1
|
Zhang P, Li C, Wang Y, Chi X, Sun T, Zhang Q, Zhang Y, Ji N. Expression features of targets for anti-glioma CAR-T cell immunotherapy. J Neurooncol 2024:10.1007/s11060-024-04855-4. [PMID: 39467936 DOI: 10.1007/s11060-024-04855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVE To investigate the expression features of common anti-glioma CAR-T targets (B7H3, CSPG4, EGFRv III, HER2 and IL-13Ra2) in gliomas with different grades and molecular subtypes, and explore the association of target expression with glioma malignant or immune phenotypes including immune evasion, stemness, antigen presentation, and tumor angiogenesis. METHODS Opal™ Multiplex immunofluorescence staining was performed on glioma tissues to detect the expression of targets, and biomarkers related to the phenotypes. RESULTS High variety of CAR-T target expression among glioma subtypes was observed. GBMs exhibited the highest expression level of all the examined targets among glioma subtypes. In all glioma cases, CSPG4 was the most prevalent target covering over 84% glioma cases, followed by B7H3 at over 64%. B7H3 exhibited the highest coverage (94%) in GBMs while CSPG4 was the most popular target in both oligodendrogliomas and astrocytomas, covering 94% and 80% cases, respectively. Bi or tri-target combination strategies markedly expanded the tumor coverage across glioma cases while increased tumor-cell coverage within tumor. PD-L1 expression was significantly enriched in all the target-positive cells (except the EGFRvIII+ cells); CD133 expression was higher in the CSPG4+ or IL-13Ra2+ cells, and CD31 elevated in the B7H3+ cells, as compared with their negative cell populations. CONCLUSION Anti-glioma CAR-T targets have heterogenous expression and distinct tumor coverage among glioma subtypes, and closely correlate with glioma malignant or immune phenotypes.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Chunzhao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaohan Chi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Tai Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Qianhe Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| |
Collapse
|
2
|
Pearson JRD, Puig-Saenz C, Thomas JE, Hardowar LD, Ahmad M, Wainwright LC, McVicar AM, Brentville VA, Tinsley CJ, Pockley AG, Durrant LG, McArdle SEB. TRP-2 / gp100 DNA vaccine and PD-1 checkpoint blockade combination for the treatment of intracranial tumors. Cancer Immunol Immunother 2024; 73:178. [PMID: 38954031 PMCID: PMC11219641 DOI: 10.1007/s00262-024-03770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Intracranial tumors present a significant therapeutic challenge due to their physiological location. Immunotherapy presents an attractive method for targeting these intracranial tumors due to relatively low toxicity and tumor specificity. Here we show that SCIB1, a TRP-2 and gp100 directed ImmunoBody® DNA vaccine, generates a strong TRP-2 specific immune response, as demonstrated by the high number of TRP2-specific IFNγ spots produced and the detection of a significant number of pentamer positive T cells in the spleen of vaccinated mice. Furthermore, vaccine-induced T cells were able to recognize and kill B16HHDII/DR1 cells after a short in vitro culture. Having found that glioblastoma multiforme (GBM) expresses significant levels of PD-L1 and IDO1, with PD-L1 correlating with poorer survival in patients with the mesenchymal subtype of GBM, we decided to combine SCIB1 ImmunoBody® with PD-1 immune checkpoint blockade to treat mice harboring intracranial tumors expressing TRP-2 and gp100. Time-to-death was significantly prolonged, and this correlated with increased CD4+ and CD8+ T cell infiltration in the tissue microenvironment (TME). However, in addition to PD-L1 and IDO, the GBM TME was found to contain a significant number of immunoregulatory T (Treg) cell-associated transcripts, and the presence of such cells is likely to significantly affect clinical outcome unless also tackled.
