1
|
IL-33 promotes gastric tumour growth in concert with activation and recruitment of inflammatory myeloid cells. Oncotarget 2022; 13:785-799. [PMID: 35677533 PMCID: PMC9159270 DOI: 10.18632/oncotarget.28238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/07/2022] [Indexed: 01/01/2023] Open
Abstract
Interleukin-33 (IL-33) is an IL-1 family cytokine known to promote T-helper (Th) type 2 immune responses that are often deregulated in gastric cancer (GC). IL-33 is overexpressed in human gastric tumours suggesting a role in driving GC progression although a causal link has not been proven. Here, we investigated the impact of IL-33 genetic deficiency in the well-characterized gp130F/F mouse model of GC. Expression of IL-33 (and it’s cognate receptor, ST2) was increased in human and mouse GC progression. IL-33 deficient gp130F/F/Il33−/− mice had reduced gastric tumour growth and reduced recruitment of pro-tumorigenic myeloid cells including key mast cell subsets and type-2 (M2) macrophages. Cell sorting of gastric tumours revealed that IL-33 chiefly localized to gastric (tumour) epithelial cells and was absent from tumour-infiltrating immune cells (except modest IL-33 enrichment within CD11b+ CX3CR1+CD64+MHCII+ macrophages). By contrast, ST2 was absent from gastric epithelial cells and localized exclusively within the (non-macrophage) immune cell fraction together with mast cell markers, Mcpt1 and Mcpt2. Collectively, we show that IL-33 is required for gastric tumour growth and provide evidence of a likely mechanism by which gastric epithelial-derived IL-33 drives mobilization of tumour-promoting inflammatory myeloid cells.
Collapse
|
2
|
Pulz LH, Cordeiro YG, Huete GC, Cadrobbi KG, Rochetti AL, Xavier PLP, Nishiya AT, de Freitas SH, Fukumasu H, Strefezzi RF. Intercellular interactions between mast cells and stromal fibroblasts obtained from canine cutaneous mast cell tumours. Sci Rep 2021; 11:23881. [PMID: 34903806 PMCID: PMC8668961 DOI: 10.1038/s41598-021-03390-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
Mast cell tumours (MCTs) are the most frequent malignant skin neoplasm in dogs. Due to the difficulty in purifying large numbers of canine neoplastic mast cells, relatively little is known about their properties. A reproducible in vitro model is needed to increase the understanding about the phenotype and functional properties of neoplastic mast cells. In the present study, we describe the establishment of primary cocultures of neoplastic mast cells from canine cutaneous MCTs and cancer-associated fibroblasts. We confirmed the inability of canine neoplastic mast cells to remain viable for long periods in vitro without the addition of growth factors or in vivo passages in mice. Using a transwell system, we observed that mast cell viability was significantly higher when there is cell-to-cell contact in comparison to non-physical contact conditions and that mast cell viability was significantly higher in high-grade than in low-grade derived primary cultures. Moreover, the use of conditioned medium from co-cultured cells led to a significantly higher tumoral mast cell viability when in monoculture. Signalling mechanisms involved in these interactions might be attractive therapeutic targets to block canine MCT progression and deserve more in-depth investigations.
Collapse
Affiliation(s)
- Lidia H Pulz
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, CEP 05508-270, Brazil
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Yonara G Cordeiro
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Greice C Huete
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Karine G Cadrobbi
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Arina L Rochetti
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Pedro L P Xavier
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Adriana Tomoko Nishiya
- Hospital Veterinário da Universidade Anhembi Morumbi, R. Conselheiro Lafaiete, 64, São Paulo, SP, CEP 03101-00, Brazil
| | - Silvio Henrique de Freitas
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Heidge Fukumasu
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Ricardo F Strefezzi
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil.
| |
Collapse
|
3
|
Short-term in vitro culture of purity and highly functional rat bone marrow-derived mast cells. In Vitro Cell Dev Biol Anim 2018; 54:705-714. [PMID: 30341632 DOI: 10.1007/s11626-018-0301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022]
Abstract
Mast cells (MCs) are responsible for the innate immune response. Rat MCs are more suitable than mouse MCs as models of specific parasite infection processes and ovalbumin-induced asthma. Rat peritoneum-derived MCs and RBL-2H3 cells (an MC cell line) are widely used in disease studies. However, the application of rat bone marrow-derived MCs (BMMCs) are poorly documented in terms of the methodology of rat BMMC isolation. Here, we describe a relatively rapid, efficient, and simple method for the cultivation of rat BMMCs. As compared to previous protocols, rat BMMCs produced with the proposed protocol exhibited advantages in differentiation, proliferation, lifespan, and functionality, which should prove useful for studies of mucosal MC diseases in specific rat models.
