1
|
Luo T, Zhang S, Li X, Huang M. Challenges in the differential diagnosis of pulmonary tuberculosis vs. lung cancer: A case report. Oncol Lett 2024; 28:494. [PMID: 39211306 PMCID: PMC11358719 DOI: 10.3892/ol.2024.14627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/03/2024] [Indexed: 09/04/2024] Open
Abstract
Pulmonary tuberculosis (TB) and certain types of lung cancer (LC), such as lung adenocarcinoma, squamous cell carcinoma and small cell undifferentiated carcinoma, are prevalent diseases that share similar clinical symptoms and imaging characteristics, increasing the risk of misdiagnosis. The present report documents the case of a man with a history of close contact with TB who exhibited clinical symptoms and lung CT scan findings that strongly indicated pulmonary TB. However, the diagnosis was ultimately confirmed to be lung adenocarcinoma on endoscopic biopsy. The present report shows that clinicians should always consider the possibility of LC in patients with TB-related pulmonary pathological changes detected by imaging.
Collapse
Affiliation(s)
- Tao Luo
- Central Laboratory, The Third People's Hospital of Zhuhai, Zhuhai, Guangdong 519000, P.R. China
| | - Shuiwang Zhang
- Department of Tuberculosis, The Third People's Hospital of Zhuhai, Zhuhai, Guangdong 519000, P.R. China
| | - Xiaoliang Li
- Central Laboratory, The Third People's Hospital of Zhuhai, Zhuhai, Guangdong 519000, P.R. China
| | - Mingxing Huang
- Central Laboratory, The Third People's Hospital of Zhuhai, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
2
|
Abudereheman M, Lian Z, Ainitu B. Weighted gene co-expression network analysis and whole genome sequencing identify potential lung cancer biomarkers. Front Oncol 2024; 14:1355527. [PMID: 38854719 PMCID: PMC11157001 DOI: 10.3389/fonc.2024.1355527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Background Tuberculosis (TB) leads to an increased risk of lung cancer (LC). However, the carcinogenetic mechanism of TB remains unclear. We constructed gene co-expression networks and carried out whole-exome sequencing (WES) to identify key modules, hub genes, and the most recurrently mutated genes involved in the pathogenesis of TB-associated LC. Methods The data used in this study were obtained from the Gene Expression Omnibus (GEO) and WES. First, we screened LC-related genes in GSE43458 and TB-related genes in GSE83456 by weighted gene co-expression network analysis (WGCNA). Subsequently, we screened differentially expressed genes related to LC and TB in GSE42834. We also performed WES of 15 patients (TB, n = 5; LC, n = 5; TB+LC, n = 5), constructed mutational profiles, and identified differences in the profiles of the three groups for further investigation. Results We identified 278 hub genes associated with tumorigenesis of pulmonary TB. Moreover, WES identified 112 somatic mutations in 25 genes in the 15 patients. Finally, four common genes (EGFR, HSPA2, CECR2, and LAMA3) were confirmed in a Venn diagram of the 278 hub genes and the mutated genes from WES. KEGG analysis revealed various pathway changes. The PI3K-AKT signaling pathway was the most enriched pathway, and all four genes are included in this pathway. Thus, these four genes and the PI3K-AKT signaling pathway may play important roles in LC. Conclusion Several potential genes and pathways related to TB-associated LC were identified, including EGFR and three target genes not found in previous studies. These genes are related to cell proliferation, colony formation, migration, and invasion, and provide a direction for future research into the mechanisms of LC co-occurring with TB. The PI3K-AKT signaling pathway was also identified as a potential key pathway involved in LC development.
Collapse
Affiliation(s)
| | | | - Baidurula Ainitu
- Oncology Department, The Eighth Affiliated Hospital of XinJiang Medical University, Urumqi, China
| |
Collapse
|
3
|
Rai D, Pattnaik B, Bangaru S, Tak J, Kumari J, Verma U, Vadala R, Yadav G, Dhaliwal RS, Kumar S, Kumar R, Jain D, Luthra K, Chosdol K, Palanichamy JK, Khan MA, Surendranath A, Mittal S, Tiwari P, Hadda V, Madan K, Agrawal A, Guleria R, Mohan A. microRNAs in exhaled breath condensate for diagnosis of lung cancer in a resource-limited setting: a concise review. Breathe (Sheff) 2023; 19:230125. [PMID: 38351949 PMCID: PMC10862127 DOI: 10.1183/20734735.0125-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/30/2023] [Indexed: 02/16/2024] Open
Abstract
Lung cancer is one of the common cancers globally with high mortality and poor prognosis. Most cases of lung cancer are diagnosed at an advanced stage due to limited diagnostic resources. Screening modalities, such as sputum cytology and annual chest radiographs, have not proved sensitive enough to impact mortality. In recent years, annual low-dose computed tomography has emerged as a potential screening tool for early lung cancer detection, but it may not be a feasible option for developing countries. In this context, exhaled breath condensate (EBC) analysis has been evaluated recently as a noninvasive tool for lung cancer diagnosis. The breath biomarkers also have the advantage of differentiating various types and stages of lung cancer. Recent studies have focused more on microRNAs (miRNAs) as they play a key role in tumourigenesis by regulating the cell cycle, metastasis and angiogenesis. In this review, we have consolidated the current published literature suggesting the utility of miRNAs in EBC for the detection of lung cancer.