Collapse
Affiliation(s)
- Joshua R D Pearson
- John Van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Carles Puig-Saenz
- John Van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Jubini E Thomas
- John Van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Lydia D Hardowar
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Murrium Ahmad
- John Van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Louise C Wainwright
- Bioscience Support Facility, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Adam M McVicar
- Bioscience Support Facility, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Victoria A Brentville
- Scancell Ltd, Unit 202, Bellhouse Building, Oxford Science Park, Sanders Road, Oxford, OX4 4GA, UK
| | - Chris J Tinsley
- John Van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - A Graham Pockley
- John Van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Lindy G Durrant
- Scancell Ltd, Unit 202, Bellhouse Building, Oxford Science Park, Sanders Road, Oxford, OX4 4GA, UK
| | | |
Collapse
|
3
|
Chen X, Cui Y, Zou L. Treatment advances in high-grade gliomas. Front Oncol 2024; 14:1287725. [PMID: 38660136 PMCID: PMC11039916 DOI: 10.3389/fonc.2024.1287725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
High-grade gliomas (HGG) pose significant challenges in modern tumour therapy due to the distinct biological properties and limitations of the blood-brain barrier. This review discusses recent advancements in HGG treatment, particularly in the context of immunotherapy and cellular therapy. Initially, treatment strategies focus on targeting tumour cells guided by the molecular characteristics of various gliomas, encompassing chemotherapy, radiotherapy and targeted therapy for enhanced precision. Additionally, technological enhancements are augmenting traditional treatment modalities. Furthermore, immunotherapy, emphasising comprehensive tumour management, has gained widespread attention. Immune checkpoint inhibitors, vaccines and CAR-T cells exhibit promising efficacy against recurrent HGG. Moreover, emerging therapies such as tumour treating fields (TTFields) offer additional treatment avenues for patients with HGG. The combination of diverse treatments holds promise for improving the prognosis of HGG, particularly in cases of recurrence.
Collapse
Affiliation(s)
- Xi Chen
- Department of Radiotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Cui
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Liqun Zou
- Department of Medical Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Broggi G, Angelico G, Farina J, Tinnirello G, Barresi V, Zanelli M, Palicelli A, Certo F, Barbagallo G, Magro G, Caltabiano R. Tumor-associated microenvironment, PD-L1 expression and their relationship with immunotherapy in glioblastoma, IDH-wild type: A comprehensive review with emphasis on the implications for neuropathologists. Pathol Res Pract 2024; 254:155144. [PMID: 38277747 DOI: 10.1016/j.prp.2024.155144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Although novel knowledge has been acquired on the molecular landscape of glioblastoma (GBM), a relatively few steps forward have been made regarding its therapy. With the increasing use of novel immunotherapeutic drugs capable of stimulating the antitumor inflammatory response, in the last decades numerous studies aimed to characterize the tumor-associated microenvironment (TME) and its relationship with the immunogenicity of GBM. In this regard, although the tumor-associated microglia and macrophages (TAMs) and PD-L1/PD-1 axis have been emerged as one of the most relevant components of the GBM TME and one of the potential molecular pathways targetable with immunotherapy, respectively. It has been supposed that TAMs may acquire different phenotypes, switching from M1 to M2 phenotypes, with tumor-suppressive and tumor-stimulating role depending on the different surrounding conditions. PD-L1 is a type 1 transmembrane protein ligand expressed by T-cells, B-cells and antigen-presenting cells, with a main inhibitory checkpoint role on tumor immune regulation. While PD-L1 immunohistochemical expression has been extensively investigated in many cancers, its usefulness in the evaluation of GBM response rates to immunotherapy and its standardized evaluation by immunohistochemistry are still debated. The present review paper focuses on the current "state of the art" about the relationship between TME, PD-L1/PD-1 pathway and immunotherapy in GBM, also providing neuropathologists with an updated guide about the clinical trials conducted with PD-L1 and PD-1 inhibitors.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy.
