1
|
Pei SL, Chen RS, Chen MH. Roles of centrioles in neural attraction of dental pulp stem cells. J Formos Med Assoc 2024; 123:934-941. [PMID: 38155028 DOI: 10.1016/j.jfma.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND/PURPOSE Human nerve development is vital, affecting trauma recovery and dental issues. Early embryonic clues link nerves to tooth development via factors like Wnt and Hedgehog pathways. Centrosomes play a role, and centriole issues can disrupt oral development, as in oral facial digital syndrome type 1. This study aimed to delve deeper into the role and influence of centrioles on the development of dental nerves. METHODS Cell migration assessed by co-culturing mouse neural tissue and human dental pulp stem cells (DPSCs). Centrioles were fluorescently stained, and their positions observed with confocal microscopy. Centrinone was employed to inhibit centriole activity, evaluating its impact on cell mobility under activity inhibition. RESULTS As the distance between nerve tissue and DPSCs decreased, more DPSCs had centrioles near nerve tissue. Co-culture with nerve tissue increased DPSCs migration toward it. In contrast, DPSCs cultured alone or with fibroblasts showed weaker migration, indicating neural tissue's attractive influence. The addition of 125 nM centrinone halted cell migration and centriole polymerization. After centrinone removal over two days, centrioles returned to normal, suggesting continued motility inhibition. CONCLUSION Centrioles direct cell movement and polarization. There are two scenarios: centrioles at the cell center with the nucleus moving backward (as in NIH3T3 cells) and both cells and centrioles moving forward (as in DPSCs). DPSCs' attraction to neural tissue may shed light on nerve guidance by tooth germs, aiding embryonic cell differentiation into nerves. However, further in vivo and in vitro studies are needed to confirm the specific mechanism.
Collapse
Affiliation(s)
- Shan-Li Pei
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Rung-Shu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Min-Huey Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Szaraz D, Danek Z, Lipovy B, Krivanek J, Buchtova M, Moldovan Putnova B, Putnova I, Stembirek J, Andrasina T, Divacka P, Izakovicova Holla L, Borilova Linhartova P. Primary cilia and hypoxia-associated signaling in developmental odontogenic cysts in relation to autosomal dominant polycystic kidney disease - A novel insight. Heliyon 2023; 9:e17130. [PMID: 37389068 PMCID: PMC10300219 DOI: 10.1016/j.heliyon.2023.e17130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023] Open
Abstract
Developmental cysts are pathological epithelial-lined cavities arising in various organs as a result of systemic or hereditary diseases. Molecular mechanisms involved in the formation of developmental odontogenic cysts (OCs) are not fully understood yet; the cystogenesis of renal cysts originating from the autosomal dominant polycystic kidney disease (ADPKD) has been, however, explored in much greater detail. This narrative review aimed i) to summarize molecular and cellular processes involved in the formation and growth of developmental OCs, especially dentigerous cysts (DCs) and odontogenic keratocysts (OKCs), ii) to find if there are any similarities in their cystogenesis to ADPKD cysts, and, based on that, iii) to suggest potential factors, candidate molecules, and mechanisms that could be involved in the DC formation, thus proposing further research directions. Here we suggest a possible association of developmental OCs with primary cilia disruption and with hypoxia, which have been previously linked with cyst formation in ADPKD patients. This is illustrated on the imagery of tissues from an ADPKD patient (renal cyst) and from developmental OCs, supporting the similarities in cell proliferation, apoptosis, and primary cilia distribution in DC/OKC/ADPKD tissues. Based on all that, we propose a novel hypothesis of OCs formation suggesting a crucial role of mutations associated with the signaling pathways of primary cilia (in particular, Sonic Hedgehog). These can lead to excessive proliferation and formation of cell agglomerates, which is followed by hypoxia-driven apoptosis in the centers of such agglomerates (controlled by molecules such as Hypoxia-inducible factor-1 alpha), leading to cavity formation and, finally, the OCs development. Based on this, we propose future perspectives in the investigation of OC pathogenesis.