Collapse
Affiliation(s)
- Divyanjali Rai
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Bijay Pattnaik
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Bangaru
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Jaya Tak
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Jyoti Kumari
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Umashankar Verma
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Vadala
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Geetika Yadav
- Indian Council of Medical Research, New Delhi, India
| | | | - Sunil Kumar
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Maroof Ahmad Khan
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Addagalla Surendranath
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Mittal
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Pawan Tiwari
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Vijay Hadda
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Karan Madan
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Anurag Agrawal
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| | - Randeep Guleria
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Anant Mohan
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Talukder A, Rahman MM, Masum MHU. Biocomputational characterisation of MBO_200107 protein of Mycobacterium tuberculosis variant caprae: a molecular docking and simulation study. J Biomol Struct Dyn 2023; 41:7204-7223. [PMID: 36039775 DOI: 10.1080/07391102.2022.2118167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
The principal objective of this study was to delineate the potentiality of the MBO_200107 protein from the Mycobacterium tuberculosis variant caprae in cancer research. It is a cytoplasmic protein, comprised of a 354-long amino acid chain, alkaline, had a molecular weight of 39089.37 Da, an isoelectric point of 9.62 and a grand average of hydropathicity of -0.345. One of the functional domains was predicted as Gammaglutamylcyclotransferase (GGCT). Among tertiary structures, the Modeller and Phyre2 model satisfied all the quality parameters, though they are truncated; contrarily, the I-TASSER model is full length and contains the sequence for the GGCT domain, though it did not meet all the quality parameters. It also has significant sequence similarities (47.5% by EMBOSS Water and 72.4% by EMBOSS Matcher) with a human GGCT, and the conserved sequences are confined to the GGCT domain of the MBO_200107. According to molecular docking analyses, the protein has a binding affinity of -4.8 kcal/mol by Autodock Vina and -56.465 kcal/mol by HPEPDOCK to the human glutathione (GSH), an essential metabolite for GGCT metabolism. The Molecular dynamic simulation of the docked complex showed the binding efficiency of the GSH to MBO_200107 with a minimal structural alteration. The in silico findings mentioned above revealed that the protein could be used as a supplementary tool in cancer research, such as designing vaccines or drugs where the role of GGCT has been implicated. Further, we recommend fully characterising the protein and conducting essential in vitro and in vivo experiments to determine its detailed usefulness.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Asma Talukder
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Mijanur Rahman
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Menzies Health Institute Queensland, School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia
| | - Md Habib Ullah Masum
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
5
|
Wang Q, Zeng A, Zhu M, Song L. Dual inhibition of EGFR‑VEGF: An effective approach to the treatment of advanced non‑small cell lung cancer with EGFR mutation (Review). Int J Oncol 2023; 62:26. [PMID: 36601768 PMCID: PMC9851127 DOI: 10.3892/ijo.2023.5474] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 01/04/2023] Open
Abstract
On a global scale, the incidence and mortality rates of lung cancer are gradually increasing year by year. A number of bad habits and environmental factors are associated with lung cancer, including smoking, second‑hand smoke exposure, occupational exposure, respiratory diseases and genetics. At present, low‑dose spiral computed tomography is routinely the first choice in the diagnosis of lung cancer. However, pathological examination is still the gold standard for the diagnosis of lung cancer. Based on the classification and stage of the cancer, treatment options such as surgery, radiotherapy, chemotherapy, targeted therapy and immunotherapy are available. The activation of the EGFR pathway can promote the survival and proliferation of tumor cells, and the VEGF pathway can promote the formation of blood vessels, thereby promoting tumor growth. In non‑small cell lung cancer (NSCLC) with EGFR mutation, EGFR activation can promote tumor growth by promoting VEGF upregulation through a hypoxia‑independent mechanism. The upregulation of VEGF can make tumor cells resistant to EGFR inhibitors. In addition, the expression of the VEGF signal is also affected by other factors. Therefore, the use of a single EGFR inhibitor cannot completely inhibit the expression of the VEGF signal. In order to overcome this problem, the combination of VEGF inhibitors and EGFR inhibitors has become the method of choice. Dual inhibition can not only overcome the resistance of tumor cells to EGFR inhibitors, but also significantly increase the progression‑free survival time of patients with NSCLC. The present review discusses the associations between the EGFR and VEGF pathways, and the characteristics of dual inhibition of the EGFR‑VEGF pathway.
Collapse
Affiliation(s)
- Qian Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan 610041, P.R. China
| | - Min Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China,Correspondence to: Dr Linjiang Song or Dr Min Zhu, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, P.R. China, E-mail: , E-mail:
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China,Correspondence to: Dr Linjiang Song or Dr Min Zhu, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, P.R. China, E-mail: , E-mail:
| |
Collapse
|
6
|
Serce Unat D, Ulusan Bagci O, Unat OS, Kose S, Caner A. The Spectrum of Infections in Patients with Lung Cancer. Cancer Invest 2023; 41:25-42. [PMID: 36445108 DOI: 10.1080/07357907.2022.2153860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Although diagnostic and therapeutic advances in lung cancer (LC) have increased the survival of patients, infection and its complications are still among the most important causes of mortality. The disruption of tissue caused by tumor mass, management of cancer therapy and alteration in the humoral/cellular immune systems due to both cancer itself and therapy considerably increase susceptibility to infection in cancer patients. Particularly, opportunistic microorganisms should be considered, then applying rapid and sensitive diagnostic methods for them. Thus, cancer patients who are already exposed to difficult, long-term and expensive treatments can be prevented from dying from complications related to infections.
Collapse
Affiliation(s)
- Damla Serce Unat
- Department of Chest Disease, Dr. Suat Seren Chest Disease and Surgery Training and Research Hospital, Izmir, Turkey
| | - Ozlem Ulusan Bagci
- Department of Microbiology, Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkey.,Department of Basic Oncology, Institute of Health Sciences, Ege University, Izmir, Turkey
| | - Omer Selim Unat
- Department of Chest Disease, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sukran Kose
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Ayse Caner
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Izmir, Turkey.,Translational Pulmonary Research Group (EGESAM), Ege University, Izmir, Turkey.,Department of Parasitology, Faculty of Medicine, Ege University, Izmir, Turkey.,Cancer Research Center, Ege University, Izmir, Turkey
| |
Collapse
|
7
|
Dlamini SB, Hlongwana KW, Ginindza TG. Lung cancer awareness training experiences of community health workers in KwaZulu-Natal, South Africa. Afr J Prim Health Care Fam Med 2022; 14:e1-e9. [PMID: 36546485 PMCID: PMC9772754 DOI: 10.4102/phcfm.v14i1.3414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer mortality worldwide. Awareness interventions in the developing world remain scarce. Community health workers (CHWs) are a critical component towards ensuring efficient delivery of healthcare services in low- and middle-income countries. AIM This study explored the experiences of CHWs of their training as lung cancer awareness intervention implementers. SETTING The study was conducted in a resource-poor setting, with CHWs from previously disadvantaged communities. METHODS On the last day of training, 10 CHWs were requested to voluntarily participate in a focus group discussion regarding their experiences of the training, utilising a discussion guide. RESULTS The participants expressed positive experiences with the training. They cited the amenable and conducive learning environment established by the facilitator. The participants felt empowered through the newly acquired knowledge and wanted to help their communities. However, some participants expressed a desire to have other forms of learning incorporated in future training. The participants were also cognisant of existing gaps in their own knowledge that could be elaborated upon in preparation for potential questions by the community. Some participants confirmed their role as agents of change. CONCLUSION The authors propose large-scale intervention studies of lung cancer awareness utilising the CHW programme to gather conclusive evidence regarding their effectiveness at a community level.Contribution: This article provides insight into the training of community health workers on lung cancer awareness and future research on the integration of the intervention into already existing programmes.