| | - Giuseppe Angelico
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Jessica Farina
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Giordana Tinnirello
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona 37134, Italy
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42123, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42123, Italy
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Catania 95121, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania 95123, Italy
| | - Giuseppe Barbagallo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Catania 95121, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania 95123, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| |
Collapse
|
5
|
Kanagaraj P, Balasubramanian A, Suresh R, Somasundaram B, Sundaram S, Nagarajan P. Immunohistochemical Analysis of PD-1 and FOXP3 in Tumor-Infiltrating Lymphocytes in Human Gliomas. Cureus 2023; 15:e42352. [PMID: 37621817 PMCID: PMC10445181 DOI: 10.7759/cureus.42352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction Despite the growing advances in molecular research and therapeutics, gliomas continue to be highly invasive and progressive tumors. There is still a need for the development of reliable prognostic biomarkers for effective therapeutic intervention. This study aims to investigate the extent of immunosuppression in glial tumors by analyzing the clinical significance of the expressions of PD-1 and FOXP3 in gliomas. Methods This is a retrospective study from 52 glioma patients who underwent surgery. Immunohistochemistry (IHC) for PD-1 and FOXP3 was performed on paraffin-embedded tissue sections manually and their expressions were noted. Data on IDH1 mutational status and mitotic index was collected and statistically analyzed. Results Immunohistochemical analysis showed that out of 52 cases, 71.15% (37/52) demonstrated cytoplasmic positivity for PD-1 and 73.1% (38/52) of the cases for nuclear FOXP3 expression. Statistical analysis suggested that elevated PD-1 and FOXP3 expressions were significantly correlated with tumor grade and increased mitotic index (P<0.05 for both the markers). Conclusion Concurrent use of checkpoint inhibitors along with other treatment modalities is being studied in a variety of solid tumors. Expressions of negative immune regulators like PD-1 and Foxp3 can pave way for a better understanding of the extent of immunosuppression in the glial tumor environment, which is imperative to formulate new therapeutic approaches.
Collapse
Affiliation(s)
- Priyanka Kanagaraj
- Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | | | - Raveena Suresh
- Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | | | - Sandhya Sundaram
- Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | | |
Collapse
|
6
|
Segura-Collar B, Hiller-Vallina S, de Dios O, Caamaño-Moreno M, Mondejar-Ruescas L, Sepulveda-Sanchez JM, Gargini R. Advanced immunotherapies for glioblastoma: tumor neoantigen vaccines in combination with immunomodulators. Acta Neuropathol Commun 2023; 11:79. [PMID: 37165457 PMCID: PMC10171733 DOI: 10.1186/s40478-023-01569-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023] Open
Abstract
Glial-origin brain tumors, including glioblastomas (GBM), have one of the worst prognoses due to their rapid and fatal progression. From an oncological point of view, advances in complete surgical resection fail to eliminate the entire tumor and the remaining cells allow a rapid recurrence, which does not respond to traditional therapeutic treatments. Here, we have reviewed new immunotherapy strategies in association with the knowledge of the immune micro-environment. To understand the best lines for the future, we address the advances in the design of neoantigen vaccines and possible new immune modulators. Recently, the efficacy and availability of vaccine development with different formulations, especially liposome plus mRNA vaccines, has been observed. We believe that the application of new strategies used with mRNA vaccines in combination with personalized medicine (guided by different omic's strategies) could give good results in glioma therapy. In addition, a large part of the possible advances in new immunotherapy strategies focused on GBM may be key improving current therapies of immune checkpoint inhibitors (ICI), given the fact that this type of tumor has been highly refractory to ICI.
Collapse
Affiliation(s)
- Berta Segura-Collar
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario, 12 de Octubre, Av. de Córdoba, S/N, 28041, Madrid, Spain
| | - Sara Hiller-Vallina
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario, 12 de Octubre, Av. de Córdoba, S/N, 28041, Madrid, Spain
| | - Olaya de Dios
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Instituto de Salud Carlos III, UFIEC, 28222, Majadahonda, Spain
| | - Marta Caamaño-Moreno
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario, 12 de Octubre, Av. de Córdoba, S/N, 28041, Madrid, Spain
| | - Lucia Mondejar-Ruescas
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario, 12 de Octubre, Av. de Córdoba, S/N, 28041, Madrid, Spain
| | - Juan M Sepulveda-Sanchez
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Medical Oncology, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
| | - Ricardo Gargini
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain.
- Pathology and Neurooncology Unit, Hospital Universitario, 12 de Octubre, Av. de Córdoba, S/N, 28041, Madrid, Spain.