Collapse
|
4
|
Nagashima M, Koyanagi M, Arimura Y. Comparative Analysis of Bone Marrow-derived Mast Cell Differentiation in C57BL/6 and BALB/c Mice. Immunol Invest 2018; 48:303-320. [PMID: 30335529 DOI: 10.1080/08820139.2018.1523924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Allergic diseases have increased in the last three decades. Mast cells play a critical role in allergic diseases along with allergen-specific immunoglobulin E (IgE). Following mast cell degranulation elicited by ligation of the IgE-FcεRI receptor complex with allergen, allergic reactions are followed by various symptoms such as vascular hyperpermeability, mucous secretion, itching, sneezing, wheezing, rashes, fever, and anaphylactic shock. Susceptibility or inclination to allergy varies depending on individual genetic traits and living environment, and it has long been believed that such an inclination is determined by an immunologic balance of T helper cell types. Mouse strains also have different susceptibilities to allergy. Similar to T helper cells and macrophages, it is not known whether mast cells can also be divided into two different types between mouse strains. In this study, we prepared bone marrow-derived mast cells from BALB/c and C57BL/6 mice and examined their cellular properties. Cellular response to IL-3 and the process of mast cell differentiation from bone marrow cells were different on the basis of cell surface marker molecules. BALB/c-derived cells more efficiently exhibited degranulation than did C57BL/6-derived cells following both calcium ionophore and receptor crosslinking. These functional differences persisted even after a longer cell culture for 8 weeks, suggesting a difference in cell-autonomous characteristics. These results support the concept that mast cells also have different cell types dependent on their genetic background. Abbreviations: Ab: antibody; BMMC: bone marrow-derived mast cell; DNP: dinitrophenyl; FACS: fluorescence-activated cell sorter; FCS: fetal calf serum; FITC: fluorescein isothiocyanate; FSC: forward scatter; HRP: horseradish peroxidase; HSA: human serum albumin; Ig: immunoglobulin; IL: interleukin; MIP-2: macrophage inflammatory protein-2; MCP: mast cell protease; PE: phycoerythrin; PerCP: Peridinin chlorophyll protein complex; SNP: single nucleotide polymorphisms; SSC: side scatter; Th: T helper; TNF-α: tumor necrosis factor alpha.
Collapse
Affiliation(s)
- Miki Nagashima
- a Host Defense for Animals , Nippon Veterinary and Life Science University , Musashino-shi, Tokyo , Japan
| | - Madoka Koyanagi
- a Host Defense for Animals , Nippon Veterinary and Life Science University , Musashino-shi, Tokyo , Japan
| | - Yutaka Arimura
- a Host Defense for Animals , Nippon Veterinary and Life Science University , Musashino-shi, Tokyo , Japan
| |
Collapse
|
5
|
Yu T, He Z, Yang M, Song J, Ma C, Ma S, Feng J, Liu B, Wang X, Wei Z, Li J. The development of methods for primary mast cells in vitro and ex vivo: An historical review. Exp Cell Res 2018; 369:179-186. [PMID: 29842878 DOI: 10.1016/j.yexcr.2018.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022]
Abstract
Mast cells (MCs) are tissue-based stationary effector cells that form the immune system's first-line defense against various challenges. They are developed from the bone marrow-derived progenitors to complete their differentiation and maturation in the tissues where they eventually establish residence. MCs have been implicated in many diseases, such as allergy, parasitic infection, and neoplastic disorders. Immortalized MC lines, such as RBL-2H3, HMC-1, and LAD-2, are useful for investigating the biological functions of MC only to some extents due to the restriction of degranulation evaluation, in vivo injection and other factors. Over the past few decades, technologies for acquiring primarily MCs have been continually optimized, and novel protocols have been proposed. However, no relevant publications have analyzed and summarized these techniques. In this review, the classical approaches for extracting MCs are generalized, and new methods with potential values are introduced. We also evaluate the advantages and applicability of diverse MC models. Since MCs exhibit substantial plasticity and functional diversity due to different origins, it is both necessary and urgent to select a reliable and suitable source of MCs for a particular study.