Collapse
Affiliation(s)
- David Szaraz
- Clinic of Maxillofacial Surgery, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Zdenek Danek
- Clinic of Maxillofacial Surgery, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Bretislav Lipovy
- Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Burns and Plastic Surgery, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Barbora Moldovan Putnova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences, Palackého tř. 1946/1, 61242 Brno-Královo Pole, Czech Republic
| | - Iveta Putnova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
- Department of Anatomy, Histology and Embryology, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, 61242 Brno-Královo Pole, Czech Republic
| | - Jan Stembirek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
- Clinic of Maxillofacial Surgery, University Hospital Ostrava, 17. Listopadu 1790/5, 70800 Ostrava-Poruba, Czech Republic
| | - Tomas Andrasina
- Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic
| | - Petra Divacka
- Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Internal Medicine and Gastroenterology, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic
| | - Lydie Izakovicova Holla
- Clinic of Stomatology, Institution Shared with St. Anne’s University Hospital, Faculty of Medicine, Masaryk University, Pekarska 664/53, 60200 Brno, Czech Republic
| | - Petra Borilova Linhartova
- Clinic of Maxillofacial Surgery, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic
- Clinic of Stomatology, Institution Shared with St. Anne’s University Hospital, Faculty of Medicine, Masaryk University, Pekarska 664/53, 60200 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| |
Collapse
|
3
|
Pittman AE, Solecki DJ. Cooperation between primary cilia signaling and integrin receptor extracellular matrix engagement regulates progenitor proliferation and neuronal differentiation in the developing cerebellum. Front Cell Dev Biol 2023; 11:1127638. [PMID: 36895790 PMCID: PMC9990755 DOI: 10.3389/fcell.2023.1127638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Neural progenitors and their neuronal progeny are bathed in extrinsic signals that impact critical decisions like the mode of cell division, how long they should reside in specific neuronal laminae, when to differentiate, and the timing of migratory decisions. Chief among these signals are secreted morphogens and extracellular matrix (ECM) molecules. Among the many cellular organelles and cell surface receptors that sense morphogen and ECM signals, the primary cilia and integrin receptors are some of the most important mediators of extracellular signals. Despite years of dissecting the function of cell-extrinsic sensory pathways in isolation, recent research has begun to show that key pathways work together to help neurons and progenitors interpret diverse inputs in their germinal niches. This mini-review utilizes the developing cerebellar granule neuron lineage as a model that highlights evolving concepts on the crosstalk between primary cilia and integrins in the development of the most abundant neuronal type in the brains of mammals.
Collapse
Affiliation(s)
- Anna E Pittman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - David J Solecki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
4
|
Mentor S, Fisher D. The Ism between Endothelial Cilia and Endothelial Nanotubules Is an Evolving Concept in the Genesis of the BBB. Int J Mol Sci 2022; 23:ijms23052457. [PMID: 35269595 PMCID: PMC8910322 DOI: 10.3390/ijms23052457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
The blood–brain barrier (BBB) is fundamental in maintaining central nervous system (CNS) homeostasis by regulating the chemical environment of the underlying brain parenchyma. Brain endothelial cells (BECs) constitute the anatomical and functional basis of the BBB. Communication between adjacent BECs is critical for establishing BBB integrity, and knowledge of its nanoscopic landscape will contribute to our understanding of how juxtaposed zones of tight-junction protein interactions between BECs are aligned. The review discusses and critiques types of nanostructures contributing to the process of BBB genesis. We further critically evaluate earlier findings in light of novel high-resolution electron microscopy descriptions of nanoscopic tubules. One such phenotypic structure is BEC cytoplasmic projections, which, early in the literature, is postulated as brain capillary endothelial cilia, and is evaluated and compared to the recently discovered nanotubules (NTs) formed in the paracellular spaces between BECs during barrier-genesis. The review attempts to elucidate a myriad of unique topographical ultrastructures that have been reported to be associated with the development of the BBB, viz., structures ranging from cilia to BEC tunneling nanotubules (TUNTs) and BEC tethering nanotubules (TENTs).