- Medical Oncology, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain.
| |
Collapse
|
7
|
Ohno M, Kitano S, Satomi K, Yoshida A, Miyakita Y, Takahashi M, Yanagisawa S, Tamura Y, Ichimura K, Narita Y. Assessment of radiographic and prognostic characteristics of programmed death-ligand 1 expression in high-grade gliomas. J Neurooncol 2022; 160:463-472. [DOI: 10.1007/s11060-022-04165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 10/31/2022]
|
8
|
Guo X, Zhang Y, Jiao H, Miao X. The prognostic significance of PD-L1 expression in patients with glioblastoma: A meta-analysis. Front Oncol 2022; 12:925560. [PMID: 36313683 PMCID: PMC9596987 DOI: 10.3389/fonc.2022.925560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Glioblastoma (GBM) is a malignant brain tumor associated with high morbidity and mortality rates with a poor prognosis. In recent years, studies on prognostic markers such as programmed death ligand 1 (PD-L1) have increased; however, their conclusions remain controversial. Here, relevant literature was reviewed and a meta-analysis was performed to clarify the correlation between PD-L1 expression and overall survival (OS) in GBM. Methods The non-foundational literature on PD-L1 expression associated with OS in GBM up to February 2022 was searched in the PubMed, Metstr, Cochrane, and Web of Science databases. Literature was rigorously screened according to inclusion and exclusion criteria, the total hazard ratio (HR), and corresponding 95% confidence intervals (CIs). Results Calculating the combined HR value and corresponding 95% CI of HR=1.124 (95% CI: 1.047-1.201, P=0.000, I2 (I-squared)=48.8%), it was shown that PD-L1 expression was significantly associated with low OS in GBM patients. Although I2 = 48.8% < 50%, to make the results more credible, in the cutoff values ≥10% subgroup HR=1.37 (95% CI: 1.07-1.67, P=0.000, I2 = 0%), which was also the result found in the first meta-analysis. In contrast, in the cutoff value ≥5% subgroup HR=1.14 (95% CI: 0.98-1.30, P=0.000, I2 = 59.8%) and in the cutoff value median PD-L1 expression levels subgroup HR=1.05 (95% CI: 0.92-1.18, P=0.000, I2 = 0%), indicating that PD-L1 expression was not associated with low OS in GBM. Furthermore, in four studies, we found no significant correlation between PD-L1 expression and the progression-free survival of GBM (HR=1.14, 95% CI:0.40-1.88, P=0.03, I2 = 29.3%). Conclusion PD-L1 expression was significantly associated with low OS in GBM patients; however, this result needs to be interpreted with caution and requires a large, multicenter clinical study in patients with similar baseline data for further evaluation.
Collapse
Affiliation(s)
- Xin Guo
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi’an, China
- Department of Graduate Work, Hanguang Campus of Xi’an Medical University, Xi’an, China
| | - Yuelin Zhang
- Department of Graduate Work, Hanguang Campus of Xi’an Medical University, Xi’an, China
| | - Hengxing Jiao
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi’an, China
- Department of Graduate Work, Hanguang Campus of Xi’an Medical University, Xi’an, China
| | - Xingyu Miao
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi’an, China
| |
Collapse
|
9
|
Vimalathas G, Kristensen BW. Expression, prognostic significance and therapeutic implications of PD-L1 in gliomas. Neuropathol Appl Neurobiol 2022; 48:e12767. [PMID: 34533233 PMCID: PMC9298327 DOI: 10.1111/nan.12767] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
The advent of checkpoint immunotherapy, particularly with programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) inhibitors, has provided ground-breaking results in several advanced cancers. Substantial efforts are being made to extend these promising therapies to other refractory cancers such as gliomas, especially glioblastoma, which represents the most frequent and malignant glioma and carries an exceptionally grim prognosis. Thus, there is a need for new therapeutic strategies with related biomarkers. Gliomas have a profoundly immunosuppressive tumour micro-environment and evade immunological destruction by several mechanisms, one being the expression of inhibitory immune checkpoint molecules such as PD-L1. PD-L1 is recognised as an important therapeutic target and its expression has been shown to hold prognostic value in different cancers. Several clinical trials have been launched and some already completed, but PD-1/PD-L1 inhibitors have yet to show convincing clinical efficacy in gliomas. Part of the explanation may reside in the vast molecular heterogeneity of gliomas and a complex interplay within the tumour micro-environment. In parallel, critical knowledge about PD-L1 expression is beginning to accumulate including knowledge on expression levels, testing methodology, co-expression with other checkpoint molecules and prognostic and predictive value. This article reviews these aspects and points out areas where biomarker research is needed to develop more successful checkpoint-related therapeutic strategies in gliomas.
