/2022] Open
Abstract
Antibiotics are becoming ineffective against resistant bacteria. The use of essential oils (EOs) may constitute an alternative solution to fight against multidrug-resistant bacteria. This study aims to determine the chemical composition of EOs from five populations of the endemic Algerian Origanum glandulosum Desf. and to investigate their potential antibacterial activity against multidrug-resistant uropathogenic E. coli strains. The EOs were obtained by hydrodistillation and their composition was investigated by gas chromatography/mass spectrometry (GC/MS). The antibacterial activity was evaluated by the disc diffusion method against eight E. coli strains (six uropathogenic resistant and two referenced susceptible strains). Minimum inhibitory and bactericidal concentrations (MIC/MBC) were obtained by the broth microdilution method. The main EO components were thymol (15.2–56.4%), carvacrol (2.8–59.6%), γ-terpinene (9.9–21.8%) and p-cymene (8.5–13.9%). The antibacterial tests showed that all the EOs were active against all the strains, including the multidrug-resistant strains. The EO from the Bordj location, which contained the highest amount of carvacrol (59.6%), showed the highest antibacterial activity (inhibition diameters from 12 to 24.5 mm at a dilution of 1/10). To our knowledge, this is the first description of the activity of O. glandulosum EOs against resistant uropathogenic strains. Our study suggests that O. glandulosum EO could be used in some clinical situations to treat or prevent infections (e.g., urinary tract infections) with multidrug-resistant strains.
Collapse
|
21
|
Abstract
This chapter introduces the reader to the treatment of infections with antimicrobial drugs. In doing so, an ecological and evolutionary approach is taken that sees humans as just one part of the biosphere, which is the totality of life on earth. Our interaction with microorganisms is constant and ever changing, and it is this dynamic relationship between evolving organisms that makes the treatment of infectious diseases so challenging. Early in the chapter, this ecological approach is introduced, followed by the key to treating infectious diseases, which is the concept of selective toxicity. After that the key groups of organisms and their treatment are discussed, most notably bacteria, viruses and fungi, but also protozoa and helminths. More general topics of identification, testing and resistance are then discussed and before the chapter ends with consideration of opportunistic infections and pharmacological approaches to prevention.
Collapse
|
22
|
Rossi R, Ciofalo M. Current Advances in the Synthesis and Biological Evaluation of Pharmacologically Relevant 1,2,4,5-Tetrasubstituted-1H-Imidazole Derivatives. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666191014154129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
:
In recent years, the synthesis and evaluation of the
biological properties of 1,2,4,5-tetrasubstituted-1H-imidazole
derivatives have been the subject of a large number of studies
by academia and industry. In these studies it has been shown
that this large and highly differentiated class of heteroarene
derivatives includes high valuable compounds having important
biological and pharmacological properties such as
antibacterial, antifungal, anthelmintic, anti-inflammatory, anticancer,
antiviral, antihypertensive, cholesterol-lowering, antifibrotic,
antiuricemic, antidiabetic, antileishmanial and antiulcer
activities.