Collapse
Affiliation(s)
- Shireen Mentor
- Neurobiology Research Group, Department of Medical Biosciences, University of the Western Cape, Bellville, Cape Town 7535, South Africa;
| | - David Fisher
- Neurobiology Research Group, Department of Medical Biosciences, University of the Western Cape, Bellville, Cape Town 7535, South Africa;
- School of Health Professions, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
5
|
Jun JH, Lee EJ, Park M, Ko JY, Park JH. Reduced expression of TAZ inhibits primary cilium formation in renal glomeruli. Exp Mol Med 2022; 54:169-179. [PMID: 35177808 PMCID: PMC8894487 DOI: 10.1038/s12276-022-00730-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Renal primary cilia are antenna-like organelles that maintain cellular homeostasis via multiple receptors clustered along their membranes. Recent studies have revealed that YAP/TAZ, key paralogous effectors of the Hippo pathway, are involved in ciliogenesis; however, their independent roles need to be further investigated. Here, we analyzed the renal phenotypes of kidney-specific TAZ knockout mice and observed ciliary defects only in glomeruli where mild cysts were formed. This finding prompted us to verify the role of TAZ specifically in renal tubule ciliary regulation. Therefore, we investigated the effects of TAZ silencing and compared them to those of YAP knockdown using three different types of renal tubular cells. We found that the absence of TAZ prevented proper cilia formation in glomerular cells, whereas it had a negligible effect in collecting duct and proximal tubule cells. IFT and NPHP protein levels were altered because of TAZ deficiency, accompanied by ciliary defects in glomerular cells, and ciliary recovery was identified by regulating some NPHP proteins. Although our study focused on TAZ, ciliogenesis, and other ciliary genes, the results suggest the very distinct roles of YAP and TAZ in kidneys, specifically in terms of ciliary regulation. The roles of two regulatory proteins in the kidneys have been further clarified and provide insights into cilia defects and cyst formation. Cilia are organelles that act as ‘antennae’ for cell signaling in many tissues. Recent studies have highlighted two proteins involved in kidney cilia formation, YAP and TAZ, but little is known about their roles. Jong Hoon Park and co-workers at Sookmyung Women’s University in Seoul, South Korea, examined the role of TAZ in the regulation of kidney tubule cilia in mice. They explored the effects of silencing TAZ or YAP expression in different types of kidney tubule cells. TAZ deficiency but not YAP deficiency prevented correct cilia formation in the glomeruli, blood vessels that filter waste in the kidneys, and the resulting defects led to mild cyst generation.
Collapse
Affiliation(s)
- Jae Hee Jun
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Eun Ji Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Minah Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Je Yeong Ko
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
6
|
Ma R, Kutchy NA, Chen L, Meigs DD, Hu G. Primary cilia and ciliary signaling pathways in aging and age-related brain disorders. Neurobiol Dis 2022; 163:105607. [PMID: 34979259 PMCID: PMC9280856 DOI: 10.1016/j.nbd.2021.105607] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Brain disorders are characterized by the progressive loss of structure and function of the brain as a consequence of progressive degeneration and/or death of nerve cells. Aging is a major risk factor for brain disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and stroke. Various cellular and molecular events have been shown to play a role in the progress of neurodegenerative diseases. Emerging studies suggest that primary cilia could be a key regulator in brain diseases. The primary cilium is a singular cellular organelle expressed on the surface of many cell types, such as astrocytes and neurons in the mature brain. Primary cilia detect extracellular cues, such as Sonic Hedgehog (SHH) protein, and transduce these signals into cells to regulate various signaling pathways. Abnormalities in ciliary length and frequency (ratio of ciliated cells) have been implicated in various human diseases, including brain disorders. This review summarizes current findings and thoughts on the role of primary cilia and ciliary signaling pathways in aging and age-related brain disorders.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, Grenada
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong 515063, China; Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou, Guangdong 515063, China
| | - Douglas D Meigs
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