Collapse
Affiliation(s)
| | - Bjarne Winther Kristensen
- Department of PathologyOdense University HospitalOdenseDenmark
- Department of Pathology, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC)University of CopenhagenCopenhagenDenmark
| |
Collapse
|
10
|
PD-L1 tumor expression is associated with poor prognosis and systemic immunosuppression in glioblastoma. J Neurooncol 2022; 156:453-464. [DOI: 10.1007/s11060-021-03907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
|
11
|
Wang H, Xiao Y, Ren X, Wan D. Prognostic value of programmed death ligand 1 (PD-L1) in glioblastoma: a systematic review, meta-analysis and validation based on dataset. Bioengineered 2021; 12:10366-10378. [PMID: 34903133 PMCID: PMC8809998 DOI: 10.1080/21655979.2021.1996515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 10/28/2022] Open
Abstract
Excellent prognostic value of programmed death ligand 1 (PD-L1) is observed in patients with other cancers; however, the prognostic value of PD-L1 in glioblastoma (GBM) remains unclear. Therefore, this meta-analysis evaluated the prognostic value of PD-L1 in GBM. We performed a systematic search in databases to screen eligible articles. The hazard ratio (HR) and 95% confidence interval (95% CI) were extracted from included articles. This meta-analysis included 15 studies, and the forest plot indicated that increased PD-L1 expression was associated with poorer overall survival (OS) of GBM (HR, 1.16; 95% CI, 1.05-1.27; P = 0.002). Furthermore, stratified analysis confirmed that PD-L1 expression was associated with unfavorable OS at the protein level (HR, 1.30; 95% CI, 1.13-1.48; P< 0.001) and messenger ribonucleic acid (mRNA) level (HR, 1.05; 95% CI, 1.00-1.09; P= 0.041). The analysis of a dataset verified the prognostic value of PD-L1 and revealed an association between PD-L1 mRNA expression and the status of isocitrate dehydrogenase (IDH). In conclusion, increased PD-L1 expression predicts unfavorable OS in GBM and may be a promising prognostic biomarker of GBM.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Youchao Xiao
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xingguang Ren
- Department of Neurosurgery, General Hospital of Tisco, Taiyuan, China
| | - Dahai Wan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Maddison K, Graves MC, Bowden NA, Fay M, Vilain RE, Faulkner S, Tooney PA. Low tumour-infiltrating lymphocyte density in primary and recurrent glioblastoma. Oncotarget 2021; 12:2177-2187. [PMID: 34676050 PMCID: PMC8522837 DOI: 10.18632/oncotarget.28069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapies targeting tumour-infiltrating lymphocytes (TILs) that express the immune checkpoint molecule programmed cell death-1 (PD-1) have shown promise in preclinical glioblastoma models but have had limited success in clinical trials. To assess when glioblastoma is most likely to benefit from immune checkpoint inhibitors we determined the density of TILs in primary and recurrent glioblastoma. Thirteen cases of matched primary and recurrent glioblastoma tissue were immunohistochemically labelled for CD3, CD8, CD4 and PD-1, and TIL density assessed. CD3+ TILs were observed in all cases, with the majority of both primary (69.2%) and recurrent (61.5%) tumours having low density of TILs present. CD8+ TILs were observed at higher densities than CD4+ TILs in both tumour groups. PD-1+ TILs were sparse and present in only 25% of primary and 50% of recurrent tumours. Quantitative analysis of TILs demonstrated significantly higher CD8+ TIL density at recurrence (p = 0.040). No difference was observed in CD3+ (p = 0.191), CD4+ (p = 0.607) and PD-1+ (p = 0.070) TIL density between primary and recurrent groups. This study shows that TILs are present at low densities in both primary and recurrent glioblastoma. Furthermore, PD-1+ TILs were frequently absent, which may provide evidence as to why anti-PD-1 immunotherapy trials have been largely unsuccessful in glioblastoma.