:
The present review with 411 references, in which we focused on the literature data published mainly from 2011
to 2017, aims to update the readers on the recent developments on the synthesis and biological evaluation of
pharmacologically relevant 1,2,4,5-tetrasubstituted-1H-imidazole derivatives with an emphasis on their different
molecular targets and their potential use as drugs to treat various types of diseases. Reference was also
made to substantial literature data acquired before 2011 in this burgeoning research area.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa - via Moruzzi, 3, I-56124 Pisa, Italy
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo - Viale delle Scienze, Edificio 4, I-90128 Palermo, Italy
| |
Collapse
|
23
|
Kaur H, Singh J, Narasimhan B. Antimicrobial, antioxidant and cytotoxic evaluation of diazenyl chalcones along with insights to mechanism of interaction by molecular docking studies. BMC Chem 2019; 13:87. [PMID: 31384834 PMCID: PMC6661766 DOI: 10.1186/s13065-019-0596-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In continuation of our work, new diazenyl chalcones scaffolds (C-18 to C-27) were efficiently synthesized from substituted acetophenone azo dyes (A-E) by base catalyzed Claisen-Schmidt condensation with different substituted aromatic/heteroaromatic aldehydes. METHODOLOGY The synthesized chalcones were assessed for their in vitro antimicrobial potential towards several pathogenic microbial strains by tube dilution method and further evaluated for antioxidant potential by DPPH assay. These derivatives were also assessed for the cytotoxicity towards the human lung cancer cell line (A549) and normal cell line (HEK) by MTT assay. The most active antimicrobial compounds were docked using Schrodinger v18.1 software with the various potential bacterial receptors to explore the mechanism of interaction. RESULTS The derivative C-22 exhibited high antibacterial activity with very low MIC (1.95-3.90 µg ml-1) and MBC (3.90-7.81 µg ml-1) values. The derivatives C-23, C-24 and C-27 have demonstrated good antioxidant potential (IC50 = 7-18 µg ml-1) correlated to the ascorbic acid (IC50 = 4.45 µg ml-1). The derivative C-25 had shown comparable cytotoxicity to camptothecin against A549 cell line. The docking studies predicted the bacterial dihydrofolate reductase (PDB ID: 3SRW) and bacterial DNA gyrase (PDB ID: 4ZVI) as the possible targets for most of the active antimicrobial compounds. These derivatives affirmed their safety by presenting less cytotoxicity towards HEK cells. Further the ADME prediction by qikprop module of the Schrodinger proved that these compounds exhibited drug-like attributes. CONCLUSION Hence, these compounds have shown their potential as lead for future expansion of novel antimicrobial and cytotoxic drugs.
Collapse
Affiliation(s)
- Harmeet Kaur
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001 India
| | - Jasbir Singh
- College of Pharmacy, Postgraduate Institute of Medical Sciences, Rohtak, 124001 India
| | | |
Collapse
|
24
|
Sofi HS, Akram T, Tamboli AH, Majeed A, Shabir N, Sheikh FA. Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nanofibers for wound-healing applications. Int J Pharm 2019; 569:118590. [PMID: 31381988 DOI: 10.1016/j.ijpharm.2019.118590] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 11/16/2022]
Abstract
Synthetic polymers, especially those with biocompatible and biodegradable characteristics, may offer effective alternatives for the treatment of severe wounds and burn injuries. Ideally, the scaffold material should induce as little pain as possible, enable quick healing, and direct the growth of defect-free epidermal cells. The best material with this multifunctionality, such as self-healing dressings, should be hydrophilic and have uninterrupted and direct contact with the damaged tissue. In addition, the ideal biomaterial should have some antibacterial properties. In this study, a novel technique was used to fabricate composite electrospun wound-dressing nanofibers composed of polyurethane encasing lavender oil and silver (Ag) nanoparticles (NPs). After electrospinning, the fabricated nanofibers were identified using various techniques, including scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An abundance of Ag NPs in the fibers decreased the diameter of the fibers while increased concentration of the lavender oil increased the diameter. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) studies showed the presence of the lavender oil and Ag NPs in the fiber dressings. The Ag NPs and lavender oil improved the hydrophilicity of the nanofibers and ensured the proliferation of chicken embryo fibroblasts cultured in-vitro on these fiber dressings. The antibacterial efficiency of the nanofiber dressings was investigated using E. coli and S. aureus, which yielded zones of inhibition of 16.2 ± 0.8 and 5.9 ± 0.5 mm, respectively, indicating excellent bactericidal properties of the dressings. The composite nanofiber dressings have great potential to be used as multifunctional wound dressings; offering protection against external agents as well as promoting the regeneration of new tissue.
