1
|
Panda K, Alagarasu K, Tagore R, Paingankar M, Kumar S, Jeengar MK, Cherian S, Parashar D. RNAi-Induced Gene Silencing against Chikungunya and COVID-19: What Have We Learned So Far, and What Is the Way Forward? Viruses 2024; 16:1489. [PMID: 39339965 PMCID: PMC11437507 DOI: 10.3390/v16091489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
RNA interference (RNAi) is a process in which small RNA molecules (such as small interfering RNAs or siRNAs) bind to specific messenger RNAs (mRNAs), leading to its degradation and inhibition of protein synthesis. Our studies have shown that RNAi can effectively silence genes involved in the replication of the Chikungunya virus (CHIKV) in cells. However, these investigations were performed only in laboratory settings and have yet to be tested in human clinical trials. Researchers need to conduct more research to determine the safety and efficacy of RNAi-based therapies as a therapeutic agent to treat viral infections. In this review, the history of evolution of siRNA as an inhibitor of protein synthesis, along with its current developments, is discussed based on our experience. Moreover, this review examines the hurdles and future implications associated with siRNA based therapeutic approaches.
Collapse
Affiliation(s)
- Kingshuk Panda
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Kalichamy Alagarasu
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Rajarshee Tagore
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Mandar Paingankar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Satyendra Kumar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Manish Kumar Jeengar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Sarah Cherian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
- Bioinformatics Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India
| | - Deepti Parashar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| |
Collapse
|
2
|
Jain H, Kaur R, Sain SK, Siwach P. Development, Design, and Application of Efficient siRNAs Against Cotton Leaf Curl Virus-Betasatellite Complex to Mediate Resistance Against Cotton Leaf Curl Disease. Indian J Microbiol 2024; 64:558-571. [PMID: 39011016 PMCID: PMC11246389 DOI: 10.1007/s12088-024-01191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/01/2024] [Indexed: 07/17/2024] Open
Abstract
Cotton leaf curl disease (CLCuD), caused by the Cotton leaf curl virus, is one of the most irrepressible diseases in cotton due to high recombination in the virus. RNA interference (RNAi) is widely used as a biotechnological approach for sequence-specific gene silencing guided by small interfering RNAs (siRNAs) to generate resistance against viruses. The success of RNAi depends upon the fact that the target site of the designed siRNA must be conserved even if the genome undergoes recombination. Thus, the present study designs the most efficient siRNA against the conserved sites of the Cotton leaf curl Multan virus (CLCuMuV) and the Cotton leaf curl Multan betasatellite (CLCuMB). From an initial prediction of 9 and 7 siRNAs against CLCuMuV and CLCuMB, respectively, the final selection was made for 2 and 1 siRNA based on parameters such as no off-targets, good GC content, high validity score, and targeting coding region. The target sites of siRNA were observed to lie in the AC3 and an overlapping region of AC2-AC1 of CLCuMuV and βC1 of CLCuMB; all target sites showed a highly conserved nature in recombination analysis. Docking the designed siRNAs with the Argonaute-2 protein of Gossypium hirsutum showed stable binding. Finally, BLASTn of siRNA-target positions in genomes of other BGVs indicated the suitability of designed siRNAs against a broad range of BGVs. The designed siRNAs of the present study could help gain complete control over the virus, though experimental validation is highly required to suggest predicted siRNAs for CLCuD resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01191-z.