7
|
Roopasree OJ, Adivitiya, Chakraborty S, Kateriya S, Veleri S. Centriole is the pivot coordinating dynamic signaling for cell proliferation and organization during early development in the vertebrates. Cell Biol Int 2021; 45:2178-2197. [PMID: 34288241 DOI: 10.1002/cbin.11667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/12/2021] [Indexed: 11/07/2022]
Abstract
Vertebrates have an elaborate and functionally segmented body. It evolves from a single cell by systematic cell proliferation but attains a complex body structure with exquisite precision. This development requires two cellular events: cell cycle and ciliogenesis. For these events, the dynamic molecular signaling is converged at the centriole. The cell cycle helps in cell proliferation and growth of the body and is a highly regulated and integrated process. Its errors cause malignancies and developmental disorders. The cells newly proliferated are organized during organogenesis. For a cellular organization, dedicated signaling hubs are developed in the cells, and most often cilia are utilized. The cilium is generated from one of the centrioles involved in cell proliferation. The developmental signaling pathways hosted in cilia are essential for the elaboration of the body plan. The cilium's compartmental seclusion is ideal for noise-free molecular signaling and is essential for the precision of the body layout. The dysfunctional centrioles and primary cilia distort the development of body layout that manifest as serious developmental disorders. Thus, centriole has a dual role in the growth and cellular organization. It organizes dynamically expressed molecules of cell cycle and ciliogenesis and plays a balancing act to generate new cells and organize them during development. A putative master molecule may regulate and coordinate the dynamic gene expression at the centrioles. The convergence of many critical signaling components at the centriole reiterates the idea that centriole is a major molecular workstation involved in elaborating the structural design and complexity in vertebrates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- O J Roopasree
- Agroprocessing Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019 and Academy of CSIR, Uttar Pradesh - 201002, India
| | - Adivitiya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Soura Chakraborty
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad, 500007, India
| |
Collapse
|
8
|
Getachew D, Kaneda R, Saeki Y, Matsumoto A, Otani H. Morphologic changes in the cytoskeleton and adhesion apparatus during the conversion from pseudostratified single columnar to stratified squamous epithelium in the developing mouse esophagus. Congenit Anom (Kyoto) 2021; 61:14-24. [PMID: 32776381 DOI: 10.1111/cga.12389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022]
Abstract
The apico-basal (AB) polarity of epithelial cells is maintained by organized arrays of the cytoskeleton and adhesion apparatus. We previously reported that mouse embryonic esophageal epithelium exhibits interkinetic nuclear migration (INM), an AB-polarity-based regulatory mechanism of stem-cell proliferation, and suggested that the pseudostratified single columnar epithelium, a hallmark of INM, is converted to stratified squamous epithelium via rearrangement of the cytoskeleton and cell-adhesion apparatus. Here, we chronologically examined morphological changes in the cytoskeleton and adhesion apparatus in the mouse esophageal epithelium at embryonic day (E) 11.5, E13.5, E14.5, and E15.5, during which epithelial conversion has been suggested to occur. We used phalloidin to examine the apical terminal web (ATW), immunofluorescent anti-zonula occludens protein (ZO-1) antibody to reveal ZO-1, and anti-gamma tubulin antibody to detect primary cilia (PC). At E11.5, a thick ATW, apically oriented ZO-1 and apical PC were observed, indicating a pseudostratified single columnar structure. At E13.5 and E14.5, the phalloidin-staining, ZO-1, and PC distribution patterns were not apically localized, and the epithelial cells appeared to have lost the AB polarity, suggesting conversion of the epithelial structure and cessation of INM. At E15.5, light and transmission electron microscope observations revealed the ATW, ZO-1, PC, and tight junction which were localized into two-1ayers: the apical and subapical layers of the epithelium. These findings suggest that dynamic remodeling of the cytoskeleton and adhesion apparatus is involved in the conversion from pseudostratified single columnar to stratified squamous morphology and is closely related with temporal perturbation of the AB-polarity and cessation of INM.