Collapse
Affiliation(s)
- Kelsey Maddison
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Centre for Drug Repurposing and Medicines Research, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Moira C Graves
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,Centre for Drug Repurposing and Medicines Research, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nikola A Bowden
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,Centre for Drug Repurposing and Medicines Research, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Michael Fay
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,Centre for Drug Repurposing and Medicines Research, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,GenesisCare, Lake Macquarie Private Hospital, Gateshead, NSW, Australia
| | - Ricardo E Vilain
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Cancer Biobank, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Pathology North, Hunter New England Area Health Service, New Lambton Heights, NSW, Australia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Centre for Drug Repurposing and Medicines Research, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
13
|
Shadbad MA, Asadzadeh Z, Hosseinkhani N, Derakhshani A, Alizadeh N, Brunetti O, Silvestris N, Baradaran B. A Systematic Review of the Tumor-Infiltrating CD8 + T-Cells/PD-L1 Axis in High-Grade Glial Tumors: Toward Personalized Immuno-Oncology. Front Immunol 2021; 12:734956. [PMID: 34603316 PMCID: PMC8486082 DOI: 10.3389/fimmu.2021.734956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Based on preclinical findings, programmed death-ligand 1 (PD-L1) can substantially attenuate CD8+ T-cell-mediated anti-tumoral immune responses. However, clinical studies have reported controversial results regarding the significance of the tumor-infiltrating CD8+ T-cells/PD-L1 axis on the clinical picture and the response rate of patients with high-grade glial tumors to anti-cancer therapies. Herein, we conducted a systematic review according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statements to clarify the clinical significance of the tumor-infiltrating CD8+ T-cells/PD-L1 axis and elucidate the impact of this axis on the response rate of affected patients to anti-cancer therapies. Indeed, a better understanding of the impact of this axis on the response rate of affected patients to anti-cancer therapies can provide valuable insights to address the futile response rate of immune checkpoint inhibitors in patients with high-grade glial tumors. For this purpose, we systematically searched Scopus, Web of Science, Embase, and PubMed to obtain peer-reviewed studies published before 1 January 2021. We have observed that PD-L1 overexpression can be associated with the inferior prognosis of glioblastoma patients who have not been exposed to chemo-radiotherapy. Besides, exposure to anti-cancer therapies, e.g., chemo-radiotherapy, can up-regulate inhibitory immune checkpoint molecules in tumor-infiltrating CD8+ T-cells. Therefore, unlike unexposed patients, increased tumor-infiltrating CD8+ T-cells in anti-cancer therapy-exposed tumoral tissues can be associated with the inferior prognosis of affected patients. Because various inhibitory immune checkpoints can regulate anti-tumoral immune responses, the single-cell sequencing of the cells residing in the tumor microenvironment can provide valuable insights into the expression patterns of inhibitory immune checkpoints in the tumor micromovement. Thus, administrating immune checkpoint inhibitors based on the data from the single-cell sequencing of these cells can increase patients’ response rates, decrease the risk of immune-related adverse events development, prevent immune-resistance development, and reduce the risk of tumor recurrence.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Research Center for Evidence-Based Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Hosseinkhani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy.,Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Wang X, Zhang Y, Zheng J, Yao C, Lu X. LncRNA UCA1 attenuated the killing effect of cytotoxic CD8 + T cells on anaplastic thyroid carcinoma via miR-148a/PD-L1 pathway. Cancer Immunol Immunother 2021; 70:2235-2245. [PMID: 33486611 DOI: 10.1007/s00262-020-02753-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND LncRNAs play an important role in the regulation of the killing effect of cytotoxic CD8 + T cells in various cancers. However, the role and underlying mechanisms of UCA1 in the killing effect of cytotoxic CD8 + T cells in anaplastic thyroid carcinoma (ATC) are not clear. METHODS UCA1, miR-148a, and PD-L1 expression were detected by quantitative real-time PCR and/or Western blot. The ratio of PD-L1+ATC cells/ATC cells was determined using flow cytometry. The ability of CD8 + T cells to kill target ATC cells was detected by Chromium-51 (51Cr) release assay. The targeted relationship between UCA1 and miR-148a was confirmed by dual-luciferase reporter gene assay. RESULTS UCA1 and PD-L1 expression levels were elevated in ATC tissues and cells. Silencing UCA1 and PD-L1 enhanced the killing effect of cytotoxic CD8 + T cells on ATC cells. UCA1 negatively regulated the expression of miR-148a, and miR-148a targeted PD-L1 to down-regulate its expression. Besides, we found that UCA1 attenuated the killing effect of cytotoxic CD8 + T cells and reduced cytokine secretion through PD-L1 and miR-148a. Finally, silencing UCA1 or PD-L1 in ATC cells restored the suppression of the killing effect of CD8 + T cells in vivo. CONCLUSION UCA1 attenuated the killing effect of cytotoxic CD8 + T cells on ATC cells through the miR-148a/PD-L1 pathway.