Collapse
Affiliation(s)
- Heena Jain
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana 125055 India
| | - Ramandeep Kaur
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana 125055 India
| | - Satish Kumar Sain
- Central Institute of Cotton Research, Regional Station, Sirsa, Haryana 125055 India
| | - Priyanka Siwach
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana 125055 India
| |
Collapse
|
3
|
Fopase R, Panda C, Rajendran AP, Uludag H, Pandey LM. Potential of siRNA in COVID-19 therapy: Emphasis on in silico design and nanoparticles based delivery. Front Bioeng Biotechnol 2023; 11:1112755. [PMID: 36814718 PMCID: PMC9939533 DOI: 10.3389/fbioe.2023.1112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Small interfering RNA (siRNA)-mediated mRNA degradation approach have imparted its eminence against several difficult-to-treat genetic disorders and other allied diseases. Viral outbreaks and resulting pandemics have repeatedly threatened public health and questioned human preparedness at the forefront of drug design and biomedical readiness. During the recent pandemic caused by the SARS-CoV-2, mRNA-based vaccination strategies have paved the way for a new era of RNA therapeutics. RNA Interference (RNAi) based approach using small interfering RNA may complement clinical management of the COVID-19. RNA Interference approach will primarily work by restricting the synthesis of the proteins required for viral replication, thereby hampering viral cellular entry and trafficking by targeting host as well as protein factors. Despite promising benefits, the stability of small interfering RNA in the physiological environment is of grave concern as well as site-directed targeted delivery and evasion of the immune system require immediate attention. In this regard, nanotechnology offers viable solutions for these challenges. The review highlights the potential of small interfering RNAs targeted toward specific regions of the viral genome and the features of nanoformulations necessary for the entrapment and delivery of small interfering RNAs. In silico design of small interfering RNA for different variants of SARS-CoV-2 has been discussed. Various nanoparticles as promising carriers of small interfering RNAs along with their salient properties, including surface functionalization, are summarized. This review will help tackle the real-world challenges encountered by the in vivo delivery of small interfering RNAs, ensuring a safe, stable, and readily available drug candidate for efficient management of SARS-CoV-2 in the future.
Collapse
Affiliation(s)
- Rushikesh Fopase
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Chinmaya Panda
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Amarnath P. Rajendran
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hasan Uludag
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lalit M. Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
4
|
Tagore R, Alagarasu K, Patil P, Pyreddy S, Polash SA, Kakade M, Shukla R, Parashar D. Targeted in vitro gene silencing of E2 and nsP1 genes of chikungunya virus by biocompatible zeolitic imidazolate framework. Front Bioeng Biotechnol 2022; 10:1003448. [PMID: 36601387 PMCID: PMC9806579 DOI: 10.3389/fbioe.2022.1003448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Chikungunya fever caused by the mosquito-transmitted chikungunya virus (CHIKV) is a major public health concern in tropical, sub-tropical and temperate climatic regions. The lack of any licensed vaccine or antiviral agents against CHIKV warrants the development of effective antiviral therapies. Small interfering RNA (siRNA) mediated gene silencing of CHIKV structural and non-structural genes serves as a potential antiviral strategy. The therapeutic efficiency of siRNA can be improved by using an efficient delivery system. Metal-organic framework biocomposits have demonstrated an exceptional capability in protecting and efficiently delivering nucleic acids into cells. In the present study, carbonated ZIF called ZIF-C has been utilized to deliver siRNAs targeted against E2 and nsP1 genes of CHIKV to achieve a reduction in viral replication and infectivity. Cellular transfection studies of E2 and nsP1 genes targeting free siRNAs and ZIF-C encapsulated siRNAs in CHIKV infected Vero CCL-81 cells were performed. Our results reveal a significant reduction of infectious virus titre, viral RNA levels and percent of infected cells in cultures transfected with ZIF-C encapsulated siRNA compared to cells transfected with free siRNA. The results suggest that delivery of siRNA through ZIF-C enhances the antiviral activity of CHIKV E2 and nsP1 genes directed siRNAs.