Collapse
Affiliation(s)
- Dereje Getachew
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Ryo Kaneda
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Yuko Saeki
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Akihiro Matsumoto
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
9
|
Horton PD, Dumbali S, Wenzel PL. Mechanoregulation in hematopoiesis and hematologic disorders. CURRENT STEM CELL REPORTS 2020; 6:86-95. [PMID: 33094091 PMCID: PMC7577202 DOI: 10.1007/s40778-020-00172-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) are reliant on intrinsic and extrinsic factors for tight control of self-renewal, quiescence, differentiation, and homing. Given the intimate relationship between HSCs and their niche, increasing numbers of studies are examining how biophysical cues in the hematopoietic microenvironment impact HSC functions. RECENT FINDINGS Numerous mechanosensors are present on hematopoietic cells, including integrins, mechanosensitive ion channels, and primary cilia. Integrin-ligand adhesion, in particular, has been found to be critical for homing and anchoring of HSCs and progenitors in the bone marrow. Integrin-mediated interactions with ligands present on extracellular matrix and endothelial cells are key to establishing long-term engraftment and quiescence of HSCs. Importantly, disruption in the architecture and cellular composition of the bone marrow associated with conditioning regimens and primary myelofibrosis exposes HSCs to a profoundly distinct mechanical environment, with potential implications for progression of hematologic dysfunction and pathologies. SUMMARY Study of the mechanobiological signals that govern hematopoiesis represents an important future step toward understanding HSC biology in homeostasis, aging, and cancer.
Collapse
Affiliation(s)
- Paulina D. Horton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX, 77030, USA
| | - Sandeep Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX, 77030, USA
| | - Pamela L. Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX, 77030, USA
| |
Collapse
|
10
|
Zalenski AA, Majumder S, De K, Venere M. An interphase pool of KIF11 localizes at the basal bodies of primary cilia and a reduction in KIF11 expression alters cilia dynamics. Sci Rep 2020; 10:13946. [PMID: 32811879 PMCID: PMC7434902 DOI: 10.1038/s41598-020-70787-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/31/2020] [Indexed: 01/22/2023] Open
Abstract
KIF11 is a homotetrameric kinesin that peaks in protein expression during mitosis. It is a known mitotic regulator, and it is well-described that KIF11 is necessary for the formation and maintenance of the bipolar spindle. However, there has been a growing appreciation for non-mitotic roles for KIF11. KIF11 has been shown to function in such processes as axon growth and microtubule polymerization. We previously demonstrated that there is an interphase pool of KIF11 present in glioblastoma cancer stem cells that drives tumor cell invasion. Here, we identified a previously unknown association between KIF11 and primary cilia. We confirmed that KIF11 localized to the basal bodies of primary cilia in multiple cell types, including neoplastic and non-neoplastic cells. Further, we determined that KIF11 has a role in regulating cilia dynamics. Upon the reduction of KIF11 expression, the number of ciliated cells in asynchronously growing populations was significantly increased. We rescued this effect by the addition of exogenous KIF11. Lastly, we found that depleting KIF11 resulted in an increase in cilium length and an attenuation in the kinetics of cilia disassembly. These findings establish a previously unknown link between KIF11 and the dynamics of primary cilia and further support non-mitotic functions for this kinesin.
Collapse
Affiliation(s)
- Abigail A Zalenski
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University Wexner School of Medicine, 440 Tzagournis Medical Research Facility, 420 West 12th Avenue, Columbus, OH, 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Shubhra Majumder
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University Wexner School of Medicine, 440 Tzagournis Medical Research Facility, 420 West 12th Avenue, Columbus, OH, 43210, USA
- Department of Life Sciences and the School of Biotechnology, Presidency University, Kolkata, 700073, India
| | - Kuntal De
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University Wexner School of Medicine, 440 Tzagournis Medical Research Facility, 420 West 12th Avenue, Columbus, OH, 43210, USA
- Bioscience Division, Oak Ridge National Lab, Oak Ridge, TN, 37830, USA
| | - Monica Venere