Collapse
Affiliation(s)
- Siyabonga B. Dlamini
- Discipline of Public Health Medicine, Faculty of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,Cancer & Infectious Diseases Epidemiology Research Unit, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Khumbulani W. Hlongwana
- Discipline of Public Health Medicine, Faculty of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,Cancer & Infectious Diseases Epidemiology Research Unit, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Themba G. Ginindza
- Discipline of Public Health Medicine, Faculty of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,Cancer & Infectious Diseases Epidemiology Research Unit, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Zhang L, Shao J, Tan SW, Ye HP, Shan XY. Association between serum copper/zinc ratio and lung cancer: A systematic review with meta-analysis. J Trace Elem Med Biol 2022; 74:127061. [PMID: 35987182 DOI: 10.1016/j.jtemb.2022.127061] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Numerous studies have investigated the relationship between serum copper/zinc ratio and lung cancer. However, the results are inconsistent. Therefore, we evaluated the association between copper/zinc ratio and lung cancer. MATERIALS AND METHODS Observational studies reporting serum copper/zinc ratio in lung cancer patients and controls were identified from PubMed, Web of Science, EMBASE, CNKI and Wanfang databases online before December 2021. Summary standard mean difference (SMD) and the corresponding 95 % confidence interval (95 % CI) were applied to compare the serum serum copper/zinc ratio between lung cancer patients and controls using a random-effects model. RESULTS Thirty-nine articles including 3598 lung cancer patients, 1402 benign lung diseases, and 3314 healthy controls were included in this study. The pooled results showed that the lung cancer patients had significantly higher serum copper/zinc ratio than healthy controls [SMD (95 % CI): 1.62 (1.31, 1.93)] and patients with benign lung diseases [SMD (95 % CI): 0.60 (0.36, 0.84)]. The results were robust according to sensitivity analysis. Meanwhile, consistent results were obtained both in European populations and Asian populations. Moreover, serum copper/zinc ratio was significant higher in patients with advanced stage of lung cancer than that in patients with early stage of lung cancer. CONCLUSION The results showed that elevated serum copper/zinc ratio might be associated with increased risk of lung cancer.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Sanitation Test, Hangzhou Hospital for the Prevention and Treatment of Occupational Disease, Hangzhou, PR China.
| | - Ji Shao
- Department of Sanitation Test, Hangzhou Hospital for the Prevention and Treatment of Occupational Disease, Hangzhou, PR China
| | - Si-Wei Tan
- Department of Sanitation Test, Hangzhou Hospital for the Prevention and Treatment of Occupational Disease, Hangzhou, PR China
| | - Hai-Peng Ye
- Department of Sanitation Test, Hangzhou Hospital for the Prevention and Treatment of Occupational Disease, Hangzhou, PR China
| | - Xiao-Yue Shan
- Department of Sanitation Test, Hangzhou Hospital for the Prevention and Treatment of Occupational Disease, Hangzhou, PR China.
| |
Collapse
|
9
|
Vishnu Sharma M, Arora VK, Anupama N. Challenges in diagnosis and treatment of tuberculosis in elderly. Indian J Tuberc 2022; 69 Suppl 2:S205-S208. [PMID: 36400510 DOI: 10.1016/j.ijtb.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Tuberculosis (TB) is a major infectious disease worldwide. Early diagnosis and prompt treatment reduces the transmission, morbidity and mortality in tuberculosis. Elderly (age >65 years) have many risk factors to develop tuberculosis. Recent survey in India showed incidence of TB higher in elderly. They may not have classical symptoms, clinical and radiological signs of TB which can lead to delayed diagnosis or misdiagnosis. In addition, elderly have many comorbid and coexisting diseases which make diagnosis and treatment of TB challenging. Comorbidities, poor general health status and other medications may lead to increased drug adverse reactions and poor adherence to treatment in elderly. Hence special emphasis should be given to elderly for early diagnosis and treatment. Elderly with multiple comorbidities require individualized approach for better outcome.
Collapse
Affiliation(s)
- M Vishnu Sharma
- Department of Respiratory Medicine, A. J. Institute of Medical Sciences and Research Centre, Kuntikana, Mangalore, Karnataka, India.
| | - Vijay Kumar Arora
- TB Association of India, India; Indian Journal of Tuberculosis, India
| | - N Anupama
- Department of Physiology, Kasturba Medical College, Mangalore, India; Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
10
|
Liu H, Yuan M, Mitra R, Zhou X, Long M, Lei W, Zhou S, Huang YE, Hou F, Eischen CM, Jiang W. CTpathway: a CrossTalk-based pathway enrichment analysis method for cancer research. Genome Med 2022; 14:118. [PMID: 36229842 PMCID: PMC9563764 DOI: 10.1186/s13073-022-01119-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Pathway enrichment analysis (PEA) is a common method for exploring functions of hundreds of genes and identifying disease-risk pathways. Moreover, different pathways exert their functions through crosstalk. However, existing PEA methods do not sufficiently integrate essential pathway features, including pathway crosstalk, molecular interactions, and network topologies, resulting in many risk pathways that remain uninvestigated. METHODS To overcome these limitations, we develop a new crosstalk-based PEA method, CTpathway, based on a global pathway crosstalk map (GPCM) with >440,000 edges by combing pathways from eight resources, transcription factor-gene regulations, and large-scale protein-protein interactions. Integrating gene differential expression and crosstalk effects in GPCM, we assign a risk score to genes in the GPCM and identify risk pathways enriched with the risk genes. RESULTS Analysis of >8300 expression profiles covering ten cancer tissues and blood samples indicates that CTpathway outperforms the current state-of-the-art methods in identifying risk pathways with higher accuracy, reproducibility, and speed. CTpathway recapitulates known risk pathways and exclusively identifies several previously unreported critical pathways for individual cancer types. CTpathway also outperforms other methods in identifying risk pathways across all cancer stages, including early-stage cancer with a small number of differentially expressed genes. Moreover, the robust design of CTpathway enables researchers to analyze both bulk and single-cell RNA-seq profiles to predict both cancer tissue and cell type-specific risk pathways with higher accuracy. CONCLUSIONS Collectively, CTpathway is a fast, accurate, and stable pathway enrichment analysis method for cancer research that can be used to identify cancer risk pathways. The CTpathway interactive web server can be accessed here http://www.jianglab.cn/CTpathway/ . The stand-alone program can be accessed here https://github.com/Bioccjw/CTpathway .
