1
|
Souza JAM, Gurgel ILDS, Malacco NLSDO, Martins FRB, Queiroz-Junior CM, Teixeira MM, Soriani FM. Pre-Exposure With Extracellular Vesicles From Aspergillus fumigatus Attenuates Inflammatory Response and Enhances Fungal Clearance in a Murine Model Pulmonary Aspergillosis. Front Cell Infect Microbiol 2022; 12:898619. [PMID: 35719346 PMCID: PMC9198263 DOI: 10.3389/fcimb.2022.898619] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous and saprophytic filamentous fungus and the main etiologic agent of aspergillosis. Infections caused by A. fumigatus culminate in a strong inflammatory response that can evolve into respiratory failure and may be lethal in immunocompromised individuals. In the last decades, it has been demonstrated that extracellular vesicles (EVs) elicit a notable biological response in immune cells. EVs carry a variety of biomolecules, therefore are considered potential antigen delivery vehicles. The role of EVs as a strategy for modulating an effective response against infections caused by A. fumigatus remains unexplored. Here we investigate the use of EVs derived from A. fumigatus as an immunization tool to induce a more robust immune response to A. fumigatus pulmonary infection. In order to investigate that, male C57BL/6 mice were immunized with two doses of EVs and infected with A. fumigatus. Pre-exposure of mice to EVs was able to induce the production of specific IgG serum for fungal antigens. Besides that, the immunization with EVs reduced the neutrophilic infiltrate into the alveoli, as well as the extravasation of total proteins and the production of proinflammatory mediators IL-1β, IL-6, and CXCL-1. In addition, immunization prevented extensive lung tissue damage and also improved phagocytosis and fungus clearance. Noteworthy, immunization with EVs, associated with subclinical doses of Amphotericin B (AmB) treatment, rescued 50% of mice infected with A. fumigatus from lethal fungal pneumonia. Therefore, the present study shows a new role for A. fumigatus EVs as host inflammatory response modulators, suggesting their use as immunizing agents.
Collapse
Affiliation(s)
- Jéssica Amanda Marques Souza
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Frederico Marianetti Soriani, ; Jéssica Amanda Marques Souza,
| | - Isabella Luísa da Silva Gurgel
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nathália Luísa Sousa de Oliveira Malacco
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- The Lopes Lab, Institute of Parasitology, McGill University, Montreal, QC, Canada
| | - Flávia Rayssa Braga Martins
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso Martins Queiroz-Junior
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frederico Marianetti Soriani
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Frederico Marianetti Soriani, ; Jéssica Amanda Marques Souza,
| |
Collapse
|
2
|
Portuondo Fuentes DL, Batista-Duharte A, Carvajal CC, de Oliveira CS, Borges JC, Téllez-Martínez D, Santana PA, Gauna A, Mercado L, Soleder BC, Inácio da Costa P, Quimbayo FG, Carlos IZ. A Sporothrix spp enolase derived multi-epitope vaccine confers protective response in BALB/c mice challenged with Sporothrix brasiliensis. Microb Pathog 2022; 166:105539. [PMID: 35447314 DOI: 10.1016/j.micpath.2022.105539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Sporotrichosis is a cosmopolitan mycosis caused by pathogenic species of Sporothrix genus, that in Brazil is often acquired by zoonotic transmission involved infected cats with S. brasiliensis. Previous studies showed that the Sporothrix spp. recombinant enolase (rSsEno), a multifunctional protein with immunogenic properties, could be a promising target for vaccination against sporotrichosis in cats. Nevertheless, the considerable sequence identity (62%) of SsEno with its feline counterpart is a great concern. Here, we report the identification in silico, chemical synthesis and biological validation of six peptides of SsEno with low sequence identity to its cat orthologue. All synthesized peptides exhibit B-cell epitopes on the molecular surface of SsEno and proved to be highly reactive with the serum of infected mice with S. brasiliensis and sera of cats with sporotrichosis. Interestingly, our study revealed that anti-peptide sera did not react with the recombinant enolase from Felis catus (cats, rFcEno), thus, may not trigger autoimmune response in these felines if used as a vaccine antigen. The immunization with peptide mixture (PeptMix) formulated with Freund adjuvant (FA), induced high levels of antigen-specific IgG, IgG1 and IgG2b antibodies that conferred protection upon passive transference in infected BALB/c mice with S. brasiliensis. We also observed, that the FA + PeptMix formulation induced a Th1/Th2/Th17 cytokine profile ex vivo, associated with protecting effect against the experimental sporotrichosis. Our results suggest that the six SsEno-derived peptides here evaluated, could be used as safe antigens for the development of vaccine strategies against feline sporotrichosis, whether prophylactic or therapeutic.