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University Wexner School of Medicine, 440 Tzagournis Medical Research Facility, 420 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Zappaterra M, Gioiosa S, Chillemi G, Zambonelli P, Davoli R. Muscle transcriptome analysis identifies genes involved in ciliogenesis and the molecular cascade associated with intramuscular fat content in Large White heavy pigs. PLoS One 2020; 15:e0233372. [PMID: 32428048 PMCID: PMC7237010 DOI: 10.1371/journal.pone.0233372] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Intramuscular fat content (IMF) is a complex trait influencing the technological and sensorial features of meat products and determining pork quality. Thus, we aimed at analyzing through RNA-sequencing the Semimembranosus muscle transcriptome of Italian Large White pigs to study the gene networks associated with IMF deposition. Two groups of samples were used; each one was composed of six unrelated pigs with extreme and divergent IMF content (0.67 ± 0.09% in low IMF vs. 6.81 ± 1.17% in high IMF groups) that were chosen from 950 purebred individuals. Paired-end RNA sequences were aligned to Sus scrofa genome assembly 11.1 and gene counts were analyzed using WGCNA and DeSeq2 packages in R environment. Interestingly, among the 58 differentially expressed genes (DEGs), several were related to primary cilia organelles (such as Lebercilin 5 gene), in addition to the genes involved in the regulation of cell differentiation, in the control of RNA-processing, and G-protein and ERK signaling pathways. Together with cilia-related genes, we also found in high IMF pigs an over-expression of the Fibroblast Growth Factor 2 (FGF2) gene, which in other animal species was found to be a regulator of ciliogenesis. Four WGCNA gene modules resulted significantly associated with IMF deposition: grey60 (P = 0.003), darkturquoise (P = 0.022), skyblue1 (P = 0.022), and lavenderblush3 (P = 0.030). The genes in the significant modules confirmed the results obtained for the DEGs, and the analysis with “cytoHubba” indicated genes controlling RNA splicing and cell differentiation as hub genes. Among the complex molecular processes affecting muscle fat depots, genes involved in primary cilia may have an important role, and the transcriptional reprogramming observed in high IMF pigs may be related to an FGF-related molecular cascade and to ciliogenesis, which in the literature have been associated with fibro-adipogenic precursor differentiation.
Collapse
Affiliation(s)
- Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), Division of Animal Science, University of Bologna, Bologna, Italy
| | - Silvia Gioiosa
- Super Computing Applications and Innovation Department (SCAI), CINECA, Rome, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR, Bari, Italy
| | - Paolo Zambonelli
- Department of Agricultural and Food Sciences (DISTAL), Division of Animal Science, University of Bologna, Bologna, Italy
| | - Roberta Davoli
- Department of Agricultural and Food Sciences (DISTAL), Division of Animal Science, University of Bologna, Bologna, Italy
- Interdepartmental Centre of Agri-food Industrial Research (CIRI-AGRO), University of Bologna, Cesena, Italy
- * E-mail:
| |
Collapse
|
12
|
Peixoto E, Richard S, Pant K, Biswas A, Gradilone SA. The primary cilium: Its role as a tumor suppressor organelle. Biochem Pharmacol 2020; 175:113906. [PMID: 32169416 DOI: 10.1016/j.bcp.2020.113906] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/06/2020] [Indexed: 02/08/2023]
Abstract
The primary cilium is an organelle that nearly all cells within the body contain. Its function is to sense the extracellular environment through its abundance of receptors and linked signaling pathways, working as an antenna. Ciliary defects lead to different pathologies. In particular, many tumors lose primary cilia, and this is linked with negative implications for the cell such as an increase in malignancy. In this work we will go through the knowledge of the role of primary cilia in normal conditions, how it is involved in diverse signaling pathways, and in disease, particularly in cancer, highlighting its tumor suppressor properties.
Collapse
Affiliation(s)
- Estanislao Peixoto
- The Hormel Institute, University of Minnesota, Austin, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Aalekhya Biswas
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
13
|
Tao F, Jiang T, Tao H, Cao H, Xiang W. Primary cilia: Versatile regulator in cartilage development. Cell Prolif 2020; 53:e12765. [PMID: 32034931 PMCID: PMC7106963 DOI: 10.1111/cpr.12765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/21/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023] Open
Abstract
Cartilage is a connective tissue in the skeletal system and has limited regeneration ability and unique biomechanical reactivity. The growth and development of cartilage can be affected by different physical, chemical and biological factors, such as mechanical stress, inflammation, osmotic pressure, hypoxia and signalling transduction. Primary cilia are multifunctional sensory organelles that regulate diverse signalling transduction and cell activities. They are crucial for the regulation of cartilage development and act in a variety of ways, such as react to mechanical stress, mediate signalling transduction, regulate cartilage‐related diseases progression and affect cartilage tumorigenesis. Therefore, research on primary cilia‐mediated cartilage growth and development is currently extremely popular. This review outlines the role of primary cilia in cartilage development in recent years and elaborates on the potential regulatory mechanisms from different aspects.