Collapse
Affiliation(s)
- Haizhou Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Ramkrishna Mitra
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA, 19107, USA
| | - Xu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Min Long
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Wanyue Lei
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Shunheng Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Yu-E Huang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Fei Hou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Christine M Eischen
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA, 19107, USA.
| | - Wei Jiang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China.
| |
Collapse
|
11
|
The Role of Chest CT Radiomics in Diagnosis of Lung Cancer or Tuberculosis: A Pilot Study. Diagnostics (Basel) 2022; 12:diagnostics12030739. [PMID: 35328296 PMCID: PMC8947348 DOI: 10.3390/diagnostics12030739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
In many low-income countries, the poor availability of lung biopsy leads to delayed diagnosis of lung cancer (LC), which can appear radiologically similar to tuberculosis (TB). To assess the ability of CT Radiomics in differentiating between TB and LC, and to evaluate the potential predictive role of clinical parameters, from March 2020 to September 2021, patients with histological diagnosis of TB or LC underwent chest CT evaluation and were retrospectively enrolled. Exclusion criteria were: availability of only enhanced CT scans, previous lung surgery and significant CT motion artefacts. After manual 3D segmentation of enhanced CT, two radiologists, in consensus, extracted and compared radiomics features (T-test or Mann−Whitney), and they tested their performance, in differentiating LC from TB, via Receiver operating characteristic (ROC) curves. Forty patients (28 LC and 12 TB) were finally enrolled, and 31 were male, with a mean age of 59 ± 13 years. Significant differences were found in normal WBC count (p < 0.019) and age (p < 0.001), in favor of the LC group (89% vs. 58%) and with an older population in LC group, respectively. Significant differences were found in 16/107 radiomic features (all p < 0.05). LargeDependenceEmphasis and LargeAreaLowGrayLevelEmphasis showed the best performance in discriminating LC from TB, (AUC: 0.92, sensitivity: 85.7%, specificity: 91.7%, p < 0.0001; AUC: 0.92, sensitivity: 75%, specificity: 100%, p < 0.0001, respectively). Radiomics may be a non-invasive imaging tool in many poor nations, for differentiating LC from TB, with a pivotal role in improving oncological patients’ management; however, future prospective studies will be necessary to validate these initial findings.
Collapse
|
12
|
Alam A, Abubaker Bagabir H, Sultan A, Siddiqui MF, Imam N, Alkhanani MF, Alsulimani A, Haque S, Ishrat R. An Integrative Network Approach to Identify Common Genes for the Therapeutics in Tuberculosis and Its Overlapping Non-Communicable Diseases. Front Pharmacol 2022; 12:770762. [PMID: 35153741 PMCID: PMC8829040 DOI: 10.3389/fphar.2021.770762] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death from a single infectious agent. The estimated total global TB deaths in 2019 were 1.4 million. The decline in TB incidence rate is very slow, while the burden of noncommunicable diseases (NCDs) is exponentially increasing in low- and middle-income countries, where the prevention and treatment of TB disease remains a great burden, and there is enough empirical evidence (scientific evidence) to justify a greater research emphasis on the syndemic interaction between TB and NCDs. The current study was proposed to build a disease-gene network based on overlapping TB with NCDs (overlapping means genes involved in TB and other/s NCDs), such as Parkinson’s disease, cardiovascular disease, diabetes mellitus, rheumatoid arthritis, and lung cancer. We compared the TB-associated genes with genes of its overlapping NCDs to determine the gene-disease relationship. Next, we constructed the gene interaction network of disease-genes by integrating curated and experimentally validated interactions in humans and find the 13 highly clustered modules in the network, which contains a total of 86 hub genes that are commonly associated with TB and its overlapping NCDs, which are largely involved in the Inflammatory response, cellular response to cytokine stimulus, response to cytokine, cytokine-mediated signaling pathway, defense response, response to stress and immune system process. Moreover, the identified hub genes and their respective drugs were exploited to build a bipartite network that assists in deciphering the drug-target interaction, highlighting the influential roles of these drugs on apparently unrelated targets and pathways. Targeting these hub proteins by using drugs combination or drug repurposing approaches will improve the clinical conditions in comorbidity, enhance the potency of a few drugs, and give a synergistic effect with better outcomes. Thus, understanding the Mycobacterium tuberculosis (Mtb) infection and associated NCDs is a high priority to contain its short and long-term effects on human health. Our network-based analysis opens a new horizon for more personalized treatment, drug-repurposing opportunities, investigates new targets, multidrug treatment, and can uncover several side effects of unrelated drugs for TB and its overlapping NCDs.
Collapse
Affiliation(s)
- Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Hala Abubaker Bagabir
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Armiya Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Nikhat Imam
- Department of Mathematics, Institute of Computer Science and Information Technology, Magadh University, Bodh Gaya, India
| | - Mustfa F Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
13
|
Pulmonary Tuberculosis and Risk of Lung Cancer: A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:jcm11030765. [PMID: 35160218 PMCID: PMC8836400 DOI: 10.3390/jcm11030765] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary tuberculosis (TB) is a known risk factor for lung cancer. However, a detailed analysis of lung cancer type, age, sex, smoking, and TB burden associated with geographic and socioeconomic status has not been performed previously. We systematically appraised relevant observational studies reporting an association between pulmonary TB and lung cancer. All studies were included in the primary analysis, and studies that used robust TB diagnostic methods, such as validated medical diagnostic codes, were included in the secondary analysis. Thirty-two articles were included. The association between the history of pulmonary TB and diagnosis of lung cancer was statistically significant (OR 2.09, 95% CI: 1.62–2.69, p < 0.001). There was a high heterogeneity (I2 = 95%), without any publication bias. The analysis indicated a high association in advanced articles describing stringent pulmonary TB diagnosis (OR 2.26, 95% CI: 1.29–3.94, p = 0.004). The subgroup analyses suggested a significant association in countries with medium or high TB burdens, from East Asia and the Pacific region, and upper-middle income countries. Heterogeneity within the subgroups remained high in a majority of the subgroup analyses. A meta-regression analysis revealed that younger patients showed a significantly higher association between TB and lung cancer (regression coefficient = 0.949, p < 0.001). The history of pulmonary TB is an independent risk factor for lung cancer, especially in younger patients diagnosed with pulmonary TB. Clinicians should be aware of this association while treating young patients with a history of pulmonary TB.