Collapse
Affiliation(s)
| | - Alexander Batista-Duharte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil; GC01 Immunology and Allergy Group. Maimonides Biomedical Research Institute of Cordoba (IMIBIC). Reina Sofía University Hospital, IMIBIC Building, Córdoba, Spain.
| | - Constanza Cardenas Carvajal
- Nucleo Biotecnologıa Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile.
| | - Carlos S de Oliveira
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, P.O. Box 780, 13560-970, Brazil.
| | - Júlio César Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, P.O. Box 780, 13560-970, Brazil.
| | - Damiana Téllez-Martínez
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Paula Andrea Santana
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago, Chile.
| | - Adriana Gauna
- Nucleo Biotecnologıa Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile.
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223, Valparaíso, Chile.
| | - Bruna Castilho Soleder
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Paulo Inácio da Costa
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Fanny Guzmán Quimbayo
- Nucleo Biotecnologıa Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile.
| | - Iracilda Zeppone Carlos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| |
Collapse
|
3
|
Advances in Fungal Peptide Vaccines. J Fungi (Basel) 2020; 6:jof6030119. [PMID: 32722452 PMCID: PMC7558412 DOI: 10.3390/jof6030119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Vaccination is one of the greatest public health achievements in the past century, protecting and improving the quality of life of the population worldwide. However, a safe and effective vaccine for therapeutic or prophylactic treatment of fungal infections is not yet available. The lack of a vaccine for fungi is a problem of increasing importance as the incidence of diverse species, including Paracoccidioides, Aspergillus, Candida, Sporothrix, and Coccidioides, has increased in recent decades and new drug-resistant pathogenic fungi are emerging. In fact, our antifungal armamentarium too frequently fails to effectively control or cure mycoses, leading to high rates of mortality and morbidity. With this in mind, many groups are working towards identifying effective and safe vaccines for fungal pathogens, with a particular focus of generating vaccines that will work in individuals with compromised immunity who bear the major burden of infections from these microbes. In this review, we detail advances in the development of vaccines for pathogenic fungi, and highlight new methodologies using immunoproteomic techniques and bioinformatic tools that have led to new vaccine formulations, like peptide-based vaccines.
Collapse
|
4
|
Thakur R, Shankar J. In silico Identification of Potential Peptides or Allergen Shot Candidates Against Aspergillus fumigatus. Biores Open Access 2016; 5:330-341. [PMID: 27872794 PMCID: PMC5116691 DOI: 10.1089/biores.2016.0035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aspergillus fumigatus is capable of causing invasive aspergillosis or acute bronchopulmonary aspergillosis, and the current situation is alarming. There are no vaccine or allergen shots available for Aspergillus-induced allergies. Thus, a novel approach in designing of an effective vaccine or allergen shot candidate against A. fumigatus is needed. Using immunoinformatics approaches from the characterized A. fumigatus allergens, we have mapped epitopic regions to predict potential peptides that elicit both Aspergillus-specific T cells and B cell immune response. Experimentally derived immunodominant allergens were retrieved from www.allergen.org. A total of 23 allergenic proteins of A. fumigatus were retrieved. Out of 23 allergenic proteins, 13 of them showed high sequence similarity to both human and mouse counterparts and thus were eliminated from analysis due to possible cross-reactivity. Remaining allergens were subjected to T cell (major histocompatibility complex class I and II alleles) and B cell epitope prediction using immune epitope database analysis resource. Only five allergens have shown a common B and T cell epitopic region between human and mouse. They are Asp f1 {147-156 region (RVIYTYPNKV); Mitogillin}, Asp f2 {5-19 region (LRLAVLLPLAAPLVA); Hypothetical protein}, Asp f5 {305-322 region (LNNYRPSSSSLSFKY); Metalloprotease}, Asp f17 {98-106 region (AANAGGTVY); Hypothetical protein}, and Asp f34 {74-82 region (YIQDGSLYL); PhiA cell wall protein}. The epitopic region from these five allergenic proteins showed potential for development of single peptide- or multipeptide-based vaccine or allergen shots for experimental prioritization.
Collapse
Affiliation(s)
- Raman Thakur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology , Solan-173234 (Himachal Pradesh), India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology , Solan-173234 (Himachal Pradesh), India
| |
Collapse
|