Collapse
Affiliation(s)
- Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ting Jiang
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Choi ES, Al Faruque H, Kim JH, Cho JH, Park KM, Kim E. Immunochromatographic assay to detect α-tubulin in urine for the diagnosis of kidney injury. J Clin Lab Anal 2019; 34:e23015. [PMID: 31423640 PMCID: PMC6977356 DOI: 10.1002/jcla.23015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Backgrounds Shortening of primary cilia in kidney epithelial cells is associated with kidney injury and involved with the induced level of α‐tubulin in urine. Therefore, rapid detection and quantification of α‐tubulin in the urine samples could be used to the preliminary diagnosis of kidney injury. Methods Cellulose‐based nanobeads modified with α‐tubulin were used for the detection probe of competitive immunochromatographic (IC) assay. The concentration of α‐tubulin in the urine samples was determined by IC assay and compared with the amount determined by Western blotting analysis. Results The relationship between α‐tubulin concentration and the colorimetric intensity resulted from IC assay was determined by logistic regression, and the correlation coefficient (R2) was 0.9948. When compared to the amount determined by Western blotting analysis, there was a linear relationship between the α‐tubulin concentrations measured by the two methods and the R2 value was 0.823. Conclusions This method is simple, rapid, and adequately sensitive to detect α‐tubulin in patient urine samples, which could be used for the clinical diagnosis of kidney injury.
Collapse
Affiliation(s)
- Eun-Sook Choi
- Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Hasan Al Faruque
- Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Jung-Hee Kim
- Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Jang-Hee Cho
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Kwon Moo Park
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Eunjoo Kim
- Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| |
Collapse
|
15
|
Chavez DE, Gronau I, Hains T, Kliver S, Koepfli KP, Wayne RK. Comparative genomics provides new insights into the remarkable adaptations of the African wild dog (Lycaon pictus). Sci Rep 2019; 9:8329. [PMID: 31171819 PMCID: PMC6554312 DOI: 10.1038/s41598-019-44772-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/22/2019] [Indexed: 12/02/2022] Open
Abstract
Within the Canidae, the African wild dog (Lycaon pictus) is the most specialized with regards to cursorial adaptations (specialized for running), having only four digits on their forefeet. In addition, this species is one of the few canids considered to be an obligate meat-eater, possessing a robust dentition for taking down large prey, and displays one of the most variable coat colorations amongst mammals. Here, we used comparative genomic analysis to investigate the evolutionary history and genetic basis for adaptations associated with cursoriality, hypercanivory, and coat color variation in African wild dogs. Genome-wide scans revealed unique amino acid deletions that suggest a mode of evolutionary digit loss through expanded apoptosis in the developing first digit. African wild dog-specific signals of positive selection also uncovered a putative mechanism of molar cusp modification through changes in genes associated with the sonic hedgehog (SHH) signaling pathway, required for spatial patterning of teeth, and three genes associated with pigmentation. Divergence time analyses suggest the suite of genomic changes we identified evolved ~1.7 Mya, coinciding with the diversification of large-bodied ungulates. Our results show that comparative genomics is a powerful tool for identifying the genetic basis of evolutionary changes in Canidae.