Collapse
|
14
|
Sheikh A, Alhakamy NA, Md S, Kesharwani P. Recent Progress of RGD Modified Liposomes as Multistage Rocket Against Cancer. Front Pharmacol 2022; 12:803304. [PMID: 35145405 PMCID: PMC8822168 DOI: 10.3389/fphar.2021.803304] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a life-threatening disease, contributing approximately 9.4 million deaths worldwide. To address this challenge, scientific researchers have investigated molecules that could act as speed-breakers for cancer. As an abiotic drug delivery system, liposomes can hold both hydrophilic and lipophilic drugs, which promote a controlled release, accumulate in the tumor microenvironment, and achieve elongated half-life with an enhanced safety profile. To further improve the safety and impair the off-target effect, the surface of liposomes could be modified in a way that is easily identified by cancer cells, promotes uptake, and facilitates angiogenesis. Integrins are overexpressed on cancer cells, which upon activation promote downstream cell signaling and eventually activate specific pathways, promoting cell growth, proliferation, and migration. RGD peptides are easily recognized by integrin over expressed cells. Just like a multistage rocket, ligand anchored liposomes can be selectively recognized by target cells, accumulate at the specific site, and finally, release the drug in a specific and desired way. This review highlights the role of integrin in cancer development, so gain more insights into the phenomenon of tumor initiation and survival. Since RGD is recognized by the integrin family, the fate of RGD has been demonstrated after its binding with the acceptor’s family. The role of RGD based liposomes in targeting various cancer cells is also highlighted in the paper.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- *Correspondence: Prashant Kesharwani,
| |
Collapse
|
15
|
Imam SS, Alshehri S, Altamimi MA, Hussain A, Alyahya KH, Mahdi WA, Qamar W. Formulation and Evaluation of Luteolin-Loaded Nanovesicles: In Vitro Physicochemical Characterization and Viability Assessment. ACS OMEGA 2022; 7:1048-1056. [PMID: 35036768 PMCID: PMC8757359 DOI: 10.1021/acsomega.1c05628] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 05/05/2023]
Abstract
Luteolin (LT) is a natural polyphenol water-insoluble compound. LT-loaded nanovesicles (NVs) were prepared by using the solvent evaporation method. LT-NVs were prepared using cholesterol, phosphatidylcholine, span 60, and labrasol in a different composition. The prepared LT-NVs were evaluated for encapsulation efficiency, in vitro drug release, and permeation study. The optimized LT-NVs were further evaluated for antioxidant activity and cytotoxicity using the lung cancer cell line. LT-NVs showed nanometric size (less than 300 nm), an optimum polydispersibility index (less than 0.5), and a negative zeta potential value. The formulations also showed significant variability in the encapsulation efficiency (69.44 ± 0.52 to 83.75 ± 0.35%) depending upon the formulation composition. The in vitro and permeation study results revealed enhanced drug release as well as permeation profile. The formulation LT-NVs (F2) showed the maximum drug release of 88.28 ± 1.13%, while pure LT showed only 20.1 ± 1.21% in 12 h. The release data revealed significant variation (p < 0.001) in the release pattern. The permeation results also depicted significant (p < 0.001) enhancement in the permeation across the membrane. The enhanced permeation from LT-NVs was achieved due to the enhanced solubility of LT in the presence of the surfactant. The antioxidant activity results proved that LT-NVs showed greater activity compared to pure LT. The cytotoxicity study showed lesser IC50 value from LT-NVs than the pure LT. Thus, it can be concluded that LT-NVs are a natural alternative to the synthetic drug in the treatment of lung cancer.
Collapse
Affiliation(s)
- Syed Sarim Imam
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Altamimi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Afzal Hussain
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Khaled Hamad Alyahya
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Wael A. Mahdi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Department
of Pharmacology and Toxicology, Central Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Milewska S, Niemirowicz-Laskowska K, Siemiaszko G, Nowicki P, Wilczewska AZ, Car H. Current Trends and Challenges in Pharmacoeconomic Aspects of Nanocarriers as Drug Delivery Systems for Cancer Treatment. Int J Nanomedicine 2021; 16:6593-6644. [PMID: 34611400 PMCID: PMC8487283 DOI: 10.2147/ijn.s323831] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Nanotherapy is a part of nanomedicine that involves nanoparticles as carriers to deliver drugs to target locations. This novel targeting approach has been found to resolve various problems, especially those associated with cancer treatment. In nanotherapy, the carrier plays a crucial role in handling many of the existing challenges, including drug protection before early-stage degradations of active substances, allowing them to reach targeted cells and overcome cell resistance mechanisms. The present review comprises the following sections: the first part presents the introduction of pharmacoeconomics as a branch of healthcare economics, the second part covers various beneficial aspects of the use of nanocarriers for in vitro, in vivo, and pre- and clinical studies, as well as discussion on drug resistance problem and present solutions to overcome it. In the third part, progress in drug manufacturing and optimization of the process of nanoparticle synthesis were discussed. Finally, pharmacokinetic and toxicological properties of nanoformulations due to up-to-date studies were summarized. In this review, the most recent developments in the field of nanotechnology's economic impact, particularly beneficial applications in medicine were presented. Primarily focus on cancer treatment, but also discussion on other fields of application, which are strongly associated with cancer epidemiology and treatment, was made. In addition, the current limitations of nanomedicine and its huge potential to improve and develop the health care system were presented.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | | | - Piotr Nowicki
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| |
Collapse
|
17
|
Links between Infections, Lung Cancer, and the Immune System. Int J Mol Sci 2021; 22:ijms22179394. [PMID: 34502312 PMCID: PMC8431665 DOI: 10.3390/ijms22179394] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the leading disease of cancer-related deaths worldwide. Since the beginning of the 20th century, various infectious agents associated with lung cancer have been identified. The mechanisms that include systemic inflammatory pathways as effect of microbial persistence in the lung can secondarily promote the development of lung carcinogenesis. Chronic inflammation associated with lung-cancer infections is known to precede tumor development, and it has a strong effect on the response(s) to therapy. In fact, both viral and bacterial infections can activate inflammatory cells and inflammatory signaling pathways. In this review, an overview of critical findings of recent studies investigating associations between each of viral and bacterial pathogens and lung carcinoma is provided, with particular emphasis on how infectious organisms can interfere with oncogenic processes and all the way through immunity. Moreover, a discussion of the direct crosstalk between lung tumor development and inflammatory processes is also presented.