Collapse
Affiliation(s)
- Tianyu Yu
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China; Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, China
| | - Zhigang He
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China
| | - Muqing Yang
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China
| | - Jian Song
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China
| | - Cheng Ma
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China; Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, China
| | - Sunqiang Ma
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China
| | - Junlan Feng
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China
| | - Bin Liu
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China; Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, China
| | - Xiaodong Wang
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China; Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, China
| | - Zhubo Wei
- Cancer Center, Houston Methodist Research Institute, United States.
| | - Jiyu Li
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China; Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, China.
| |
Collapse
|
6
|
Downregulation of iNOS, IL-1 β, and P2X7 Expression in Mast Cells via Activation of PAR4 Contributes to the Inhibition of Visceral Hyperalgesia in Rats. J Immunol Res 2018; 2018:3256908. [PMID: 29854833 PMCID: PMC5966670 DOI: 10.1155/2018/3256908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/10/2018] [Accepted: 01/23/2018] [Indexed: 01/11/2023] Open
Abstract
Protease-activated receptor 4 (PAR4) is implicated in the inhibition of visceral hyperalgesia. In the present study, the effects of PAR4 activation on visceral hypersensitivity and expression of inflammatory mediators, including interleukin-1β (IL-1β), P2RX7 purinergic receptor (P2X7), inducible nitric oxide synthase (iNOS), and tryptase, in mast cells (MCs) were investigated via in vivo and in vitro studies. The numbers of tryptase-positive MCs with extensive PAR4, P2X7, and iNOS expression were increased in the colons of visceral hyperalgesia rats compared with controls. Intracolonic administration of PAR4-activating peptide (PAR4-AP) significantly attenuated the visceral hypersensitivity to colorectal distention and reduced the iNOS, IL-1β, P2X7, and tryptase protein and mRNA levels in the colonic mucosa. Treatment of rat bone marrow MCs (BMMCs) with PAR4-AP also reduced the iNOS, IL-1β, P2X7, and tryptase protein and mRNA levels. ERK1/2 and p38 activators (t-butylhydroquinone, tBHQ, and U-46619) reversed the suppressive effect of PAR4 activation on IL-1β and iNOS expression, whereas ERK1/2 and p38 inhibitors (PD98059 and SB203580) reversed the suppressive effect of PAR4 activation on P2X7 and tryptase expression. Our results indicate that the downregulation of inflammatory mediators, including iNOS, IL-1β, P2X7, and tryptase, in MCs that are mediated by PAR4 activation could inhibit visceral hyperalgesia via the mitogen-activated protein kinase (MAPK) signal pathway.
Collapse
|
7
|
Mast Cell, the Neglected Member of the Tumor Microenvironment: Role in Breast Cancer. J Immunol Res 2018; 2018:2584243. [PMID: 29651440 PMCID: PMC5832101 DOI: 10.1155/2018/2584243] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/08/2017] [Accepted: 11/26/2017] [Indexed: 02/06/2023] Open
Abstract
Mast cells are unique tissue-resident immune cells that secrete a diverse array of biologically active compounds that can stimulate, modulate, or suppress the immune response. Although mounting evidence supports that mast cells are consistently infiltrating tumors, their role as either a driving or an opposite force for cancer progression is still controversial. Particularly, in breast cancer, their function is still under discussion. While some studies have shown a protective role, recent evidence indicates that mast cells enhance blood and lymphatic vessel formation. Interestingly, one of the most important components of the mast cell cargo, the serine protease tryptase, is a potent angiogenic factor, and elevated serum tryptase levels correlate with bad prognosis in breast cancer patients. Likewise, histamine is known to induce tumor cell proliferation and tumor growth. In agreement, mast cell depletion reduces the size of mammary tumors and metastasis in murine models that spontaneously develop breast cancer. In this review, we will discuss the evidence supporting protumoral and antitumoral roles of mast cells, emphasizing recent findings placing mast cells as important drivers of tumor progression, as well as the potential use of these cells or their mediators as therapeutic targets.