Collapse
Affiliation(s)
- Daniel E Chavez
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA.
| | - Ilan Gronau
- Efi Arazi School of Computer Science, Herzliya Interdisciplinary Center (IDC), Herzliya, 46150, Israel
| | - Taylor Hains
- Environmental Science and Policy, Johns Hopkins University, Washington, D.C., 20036, USA
| | - Sergei Kliver
- Institute of Molecular and Cellular Biology, Novosibirsk, 630090, Russian Federation
| | - Klaus-Peter Koepfli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, D.C., 20008, USA
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| |
Collapse
|
16
|
Hossain D, Tsang WY. The role of ubiquitination in the regulation of primary cilia assembly and disassembly. Semin Cell Dev Biol 2018; 93:145-152. [PMID: 30213760 DOI: 10.1016/j.semcdb.2018.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/02/2023]
Abstract
The primary cilium is a cellular antenna found on the surface of many eukaryotic cells, whose main role is to sense and transduce signals that regulate growth, development, and differentiation. Although once believed to be a vestigial organelle without important function, it has become clear that defects in primary cilium are responsible for a wide variety of genetic diseases affecting many organs and tissues, including the brain, eyes, heart, kidneys, liver, and pancreas. The primary cilium is mainly present in quiescent and differentiated cells, and controls must exist to ensure that this organelle is assembled or disassembled at the right time. Although many protein components required for building the cilium have been identified, mechanistic details of how these proteins are spatially and temporally regulated and how these regulations are connected to external cues are beginning to emerge. This review article highlights the role of ubiquitination and in particular, E3 ubiquitin ligases and deubiquitinases, in the control of primary cilia assembly and disassembly.
Collapse
Affiliation(s)
- Delowar Hossain
- Institut de recherches cliniques de Montréal, Montreal, Quebec, H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - William Y Tsang
- Institut de recherches cliniques de Montréal, Montreal, Quebec, H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada; Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
17
|
Machado MV, Diehl AM. Hedgehog signalling in liver pathophysiology. J Hepatol 2018; 68:550-562. [PMID: 29107151 PMCID: PMC5957514 DOI: 10.1016/j.jhep.2017.10.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
Liver disease remains a leading cause of mortality worldwide despite recent successes in the field of viral hepatitis, because increases in alcohol consumption and obesity are fuelling an epidemic of chronic fatty liver disease for which there are currently no effective medical therapies. About 20% of individuals with chronic liver injury ultimately develop end-stage liver disease due to cirrhosis. Hence, treatments to prevent and reverse cirrhosis in individuals with ongoing liver injury are desperately needed. The development of successful treatments requires an improved understanding of the mechanisms controlling liver disease progression. The liver responds to diverse insults with a conserved wound healing response, suggesting that it might be generally beneficial to optimise pathways that are crucial for effective liver repair. The Hedgehog pathway has emerged as a potential target based on compelling preclinical and clinical data, which demonstrate that it critically regulates the liver's response to injury. Herein, we will summarise evidence of the Hedgehog pathway's role in liver disease and discuss how modulating pathway activity might be applied to improve liver disease outcomes.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA,Gastroenterology Department, Hospital de Santa Maria, CHLN, Lisbon, Portugal
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
18
|
Primary Cilium-Dependent Signaling Mechanisms. Int J Mol Sci 2017; 18:ijms18112272. [PMID: 29143784 PMCID: PMC5713242 DOI: 10.3390/ijms18112272] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/13/2017] [Accepted: 10/25/2017] [Indexed: 01/02/2023] Open
Abstract
Primary cilia are hair-like organelles and play crucial roles in vertebrate development, organogenesis, health, and many genetic disorders. A primary cilium is a mechano-sensory organelle that responds to mechanical stimuli in the micro-environment. A cilium is also a chemosensor that senses chemical signals surrounding a cell. The overall function of a cilium is therefore to act as a communication hub to transfer extracellular signals into intracellular responses. Although intracellular calcium has been one of the most studied signaling messengers that transmit extracellular signals into the cells, calcium signaling by various ion channels remains a topic of interest in the field. This may be due to a broad spectrum of cilia functions that are dependent on or independent of utilizing calcium as a second messenger. We therefore revisit and discuss the calcium-dependent and calcium-independent ciliary signaling pathways of Hedgehog, Wnt, PDGFR, Notch, TGF-β, mTOR, OFD1 autophagy, and other GPCR-associated signaling. All of these signaling pathways play crucial roles in various cellular processes, such as in organ and embryonic development, cardiac functioning, planar cell polarity, transactivation, differentiation, the cell cycle, apoptosis, tissue homeostasis, and the immune response.
Collapse
|