Collapse
|
18
|
Roy D, Ehtesham NZ, Hasnain SE. Is Mycobacterium tuberculosis carcinogenic to humans? FASEB J 2021; 35:e21853. [PMID: 34416038 DOI: 10.1096/fj.202001581rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
We highlight the ability of the tuberculosis (TB) causing bacterial pathogen, Mycobacterium tuberculosis (Mtb), to induce key characteristics that are associated with established IARC classified Group 1 and Group 2A carcinogenic agents. There is sufficient evidence from epidemiological case-control, cohort and meta-analysis studies of increased lung cancer (LC) risk in pre-existing/active/old TB cases. Similar to carcinogens and other pathogenic infectious agents, exposure to aerosol-containing Mtb sprays in mice produce malignant transformation of cells that result in squamous cell carcinoma. Convincing, mechanistic data show several characteristics shared between TB and LC which include chronic inflammation, genomic instability and replicative immortality, just to name a few cancer hallmarks. These hallmarks of cancer may serve as precursors to malignant transformation. Together, these findings form the basis of our postulate that Mtb is a complete human pulmonary carcinogen. We also discuss how Mtb may act as both an initiating agent and promoter of tumor growth. Forthcoming experimental studies will not only serve as proof-of-concept but will also pivot our understanding of how to manage/treat TB cases as well as offer solutions to clinical conundrums of TB lesions masquerading as tumors. Clinical validation of our concept may also help pave the way for next generation personalized medicine for the management of pulmonary TB/cancer particularly for cases that are not responding well to conventional chemotherapy or TB drugs.
Collapse
Affiliation(s)
- Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Nasreen Z Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| |
Collapse
|
19
|
Evaluating the Frequency of Resistance to Pyrazinamide Among Drug-resistant Strains of Mycobacterium tuberculosis in Isfahan, Iran. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2021. [DOI: 10.5812/archcid.101092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: Pyrazinamide is one of the most important first-line medications for the treatment of tuberculosis and an alternative intake for MDR-TB and XDR-TB patients. Objectives: The purpose of this study was to evaluate resistance to pyrazinamide in the isolates resistant to the Mycobacterium tuberculosis drug in patients in the city of Isfahan. Methods: In this study, the drug susceptibility test was performed with pyrazinamide using the proportion method and PZA assay on 47 isolates resistant to Mycobacterium tuberculosis. Then, the mutations of the pncA and rpsA genes of the isolates resistant to pyrazinamide were evaluated by the sequencing method. Results: According to the proportion method, 19 cases were resistant to pyrazinamide, 16 of which had mutations in their pncA and rpsA genes. Besides, five new mutations were recorded, and three isolates lacked mutations in the mentioned genes. Conclusions: Pyrazinamide resistance is high in MDR-TB and INH mono-resistant isolates. Therefore, evaluating the susceptibility to pyrazinamide in patients with MDR-TB before the initiation of treatment with pyrazinamide is considered essential.
Collapse
|
20
|
Fang G, Cheng NC, Huang LL, Xie WP, Hu CM, Chen W. The first report of co-existence of pulmonary tuberculosis and lung malignancy in a kidney transplant recipient: a case report and literature review. BMC Infect Dis 2021; 21:629. [PMID: 34210287 PMCID: PMC8252204 DOI: 10.1186/s12879-021-06350-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Background Along with the medical development, organ transplant patients increase dramatically. Since these transplant patients take immunosuppressants for a long term, their immune functions are in a suppressed state, prone to all kinds of opportunistic infections and cancer. However, it is rarely reported that the kidney transplant recipients (KTRs) have pulmonary tuberculosis and lung cancer simultaneously. Case presentation A 60-year-old male was admitted because of persistent lung shadow for 2 years without any obvious symptom 8 years after renal transplant. T-SPOT test was positive but other etiological examinations for Mycobacterium tuberculosis were negative. Chest CT scan revealed two pulmonary lesions in the right upper and lower lobe respectively. 18F-fluorodesoxyglucose positron-emission tomography (FDG-PET) CT found FDG intake increased in both pulmonary consolidation lesions. CT-guided percutaneous transthoracic needle biopsy revealed lung adenocarcinoma and tuberculosis. The video-assisted thoracoscopic surgery was operated to resect the malignancy lesions. The patient received specific anti-tuberculosis therapy and was discharged. At the follow-up of 6 months post drug withdrawal, the patient was recovered very well. Conclusions We for the first time reported co-existence of smear-negative pulmonary TB and lung adenocarcinoma in a KTR, which highlighted the clinical awareness of co-occurrence of TB and malignancy after renal transplant and emphasized the value of biopsy and 18F-FDG-PET in early diagnosis of TB and cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06350-x.
Collapse
Affiliation(s)
- Gang Fang
- Department of Tuberculosis, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Ning-Chang Cheng
- Department of Respiratory, Xinglong Community Health Center, Nanjing, 210019, China
| | - Li-Li Huang
- Department of Tuberculosis, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Wei-Ping Xie
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chun-Mei Hu
- Department of Tuberculosis, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| | - Wei Chen
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| |
Collapse
|
21
|
Seasonal prevalence and characteristics of low-dose CT detected lung nodules in a general Dutch population. Sci Rep 2021; 11:9139. [PMID: 33911102 PMCID: PMC8080793 DOI: 10.1038/s41598-021-88328-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
We investigated whether presence and characteristics of lung nodules in the general population using low-dose computed tomography (LDCT) varied by season. Imaging in Lifelines (ImaLife) study participants who underwent chest LDCT-scanning between October 2018 and October 2019 were included in this sub-study. Hay fever season (summer) was defined as 1st April to 30th September and Influenza season (winter) as 1st October to 31st March. All lung nodules with volume of ≥ 30 mm3 (approximately 3 mm in diameter) were registered. In total, 2496 lung nodules were found in 1312 (38%) of the 3456 included participants (nodules per participant ranging from 1 to 21, median 1). In summer, 711 (54%) participants had 1 or more lung nodule(s) compared to 601 (46%) participants in winter (p = 0.002). Of the spherical, perifissural and left-upper-lobe nodules, relatively more were detected in winter, whereas of the polygonal-, irregular-shaped and centrally-calcified nodules, relatively more were detected in summer. Various seasonal diseases with inflammation as underlying pathophysiology may influence presence and characteristics of lung nodules. Further investigation into underlying pathophysiology using short-term LDCT follow-up could help optimize the management strategy for CT-detected lung nodules in clinical practice.