Collapse
|
8
|
An S, Zong G, Wang Z, Shi J, Du H, Hu J. Expression of inducible nitric oxide synthase in mast cells contributes to the regulation of inflammatory cytokines in irritable bowel syndrome with diarrhea. Neurogastroenterol Motil 2016; 28:1083-93. [PMID: 26940641 DOI: 10.1111/nmo.12811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nitric oxide (NO) and mast cells (MCs) are possibly involved in the development of irritable bowel syndrome (IBS), but details on their role and interactions still remain undetermined. We aimed to investigate the expression of inducible NO synthase (iNOS) in MCs of the colon of IBS with diarrhea (IBS-D), and elucidated a potential role of NO in the differential regulation of cytokines in MCs. METHODS Colonic mucosal biopsies of 19 IBS-D patients and 16 healthy controls were collected. The expression of tryptase and iNOS was investigated by immunohistochemistry, Western blotting, and real-time PCR. Effects of NO on the expression of cytokines in rat bone marrow MCs (BMMCs) were examined using a cytokine array by NG-nitro-l-arginine methyl ester (L-NAME) treatment. KEY RESULTS Immunohistochemistry for tryptase revealed an increase in number of MCs with extensive iNOS expression in the colonic mucosa of IBS-D. Tryptase, iNOS and interleukin (IL)-1β mRNA and protein levels were upregulated in IBS-D compared with healthy controls. Specifically, a positive correlation between tryptase and iNOS protein expression was observed in the colon of IBS-D (r = 0.667, p < 0.05). Supernatant from IBS-D increased iNOS expression in BMMCs. Antibody array showed that agrin, beta-nerve growth factor, fractalkine, granulocyte-macrophage colony-stimulating factor, IL-1β, IL-1R6, IL-13, leptin, tumor necrosis factor alpha were suppressed, and cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2α, CINC-3, monocyte chemotactic protein-1, matrix metalloproteinase-8 were strongly produced in L-NAME treated BMMCs, comparable to levels in the control group. CONCLUSIONS & INFERENCES Our findings provide new evidence that NO is able to regulate many cytokines in MCs that may be involved in the development of IBS.
Collapse
Affiliation(s)
- S An
- Department of Human Anatomy, Taishan Medical University, Taian, China
| | - G Zong
- Department of Gastroenterology, Affiliated Hospital of Taishan Medical University, Taian, China
| | - Z Wang
- Department of Human Anatomy, Taishan Medical University, Taian, China
| | - J Shi
- Department of Human Anatomy, Taishan Medical University, Taian, China
| | - H Du
- Department of Histology and Embryology, Taishan Medical University, Taian, China
| | - J Hu
- Department of Gastroenterology, Affiliated Hospital of Taishan Medical University, Taian, China
| |
Collapse
|
9
|
Zhang X, Zhang C, Xu W, Zhong B, Lin F, Zhang J, Wang Q, Ji J, Wei J, Zhang Y. Biodegradable mesoporous calcium-magnesium silicate-polybutylene succinate scaffolds for osseous tissue engineering. Int J Nanomedicine 2015; 10:6699-708. [PMID: 26604746 PMCID: PMC4630181 DOI: 10.2147/ijn.s92598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The structural features of bone engineering scaffolds are expected to exhibit osteoinductive behavior and promote cell adhesion, proliferation, and differentiation. In the present study, we employed synthesized ordered mesoporous calcium-magnesium silicate (om-CMS) and polybutylene succinate (PBSu) to develop a novel scaffold with potential applications in osseous tissue engineering. The characteristics, in vitro bioactivity of om-CMS/PBSu scaffold, as well as the cellular responses of MC3T3-E1 cells to the composite were investigated. Our results showed that the om-CMS/PBSu scaffold possesses a large surface area and highly ordered channel pores, resulting in improved degradation and biocompatibility compared to the PBSu scaffold. Moreover, the om-CMS/PBSu scaffold exhibited significantly higher bioactivity and induced apatite formation on its surface after immersion in the simulated body fluid. In addition, the om-CMS/PBSu scaffold provided a high surface area for cell attachment and released Ca, Mg, and Si ions to stimulate osteoblast proliferation. The unique surface characteristics and higher biological efficacy of the om-CMS/PBSu scaffold suggest that it has great potential for being developed into a system that can be employed in osseous tissue engineering.