Collapse
Affiliation(s)
- Hasham S Sofi
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Towseef Akram
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India
| | - Ashif H Tamboli
- Department of Physics, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India
| | - Aasiya Majeed
- Department of Biochemistry, Division of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology-Jammu, Chatha 180009, India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
25
|
Synthesis, molecular docking and comparative efficacy of various alkyl/aryl thioureas as antibacterial, antifungal and α-amylase inhibitors. Comput Biol Chem 2018; 77:193-198. [PMID: 30340081 DOI: 10.1016/j.compbiolchem.2018.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/09/2018] [Accepted: 10/09/2018] [Indexed: 11/18/2022]
|
26
|
Nale JY, Redgwell TA, Millard A, Clokie MRJ. Efficacy of an Optimised Bacteriophage Cocktail to Clear Clostridium difficile in a Batch Fermentation Model. Antibiotics (Basel) 2018; 7:E13. [PMID: 29438355 PMCID: PMC5872124 DOI: 10.3390/antibiotics7010013] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/03/2018] [Accepted: 02/06/2018] [Indexed: 12/16/2022] Open
Abstract
Clostridium difficile infection (CDI) is a major cause of infectious diarrhea. Conventional antibiotics are not universally effective for all ribotypes, and can trigger dysbiosis, resistance and recurrent infection. Thus, novel therapeutics are needed to replace and/or supplement the current antibiotics. Here, we describe the activity of an optimised 4-phage cocktail to clear cultures of a clinical ribotype 014/020 strain in fermentation vessels spiked with combined fecal slurries from four healthy volunteers. After 5 h, we observed ~6-log reductions in C. difficile abundance in the prophylaxis regimen and complete C. difficile eradication after 24 h following prophylactic or remedial regimens. Viability assays revealed that commensal enterococci, bifidobacteria, lactobacilli, total anaerobes, and enterobacteria were not affected by either regimens, but a ~2-log increase in the enterobacteria, lactobacilli, and total anaerobe abundance was seen in the phage-only-treated vessel compared to other treatments. The impact of the phage treatments on components of the microbiota was further assayed using metagenomic analysis. Together, our data supports the therapeutic application of our optimised phage cocktail to treat CDI. Also, the increase in specific commensals observed in the phage-treated control could prevent further colonisation of C. difficile, and thus provide protection from infection being able to establish.
Collapse
Affiliation(s)
- Janet Y Nale
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK.
| | - Tamsin A Redgwell
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Andrew Millard
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK.
| | - Martha R J Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK.
| |
Collapse
|
27
|
Souza RB, Frota AF, Silva J, Alves C, Neugebauer AZ, Pinteus S, Rodrigues JAG, Cordeiro EMS, de Almeida RR, Pedrosa R, Benevides NMB. In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: Antimicrobial, anticancer and neuroprotective potential. Int J Biol Macromol 2018; 112:1248-1256. [PMID: 29427681 DOI: 10.1016/j.ijbiomac.2018.02.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/24/2022]
Abstract
This study assessed the antioxidant, antimicrobial, anticancer and neuroprotective activities of the kappa(k)-carrageenan isolated from the red alga Hypnea musciformis (Hm-SP). The chemical spectrum of the k-carrageenan from Hm-SP was confirmed by Fourier transform infrared (FT-IR) spectroscopy. Hm-SP revealed an antibacterial and antifungal action against Staphylococcus aureus and Candida albicans, respectively. Hm-SP did not promoted cytotoxic effects against Human breast cancer (MCF-7) and Human neuroblastoma (SH-SY5Y) cell-lines. However, it was observed a significant reduction of the cellular proliferation capacity in these cancer cells in presence of the Hm-SP. Furthermore, Hm-SP showed neuroprotective activity in 6-hydroxydopamine-induced neurotoxicity on SH-SY5Y cells by modulation of the mitochondria transmembrane potential and reducing Caspase 3 activity. In addition, Hm-SP demonstrates low antioxidant potential and did not induce significant cytotoxic effects or changes in the cell proliferation on Balb/c 3T3 mouse fibroblast cell-line. In summary, our data suggest that Hm-SP shows antimicrobial, anticancer and neuprotective activities.