Collapse
|
22
|
Keikha M, Askarizadeh F, Sasan MS, Joghatayee H, Soleimanpour S. The rare multidrug cervical tubercular lymphadenitis in an infant from Iran: A case report and literature review. Clin Case Rep 2021; 9:681-685. [PMID: 33598225 PMCID: PMC7869405 DOI: 10.1002/ccr3.3612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
Cervical-TB lymphadenitis is the most frequent extrapulmonary manifestation of tuberculosis infection. There are limited documents (only five documents) on multidrug-resistant cervical tubercular lymphadenitis, but there is no evidence for MDR-cervical tuberculosis lymphadenitis in infants, which may occur in TB endemic regions.
Collapse
Affiliation(s)
- Masoud Keikha
- Antimicrobial Resistance Research CenterBu‐Ali Research InstituteMashhad University of Medical SciencesMashhadIran
- Department of Microbiology and VirologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
- Tuberculosis Reference LaboratoryMashhad University of Medical SciencesMashhadIran
| | - Fatemeh Askarizadeh
- Antimicrobial Resistance Research CenterBu‐Ali Research InstituteMashhad University of Medical SciencesMashhadIran
- Department of Microbiology and VirologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mohammad Saeed Sasan
- Department of PediatricsFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Hossein Joghatayee
- Department of PediatricsFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research CenterBu‐Ali Research InstituteMashhad University of Medical SciencesMashhadIran
- Department of Microbiology and VirologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
- Tuberculosis Reference LaboratoryMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
23
|
Schabath MB, Cote ML. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol Biomarkers Prev 2020; 28:1563-1579. [PMID: 31575553 DOI: 10.1158/1055-9965.epi-19-0221] [Citation(s) in RCA: 487] [Impact Index Per Article: 121.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/23/2019] [Accepted: 08/09/2019] [Indexed: 01/02/2023] Open
Affiliation(s)
- Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. .,Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Michele L Cote
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| |
Collapse
|
24
|
Vavougios GD, Zarogiannis SG, Krogfelt KA, Stamoulis G, Gourgoulianis KI. Epigenetic regulation of apoptosis via the PARK7 interactome in peripheral blood mononuclear cells donated by tuberculosis patients vs. healthy controls and the response to treatment: A systems biology approach. Tuberculosis (Edinb) 2020; 123:101938. [PMID: 32741527 DOI: 10.1016/j.tube.2020.101938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/22/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022]
Abstract
AIMS The aims of our study were to determine for the first time differentially expressed genes (DEGs) and enriched molecular pathways involving the PARK7 interactome in PBMCs donated from tuberculosis patients. METHODS Data on a previously reconstructed PARK7 interactome (Vavougios et al., 2017) from datasets GDS4966 (Case-Control) and GDS4781 (Treatment Series) were retrieved from the Gene Expression Omnibus (GEO) repository. Gene Enrichment analysis was performed via the STRING algorithm and the GeneTrail2 software. RESULTS 17 and 22 PARK7 interactores were determined as DEGs in the active TB vs HD and Treatment Series subset analyses, correspondingly, associated with significantly enriched pathways (FDR <0.05) involving p53 and PTEN mediated, stress responsive apoptosis regulation pathways. The treatment subset was characterized by the emergence of an additional layer of transcriptional regulation mediated by polycomb proteins among others, as well as TLR-mediated and cytokine survival signaling. Finally, the enrichment of a Parkinson's disease signature including PARK7 interactors was determined by its differential regulation both in the exploratory analyses (FDR = 0.024), as well as the confirmatory analyses (FDR = 1.81e-243). CONCLUSIONS Our in silico analysis revealed for the first time the role of PARK7's interactome in regulating the epigenetics of the PBMC lifecycle and Mtb symbiosis.
Collapse
Affiliation(s)
- George D Vavougios
- Department of Neurology, Athens Naval Hospital, Deinokratous 70, 115 21, Athens, Greece; Department of Electrical and Computer Engineering, 37 Glavani - 28th October Street, Deligiorgi Building, 4th floor, 382 21, Volos, Greece.
| | - Sotirios G Zarogiannis
- Department of Pleural Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Mezourlo, 41500, Larisa, Greece
| | - Karen A Krogfelt
- Department of Science and Environment, Molecular and Medical Biology, Roskilde University, Universitetsvej 1, 28A.1, DK-4000, Roskilde, Denmark
| | - George Stamoulis
- Department of Electrical and Computer Engineering, 37 Glavani - 28th October Street, Deligiorgi Building, 4th floor, 382 21, Volos, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Mezourlo, 41110, Larisa, Greece
| |
Collapse
|
25
|
Hillyer GC, Mapanga W, Jacobson JS, Graham A, Mmoledi K, Makhutle R, Osei-Fofie D, Mulowayi M, Masuabi B, Bulman WA, Neugut AI, Joffe M. Attitudes toward tobacco cessation and lung cancer screening in two South African communities. Glob Public Health 2020; 15:1537-1550. [PMID: 32406331 DOI: 10.1080/17441692.2020.1761425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among men in South Africa, the prevalence of tobacco smoking is as high as 33%. Although smoking is responsible for most lung cancer in South Africa, occupational and environmental exposures contribute greatly to risk. We conducted a tobacco and lung cancer screening needs assessment and administered surveys to adults who smoked >100 cigarettes in their lifetime in Johannesburg (urban) and Kimberley (rural). We compared tobacco use, risk exposure, attitudes toward and knowledge of, and receptivity to cessation and screening, by site. Of 324 smokers, nearly 85% of current smokers had a <30 pack-year history of smoking; 58.7% had tried to stop smoking ≥1 time, and 78.9% wanted to quit. Kimberley smokers more often reported being advised by a healthcare provider to stop smoking (56.5% vs. 37.3%, p=0.001) than smokers in Johannesburg but smokers in Johannesburg were more willing to stop smoking if advised by their doctor (72.9% vs. 41.7%, p<0.001). Findings indicate that tobacco smokers in two geographic areas of South Africa are motivated to stop smoking but receive no healthcare support to do so. Developing high risk criteria for lung cancer screening and creating tobacco cessation infrastructure may reduce tobacco use and decrease lung cancer mortality in South Africa.
