1
|
A Global Mutational Profile of SARS-CoV-2: A Systematic Review and Meta-Analysis of 368,316 COVID-19 Patients. Life (Basel) 2021; 11:life11111224. [PMID: 34833100 PMCID: PMC8620851 DOI: 10.3390/life11111224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Since its first detection in December 2019, more than 232 million cases of COVID-19, including 4.7 million deaths, have been reported by the WHO. The SARS-CoV-2 viral genomes have evolved rapidly worldwide, causing the emergence of new variants. This systematic review and meta-analysis was conducted to provide a global mutational profile of SARS-CoV-2 from December 2019 to October 2020. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA), and a study protocol was lodged with PROSPERO. Data from 62 eligible studies involving 368,316 SARS-CoV-2 genomes were analyzed. The mutational data analyzed showed most studies detected mutations in the Spike protein (n = 50), Nucleocapsid phosphoprotein (n = 34), ORF1ab gene (n = 29), 5′-UTR (n = 28) and ORF3a (n = 25). Under the random-effects model, pooled prevalence of SARS-CoV-2 variants was estimated at 95.1% (95% CI; 93.3–96.4%; I2 = 98.952%; p = 0.000) while subgroup meta-analysis by country showed majority of the studies were conducted ‘Worldwide’ (n = 10), followed by ‘Multiple countries’ (n = 6) and the USA (n = 5). The estimated prevalence indicated a need to continuously monitor the prevalence of new mutations due to their potential influence on disease severity, transmissibility and vaccine effectiveness.
Collapse
|
2
|
Sivasubramanian S, Gopalan V, Ramesh K, Padmanabhan P, Mone K, Govindan K, Velladurai S, Dhandapani P, Krishnasamy K, Kitambi SS. Phylodynamic Pattern of Genetic Clusters, Paradigm Shift on Spatio-Temporal Distribution of Clades, and Impact of Spike Glycoprotein Mutations of SARS-CoV-2 Isolates from India. J Glob Infect Dis 2021; 13:164-171. [PMID: 35017872 PMCID: PMC8697821 DOI: 10.4103/jgid.jgid_97_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction: The COVID-19 pandemic is associated with high morbidity and mortality, with the emergence of numerous variants. The dynamics of SARS-CoV-2 with respect to clade distribution is uneven, unpredictable and fast changing. Methods: Retrieving the complete genomes of SARS-CoV-2 from India and subjecting them to analysis on phylogenetic clade diversity, Spike (S) protein mutations and their functional consequences such as immune escape features and impact on infectivity. Whole genome of SARS-CoV-2 isolates (n = 4,326) deposited from India during the period from January 2020 to December 2020 is retrieved from Global Initiative on Sharing All Influenza Data (GISAID) and various analyses performed using in silico tools. Results: Notable clade dynamicity is observed indicating the emergence of diverse SARS-CoV-2 variants across the country. GR clade is predominant over the other clades and the distribution pattern of clades is uneven. D614G is the commonest and predominant mutation found among the S-protein followed by L54F. Mutation score prediction analyses reveal that there are several mutations in S-protein including the RBD and NTD regions that can influence the virulence of virus. Besides, mutations having immune escape features as well as impacting the immunogenicity and virulence through changes in the glycosylation patterns are identified. Conclusions: The study has revealed emergence of variants with shifting of clade dynamics within a year in India. It is shown uneven distribution of clades across the nation requiring timely deposition of SARS-CoV-2 sequences. Functional evaluation of mutations in S-protein reveals their significance in virulence, immune escape features and disease severity besides impacting therapeutics and prophylaxis.
Collapse
Affiliation(s)
- Srinivasan Sivasubramanian
- Department of Virology, State Viral Research and Diagnostic Laboratory (VRDL), King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - Vidya Gopalan
- Department of Virology, State Viral Research and Diagnostic Laboratory (VRDL), King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - Kiruba Ramesh
- Department of Virology, State Viral Research and Diagnostic Laboratory (VRDL), King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - Padmapriya Padmanabhan
- Department of Virology, State Viral Research and Diagnostic Laboratory (VRDL), King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - Kiruthiga Mone
- Department of Virology, State Viral Research and Diagnostic Laboratory (VRDL), King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - Karthikeyan Govindan
- Department of Virology, State Viral Research and Diagnostic Laboratory (VRDL), King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - Selvakumar Velladurai
- Department of Virology, State Viral Research and Diagnostic Laboratory (VRDL), King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - Prabu Dhandapani
- Department of Microbiology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| | - Kaveri Krishnasamy
- Department of Virology, State Viral Research and Diagnostic Laboratory (VRDL), King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - Satish Srinivas Kitambi
- Department of Translational Sciences, Institute for Healthcare Education and Translational Sciences, Hyderabad, Telengana, India
| |
Collapse
|
3
|
Kumar SU, Priya NM, Nithya SR, Kannan P, Jain N, Kumar DT, Magesh R, Younes S, Zayed H, Doss CGP. A review of novel coronavirus disease (COVID-19): based on genomic structure, phylogeny, current shreds of evidence, candidate vaccines, and drug repurposing. 3 Biotech 2021; 11:198. [PMID: 33816047 PMCID: PMC8003899 DOI: 10.1007/s13205-021-02749-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease (COVID-19) pandemic is instigated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of March 13, 2021, more than 118.9 million cases were infected with COVID-19 worldwide. SARS-CoV-2 is a positive-sense single-stranded RNA beta-CoV. Most COVID-19 infected individuals recover within 1-3 weeks. Nevertheless, approximately 5% of patients develop acute respiratory distress syndrome and other systemic complications, leading to death. Structural genetic analyses of SARS-CoV-2 have shown genomic resemblances but a low evolutionary correlation to SARS-CoV-1 responsible for the 2002-2004 outbreak. The S glycoprotein is critical for cell adhesion and the entrance of the virus into the host. The process of cell entry uses the cellular receptor named angiotensin-converting enzyme 2. Recent evidence proposed that the CD147 as a SARS-CoV-2's potential receptor. The viral genome is mainly held by two non-structural proteins (NSPs), ORF1a and ORF1ab, along with structural proteins. Although NSPs are conserved among the βCoVs, mutations in NSP2 and NSP3 may play critical roles in transmitting the virus and cell tropism. To date, no specific/targeted anti-viral treatments exist. Notably, more than 50 COVID-19 candidate vaccines in clinical trials, and a few being administered. Preventive precautions are the primary strategy to limit the viral load transmission and spread, emphasizing the urgent need for developing significant drug targets and vaccines against COVID-19. This review provides a cumulative overview of the genomic structure, transmission, phylogeny of SARS-CoV-2 from Indian clusters, treatment options, updated discoveries, and future standpoints for COVID-19. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02749-0.
Collapse
Affiliation(s)
- S. Udhaya Kumar
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014 India
| | - N. Madhana Priya
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Tamil Nadu, Porur, Chennai, 600116 India
| | - S. R. Nithya
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Tamil Nadu, Porur, Chennai, 600116 India
| | - Priyanka Kannan
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Tamil Nadu, Porur, Chennai, 600116 India
| | - Nikita Jain
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014 India
| | - D. Thirumal Kumar
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014 India
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105 India
| | - R. Magesh
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Tamil Nadu, Porur, Chennai, 600116 India
| | - Salma Younes
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - C. George Priya Doss
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014 India
| |
Collapse
|