Collapse
Affiliation(s)
- Ricardo Basto Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Annyta Fernandes Frota
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Joana Silva
- MARE - Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Celso Alves
- MARE - Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Agnieszka Zofia Neugebauer
- MARE - Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Susete Pinteus
- MARE - Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | | | - Edna Maria Silva Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Rui Pedrosa
- MARE - Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | | |
Collapse
|
28
|
Søe NH, Jensen NV, Jensen AL, Koch J, Poulsen SS, Pier GB, Johansen HK. Active and Passive Immunization Against Staphylococcus aureus Periprosthetic Osteomyelitis in Rats. ACTA ACUST UNITED AC 2017; 31:45-50. [PMID: 28064219 DOI: 10.21873/invivo.11023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/24/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM Staphylococcus aureus infection associated with orthopedic implants cannot always be controlled. We used a knee prosthesis model with implant-related osteomyelitis in rats to explore induction of an effective immune response with active and passive immunization. MATERIALS AND METHODS Fifty-two Sprague-Dawley rats were divided into active (N=28) and passive immunization groups (N=24). A bacterial inoculum of 103 S. aureus MN8 was injected into the tibia and the femur marrow before insertion of a non-constrained knee prosthesis in each rat. The active-immunization group received a synthetic oligosaccharide of polysaccharide poly-N-acetylglucosamine (PNAG), 9G1cNH2 and the passive-immunization group received immunization with immunoglobulin from rabbits infected with S. aureus. RESULTS/CONCLUSION Active immunization against PNAG significantly reduced the consequences of osteomyelitis infection from PNAG-producing intercellular adhesion (ica+) but not ica- S. aureus. Passive immunization resulted in better clinical assessments in animals challenged with either ica+ or ica- S. aureus, suggesting a lack of specificity in this antiserum.
Collapse
Affiliation(s)
- Niels H Søe
- Hand Section, Department of Orthopaedics, Herlev and Gentofte University Hospital, Hellerup, Denmark
| | - Nina Vendel Jensen
- Department of Anaesthesiology, Intensive Care and Operations, Herlev and Gentofte University Hospital, Hellerup, Denmark
| | - Asger Lundorff Jensen
- Biochemical Department, Faculty of Life Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne Koch
- Department of Experimental Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Steen Seier Poulsen
- Biomedical Department, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, U.S.A
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark.,The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
29
|
Hu Z, Zhang S, Zhou W, Ma X, Xiang G. Synthesis and antibacterial activity of 3-benzylamide derivatives as FtsZ inhibitors. Bioorg Med Chem Lett 2017; 27:1854-1858. [DOI: 10.1016/j.bmcl.2017.02.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/05/2017] [Accepted: 02/15/2017] [Indexed: 11/26/2022]
|
30
|
Xing LW, Tian SX, Gao W, Yang N, Qu P, Liu D, Jiao J, Wang J, Feng XJ. Recombinant expression and biological characterization of the antimicrobial peptide fowlicidin-2 in Pichia pastoris. Exp Ther Med 2016; 12:2324-2330. [PMID: 27698732 DOI: 10.3892/etm.2016.3578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/05/2016] [Indexed: 12/21/2022] Open
Abstract
Fowlicidins are a group of cathelicidin antimicrobial peptides that were initially identified in chickens. Fowlicidin-2, which is composed of 31 amino acids, is widely expressed in the majority of tissues in chickens and has an important role in innate immunity. In the present study, a recombinant expression system for fowlicidin-2 was successfully constructed using Pichia pastoris X-33 and the expression vector pPICZα-A. Under the optimized fermentation conditions, 85.6 mg fowlicidin-2 with >95% purity was obtained from 1 liter culture medium following purification by ion exchange chromatography and reversed phase high performance liquid chromatography. The recombinant fowlicidin-2 exhibited broad spectrum antimicrobial activity and had a minimum inhibitory concentration ranging from 1 to 4 µM. Furthermore, recombinant fowlicidin-2 exhibited hemolytic activity, promoting 50% human erythrocyte hemolysis in the concentration range of 128-256 µM, and anticancer activity, resulting in the death of 50% of A375 human malignant melanoma cells in the concentration range of 2-4 µM. The results of the present study suggest that recombinant fowlicidin-2 may be a promising candidate for therapeutic applications.