Collapse
Affiliation(s)
- Rajarshee Tagore
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Kalichamy Alagarasu
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Poonam Patil
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Suneela Pyreddy
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, Australia,Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC, Australia
| | - Shakil Ahmed Polash
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, Australia,Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC, Australia
| | - Mahadeo Kakade
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Ravi Shukla
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, Australia,Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC, Australia,*Correspondence: Ravi Shukla, ; Deepti Parashar,
| | - Deepti Parashar
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India,*Correspondence: Ravi Shukla, ; Deepti Parashar,
| |
Collapse
|
5
|
Design of siRNA molecules for silencing of membrane glycoprotein, nucleocapsid phosphoprotein, and surface glycoprotein genes of SARS-CoV2. J Genet Eng Biotechnol 2022; 20:65. [PMID: 35482116 PMCID: PMC9047631 DOI: 10.1186/s43141-022-00346-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/18/2022] [Indexed: 12/24/2022]
Abstract
The global COVID-19 pandemic caused by SARS-CoV2 infected millions of people and resulted in more than 4 million deaths worldwide. Apart from vaccines and drugs, RNA silencing is a novel approach for treating COVID-19. In the present study, siRNAs were designed for the conserved regions targeting three structural genes, M, N, and S, from forty whole-genome sequences of SARS-CoV2 using four different software, RNAxs, siDirect, i-Score Designer, and OligoWalk. Only siRNAs which were predicted in common by all the four servers were considered for further shortlisting. A multistep filtering approach has been adopted in the present study for the final selection of siRNAs by the usage of different online tools, viz., siRNA scales, MaxExpect, DuplexFold, and SMEpred. All these web-based tools consider several important parameters for designing functional siRNAs, e.g., target-site accessibility, duplex stability, position-specific nucleotide preference, inhibitory score, thermodynamic parameters, GC content, and efficacy in cleaving the target. In addition, a few parameters like GC content and dG value of the entire siRNA were also considered for shortlisting of the siRNAs. Antisense strands were subjected to check for any off-target similarities using BLAST. Molecular docking was carried out to study the interactions of guide strands with AGO2 protein. A total of six functional siRNAs (two for each gene) have been finally selected for targeting M, N, and S genes of SARS-CoV2. The siRNAs have not shown any off-target effects, interacted with the domain(s) of AGO2 protein, and were efficacious in cleaving the target mRNA. However, the siRNAs designed in the present study need to be tested in vitro and in vivo in the future.
Collapse
|
6
|
Tolksdorf B, Nie C, Niemeyer D, Röhrs V, Berg J, Lauster D, Adler JM, Haag R, Trimpert J, Kaufer B, Drosten C, Kurreck J. Inhibition of SARS-CoV-2 Replication by a Small Interfering RNA Targeting the Leader Sequence. Viruses 2021; 13:v13102030. [PMID: 34696460 PMCID: PMC8539227 DOI: 10.3390/v13102030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected almost 200 million people worldwide and led to approximately 4 million deaths as of August 2021. Despite successful vaccine development, treatment options are limited. A promising strategy to specifically target viral infections is to suppress viral replication through RNA interference (RNAi). Hence, we designed eight small interfering RNAs (siRNAs) targeting the highly conserved 5′-untranslated region (5′-UTR) of SARS-CoV-2. The most promising candidate identified in initial reporter assays, termed siCoV6, targets the leader sequence of the virus, which is present in the genomic as well as in all subgenomic RNAs. In assays with infectious SARS-CoV-2, it reduced replication by two orders of magnitude and prevented the development of a cytopathic effect. Moreover, it retained its activity against the SARS-CoV-2 alpha variant and has perfect homology against all sequences of the delta variant that were analyzed by bioinformatic means. Interestingly, the siRNA was even highly active in virus replication assays with the SARS-CoV-1 family member. This work thus identified a very potent siRNA with a broad activity against various SARS-CoV viruses that represents a promising candidate for the development of new treatment options.
Collapse
Affiliation(s)
- Beatrice Tolksdorf
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; (B.T.); (V.R.); (J.B.)
| | - Chuanxiong Nie
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (C.N.); (D.L.); (R.H.)
| | - Daniela Niemeyer
- German Centre for Infection Research (DZIF), Charitéplatz 1, 10117 Berlin, Germany; (D.N.); (C.D.)
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Viola Röhrs
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; (B.T.); (V.R.); (J.B.)
| | - Johanna Berg
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; (B.T.); (V.R.); (J.B.)
| | - Daniel Lauster
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (C.N.); (D.L.); (R.H.)
| | - Julia M. Adler
- Department of Veterinary Medicine, Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (J.M.A.); (J.T.); (B.K.)
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (C.N.); (D.L.); (R.H.)
| | - Jakob Trimpert
- Department of Veterinary Medicine, Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (J.M.A.); (J.T.); (B.K.)
| | - Benedikt Kaufer
- Department of Veterinary Medicine, Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (J.M.A.); (J.T.); (B.K.)
| | - Christian Drosten
- German Centre for Infection Research (DZIF), Charitéplatz 1, 10117 Berlin, Germany; (D.N.); (C.D.)
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jens Kurreck
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; (B.T.); (V.R.); (J.B.)
- Correspondence: ; Tel.:+ 49-30-314-27581
| |
Collapse
|