Collapse
Affiliation(s)
- Grace C Hillyer
- Mailman School of Public Health, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Witness Mapanga
- Non-Communicable Diseases Research (NCDR) Division of the Wits Health Consortium, University of Witwatersrand, Johannesburg, South Africa
| | - Judith S Jacobson
- Mailman School of Public Health, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Anita Graham
- Non-Communicable Diseases Research (NCDR) Division of the Wits Health Consortium, University of Witwatersrand, Johannesburg, South Africa
| | - Keletso Mmoledi
- Non-Communicable Diseases Research (NCDR) Division of the Wits Health Consortium, University of Witwatersrand, Johannesburg, South Africa
| | - Raynolda Makhutle
- Non-Communicable Diseases Research (NCDR) Division of the Wits Health Consortium, University of Witwatersrand, Johannesburg, South Africa
| | | | | | | | - William A Bulman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Alfred I Neugut
- Mailman School of Public Health, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.,Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Maureen Joffe
- Non-Communicable Diseases Research (NCDR) Division of the Wits Health Consortium, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
26
|
Keikha M. There is significant relationship between Beijing genotype family strains and resistance to the first-line anti-tuberculosis drugs in the Iranian population. J Clin Tuberc Other Mycobact Dis 2020; 19:100161. [PMID: 32368621 PMCID: PMC7186555 DOI: 10.1016/j.jctube.2020.100161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Masoud Keikha
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Shankar A, Saini D, Dubey A, Roy S, Bharati SJ, Singh N, Khanna M, Prasad CP, Singh M, Kumar S, Sirohi B, Seth T, Rinki M, Mohan A, Guleria R, Rath GK. Feasibility of lung cancer screening in developing countries: challenges, opportunities and way forward. Transl Lung Cancer Res 2019; 8:S106-S121. [PMID: 31211111 DOI: 10.21037/tlcr.2019.03.03] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading cause of all cancer deaths worldwide, comprising 18.4% of all cancer deaths. Low-dose computed tomography (LDCT) has shown mortality benefit in various trials and now a standard tool for lung cancer screening. Most researches have been carried out in developed countries where lung cancer incidence and mortality is very high. There is an increasing trend in lung cancer incidence in developing countries attributed to tobacco smoking and various environmental and occupational risk factors. Implementation of lung cancer screening is challenging, so organised lung cancer screening is practically non-existent. There are numerous challenges in implementing such programs ranging from infrastructure, trained human resources, referral algorithm to cost and psychological trauma due to over-diagnosis. Pulmonary tuberculosis and other chest infections are important issues to be addressed while planning for lung cancer screening in developing countries. Burden of these diseases is very high and can lead to over-diagnosis in view of cut off of lung nodule size in various studies. Assessment of high risk cases for lung cancer is difficult as various forms of smoking make quantification non-uniform and difficult. Lung cancer screening targets only high risk population unlike screening programs for other cancers where entire population is targeted. There is a need of lung cancer screening for high risk cases as it saves life. Tobacco control and smoking cessation remain the most important long term intervention to decrease morbidity and mortality from lung cancer in developing countries. There is no sufficient evidence supporting the introduction of population-based screening for lung cancer in public health services.
Collapse
Affiliation(s)
- Abhishek Shankar
- Preventive Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Deepak Saini
- Indian Society of Clinical Oncology, Delhi, India
| | - Anusha Dubey
- Indian Society of Clinical Oncology, Delhi, India
| | - Shubham Roy
- Indian Society of Clinical Oncology, Delhi, India
| | - Sachidanand Jee Bharati
- Oncoanaesthesia and Palliative Medicine, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Navneet Singh
- Pulmonary Medicine, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | | | - Chandra Prakash Prasad
- Medical Oncology (Lab), Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Mayank Singh
- Medical Oncology (Lab), Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Sunil Kumar
- Surgical Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Bhawna Sirohi
- Medical Oncology, Max Institute of Cancer Care, Delhi, India
| | - Tulika Seth
- Clinical Hematology, All India Institute of Medical Sciences, Delhi, India
| | - Minakshi Rinki
- Biotechnology, Swami Shraddhanand College, Delhi University, Delhi, India
| | - Anant Mohan
- Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, Delhi, India
| | - Randeep Guleria
- Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, Delhi, India
| | - Goura Kishor Rath
- Radiation Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| |
Collapse
|
28
|
Mycobacterium tuberculosis antigens repress Th1 immune response suppression and promotes lung cancer metastasis through PD-1/PDl-1 signaling pathway. Cell Death Dis 2019; 10:44. [PMID: 30718463 PMCID: PMC6362089 DOI: 10.1038/s41419-018-1237-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/11/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022]
Abstract
Given one-third of the world's population is infected with Mycobacterium tuberculosis (MTB), it is important to identify the underling molecular mechanism between development of TB and lung cancer. This study investigated the immune response to MTB infection on lung metastasis in lung cancer cells via T cell-mediated immune response. To clarify this problem, we analyzed the expression levels of PD-1, PD-L1, and PD-L2 and immune function in antigen-specific T cell as derived from MTB patients or spleen lymphocytes derived from wild-type and PD-1 knockout mice with MTB antigen stimulation and Lewis lung cancer cells injection. Our data indicate that the expression levels of PD-1, PD-L1, and PD-L2 were elevated in active pulmonary TB patients, as well as in mice received MTB and lung cancer cells treatment. We also observed the T cell-mediated cellular immune response were inhibited by MTB while MTB significantly promote tumor metastasis in lung. In conclusion, the PD-1/PD-L pathway is required MTB repressed T-cell immune response and promotes tumor metastasis. This study provides evidence that blockade of PD-1/PD-L1 signaling pathway may benefit patients with MTB or other chronic infection and even prevent them from development of cancer.
Collapse
|