Collapse
Affiliation(s)
- Li-Wei Xing
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Shi-Xun Tian
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Wei Gao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Na Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Pei Qu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Di Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Jian Jiao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Jue Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Xing-Jun Feng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| |
Collapse
|
31
|
Current applications of nanoparticles in infectious diseases. J Control Release 2016; 224:86-102. [PMID: 26772877 DOI: 10.1016/j.jconrel.2016.01.008] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 02/06/2023]
Abstract
For decades infections have been treated easily with drugs. However, in the 21st century, they may become lethal again owing to the development of antimicrobial resistance. Pathogens can become resistant by means of different mechanisms, such as increasing the time they spend in the intracellular environment, where drugs are unable to reach therapeutic levels. Moreover, drugs are also subject to certain problems that decrease their efficacy. This requires the use of high doses, and frequent administrations must be implemented, causing adverse side effects or toxicity. The use of nanoparticle systems can help to overcome such problems and increase drug efficacy. Accordingly, there is considerable current interest in their use as antimicrobial agents against different pathogens like bacteria, virus, fungi or parasites, multidrug-resistant strains and biofilms; as targeting vectors towards specific tissues; as vaccines and as theranostic systems. This review begins with an overview of the different types and characteristics of nanoparticles used to deliver drugs to the target, followed by a review of current research and clinical trials addressing the use of nanoparticles within the field of infectious diseases.
Collapse
|
32
|
Gomes AR, Freitas AC, Duarte AC, Rocha-Santos TA. Echinoderms. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2016. [DOI: 10.1016/b978-0-444-63601-0.00001-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
TATAR E, ŞENKARDEŞ S, SELLİTEPE HE, KÜÇÜKGÜZEL ŞG, KARAOĞLU ŞA, BOZDEVECİ A, DE CLERCQ E, PANNECOUQUE C, BEN HADDA T, KÜÇÜKGÜZEL İ. Synthesis, and prediction of molecular properties and antimicrobial activity of some acylhydrazones derived from $N$-(arylsulfonyl)methionine. Turk J Chem 2016. [DOI: 10.3906/kim-1509-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
34
|
Paladini F, Pollini M, Sannino A, Ambrosio L. Metal-Based Antibacterial Substrates for Biomedical Applications. Biomacromolecules 2015; 16:1873-85. [PMID: 26082968 DOI: 10.1021/acs.biomac.5b00773] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interest in nanotechnology and the growing concern for the antibiotic resistance demonstrated by many microorganisms have recently stimulated many efforts in designing innovative biomaterials and substrates with antibacterial properties. Among the implemented strategies to control the incidence of infections associated with the use of biomedical device and implants, interesting routes are represented by the incorporation of bactericidal agents onto the surface of biomaterials for the prevention of bacterial adhesion and biofilm growth. Natural products and particularly bioactive metals such as silver, copper and zinc represent an interesting alternative for the development of advanced biomaterials with antimicrobial properties. This review presents an overview of recent progress in the modification of biomaterials as well as the most attractive techniques for the deposition of antimicrobial coatings on different substrates for biomedical application. Moreover, some research activities and results achieved by the authors in the development of antibacterial materials are also presented and discussed.
Collapse
Affiliation(s)
- Federica Paladini
- †Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Mauro Pollini
- †Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Alessandro Sannino
- †Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | | |
Collapse
|
35
|
Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F. Chromone: A Valid Scaffold in Medicinal Chemistry. Chem Rev 2014; 114:4960-92. [DOI: 10.1021/cr400265z] [Citation(s) in RCA: 472] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alexandra Gaspar
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago of Compostela, 15782 Santiago de Compostela, Spain
| | - Maria João Matos
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago of Compostela, 15782 Santiago de Compostela, Spain
| | - Jorge Garrido
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
- Department
of Chemical Engineering, School of Engineering (ISEP), Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Eugenio Uriarte
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago of Compostela, 15782 Santiago de Compostela, Spain
| | - Fernanda Borges
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
36
|
Breyer BN. Editorial Comment. Urology 2013; 82:942. [DOI: 10.1016/j.urology.2013.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|