Collapse
Affiliation(s)
- Xinxin Zhang
- TongRen Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China ; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chi Zhang
- Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wei Xu
- TongRen Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Biao Zhong
- Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Feng Lin
- Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jian Zhang
- Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Quanxiang Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jiajin Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yang Zhang
- TongRen Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
He SH, Zhang HY, Zeng XN, Chen D, Yang PC. Mast cells and basophils are essential for allergies: mechanisms of allergic inflammation and a proposed procedure for diagnosis. Acta Pharmacol Sin 2013; 34:1270-83. [PMID: 23974516 DOI: 10.1038/aps.2013.88] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/12/2013] [Indexed: 02/06/2023] Open
Abstract
The current definition of allergy is a group of IgE-mediated diseases. However, a large portion of patients with clinical manifestations of allergies do not exhibit elevated serum levels of IgE (sIgEs). In this article, three key factors, ie soluble allergens, sIgEs and mast cells or basophils, representing the causative factors, messengers and primary effector cells in allergic inflammation, respectively, were discussed. Based on current knowledge on allergic diseases, we propose that allergic diseases are a group of diseases mediated through activated mast cells and/or basophils in sensitive individuals, and allergic diseases include four subgroups: (1) IgE dependent; (2) other immunoglobulin dependent; (3) non-immunoglobulin mediated; (4) mixture of the first three subgroups. According to our proposed definition, pseudo-allergic-reactions, in which mast cell or basophil activation is not mediated via IgE, or to a lesser extent via IgG or IgM, should be non-IgE-mediated allergic diseases. Specific allergen challenge tests (SACTs) are gold standard tests for diagnosing allergies in vivo, but risky. The identification of surface membrane activation markers of mast cells and basophils (CD203c, CCR3, CD63, etc) has led to development of the basophil activation test (BAT), an in vitro specific allergen challenge test (SACT). Based on currently available laboratory allergy tests, we here propose a laboratory examination procedure for allergy.
Collapse
|
11
|
Thrasher SM, Scalfone LK, Holowka D, Appleton JA. In vitro modelling of rat mucosal mast cell function in Trichinella spiralis infection. Parasite Immunol 2013; 35:21-31. [PMID: 23094823 DOI: 10.1111/pim.12014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 10/14/2012] [Indexed: 11/28/2022]
Abstract
Intestinal infection with the parasitic nematode, Trichinella spiralis, provides a robust context for the study of mucosal mast cell function. In rats, mucosal mast cells are exposed to parasites during the earliest stage of infection, affording an opportunity for mast cells to contribute to an innate response to infection. During secondary infection, degranulation of rat mucosal mast cells coincides with expulsion of challenge larvae from the intestine. The goal of this study was to evaluate the rat bone marrow-derived mast cells (BMMC) and the rat basophilic leukaemia cell line (RBL-2H3) as models for mucosal mast cells, using parasite glycoproteins and antibody reagents that have been tested extensively in rats in vivo. We found that BMMC displayed a more robust mucosal phenotype. Although T. spiralis glycoproteins bound to mast cell surfaces in the absence of antibodies, they did not stimulate degranulation, nor did they inhibit degranulation triggered by immune complexes. Parasite glycoproteins complexed with specific monoclonal IgGs provoked release of rat mast cell protease II (RMCPII) and β-hexosaminidase from both cell types in a manner that replicated results observed previously in passively immunized rats. Our results document that RBL-2H3 cells and BMMC model rat mucosal mast cells in the contexts of innate and adaptive responses to T. spiralis.
Collapse
Affiliation(s)
- S M Thrasher
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | | | | |
Collapse
|
12
|
Das Roy L, Curry JM, Sahraei M, Besmer DM, Kidiyoor A, Gruber HE, Mukherjee P. Arthritis augments breast cancer metastasis: role of mast cells and SCF/c-Kit signaling. Breast Cancer Res 2013; 15:R32. [PMID: 23577751 PMCID: PMC3672823 DOI: 10.1186/bcr3412] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 04/11/2013] [Indexed: 12/16/2022] Open
Abstract
Introduction Breast cancer remains the second leading cause of cancer-related deaths for women in the United States. Metastasis is regulated not only by intrinsic genetic changes in malignant cells, but also by the microenvironment, especially those associated with chronic inflammation. We recently reported that mice with autoimmune arthritis have significantly increased incidence of bone and lung metastasis and decreased survival associated with breast cancer. In this study, we evaluated the mechanism underlying the increased metastasis. Methods We used two mouse models; one that develops spontaneous autoimmune arthritis (SKG mice) injected with metastatic breast cancer cells (4T1), and another that develops spontaneous breast cancer (MMTV-PyV MT mice) injected with type II collagen to induce autoimmune arthritis. Mast cell levels and metastasis were monitored. Results First, we confirmed that breast tumor-bearing arthritic mice have a significantly higher incidence of bone and lung metastasis than do their nonarthritic counterparts. Next, we showed increased recruitment of mast cells within the primary tumor of arthritic mice, which facilitates metastasis. Next, we report that arthritic mice without any tumors have higher numbers of mast cells in the bones and lungs, which may be the underlying cause for the enhanced lung and bone metastases observed in the arthritic mice. Next, we showed that once the tumor cells populate the metastatic niches (bones and lungs), they further increase the mast cell population within the niche and assist in enhancing metastasis. This may primarily be due to the interaction of c-Kit receptor present on mast cells and stem cell factor (SCF, the ligand for ckit) expressed on tumor cells. Finally, we showed that targeting the SCF/cKit interaction with an anti-ckit antibody reduces the differentiation of mast cells and consequently reduces metastasis. Conclusion This is the first report to show that mast cells may play a critical role in remodeling not only the tumor microenvironment but also the metastatic niche to facilitate efficient metastasis through SCF/cKit interaction in breast cancer with arthritis.
Collapse
|
13
|
Huang P, Liu D, Gan X, Zhang R, Gao W, Xia Z, Hei Z. Mast cells activation contribute to small intestinal ischemia reperfusion induced acute lung injury in rats. Injury 2012; 43:1250-6. [PMID: 22277108 DOI: 10.1016/j.injury.2011.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/21/2011] [Accepted: 12/26/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND Small intestinal ischemia-reperfusion (IIR) injury may lead to severe local and remote tissue injury, especially acute lung injury (ALI). Mast cell activation plays an important role in IIR injury. It is unknown whether IIR mediates lung injury via mast cell activation. METHODS Adult SD rats were randomized into sham operated group (S), sole IIR group (IIR) in which rats were subjected to 75 min of superior mesenteric artery occlusion followed by 4h reperfusion, or IIR being respectively treated with the mast cell stabilizer Cromolyn Sodium (IIR+CS group), with the tryptase antagonist Protamine (IIR+P group), with the histamine receptor antagonist Ketotifen (IIR+K group), or with the mast cell degranulator Compound 48/80 (IIR+CP group). The above agents were, respectively, administrated intravenously 5 min before reperfusion. At the end of experiment, lung tissue was obtained for histologic assessment and assays for protein expressions of tryptase and mast cell protease 7(MCP7). Pulmonary mast cell number and levels of histamine, TNF-α and IL-8 were quantified. RESULTS IIR resulted in lung injury evidenced as significant increases in lung histological scores (P<0.05 IIR vs. S), accompanied with concomitant increases of mast cell counts and elevations in TNF-α and IL-8 concentrations and reductions in histamine levels (all P<0.05 IIR vs. S). IIR also increased lung tissue tryptase and MCP7 protein expressions (all P<0.05, IIR vs. S). Cromolyn Sodium, Ketotifen and Protamine significantly reduced whilst Compound 48/80 aggravated IIR mediated ALI and the above biochemical changes (P<0.05). CONCLUSIONS Mast cells activation play a critical role in IIR mediated ALI.
Collapse
Affiliation(s)
- Pinjie Huang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | | | | | | | | | | | | |
Collapse
|