Collapse
Affiliation(s)
- Xiaoming Wang
- Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China.,Key Laboratory of Thyroid Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yan Zhang
- Operation Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jian Zheng
- Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China.,Key Laboratory of Thyroid Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Cuixian Yao
- Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China.,Key Laboratory of Thyroid Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiubo Lu
- Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China. .,Key Laboratory of Thyroid Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
15
|
Pellerino A, Bruno F, Internò V, Rudà R, Soffietti R. Current clinical management of elderly patients with glioma. Expert Rev Anticancer Ther 2020; 20:1037-1048. [PMID: 32981392 DOI: 10.1080/14737140.2020.1828867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The incidence of gliomas is increasing in elderly patients. Clinical factors, such as age, performance status, and comorbidities contribute when choosing adequate treatment in older patients. AREAS COVERED This review covers the main pathological and molecular features of gliomas in elderly patients, as well as the neurological and geriatric assessment to select patients for surgery and antineoplastic treatments. The results from the most relevant clinical trials in both lower-grade (LGGs) and high-grade gliomas (HGGs) are reviewed. EXPERT OPINION Different clinical and biological factors need to be integrated into prognostic scales in order to better stratify the elderly population. Both Stupp and Perry regimens can be proposed to fit patients with GBM aged < 70 years. Conversely, for patients aged ≥ 70 years, the Perry regimen should be preferred. For unfit and frail patients, temozolomide alone when MGMT is methylated or hypofractionated RT alone when MGMT is unmethylated, are the optimal choice. Few data are available regarding the optimal management of elderly patients with LGGs. The benefit of an extensive resection and presence of methylation of the MGMT promoter need to be further investigated to confirm their role in improving the OS.
Collapse
Affiliation(s)
- Alessia Pellerino
- Department of Neuro-Oncology, University and City of Health and Science Hospital , Turin, Italy
| | - Francesco Bruno
- Department of Neuro-Oncology, University and City of Health and Science Hospital , Turin, Italy
| | - Valeria Internò
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro , Bari, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital , Turin, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital , Turin, Italy
| |
Collapse
|
16
|
Gedeon PC, Champion CD, Rhodin KE, Woroniecka K, Kemeny HR, Bramall AN, Bernstock JD, Choi BD, Sampson JH. Checkpoint inhibitor immunotherapy for glioblastoma: current progress, challenges and future outlook. Expert Rev Clin Pharmacol 2020; 13:1147-1158. [PMID: 32862726 DOI: 10.1080/17512433.2020.1817737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Despite maximal surgical resection and chemoradiation, glioblastoma (GBM) continues to be associated with significant morbidity and mortality. Novel therapeutic strategies are urgently needed. Given success in treating multiple other forms of cancer, checkpoint inhibitor immunotherapy remains foremost amongst novel therapeutic strategies that are currently under investigation. AREAS COVERED Through a systematic review of both published literature and the latest preliminary data available from ongoing clinical studies, we provide an up-to-date discussion on the immune system in the CNS, a detailed mechanistic evaluation of checkpoint biology in the CNS along with evidence for disruption of these pathways in GBM, and a summary of available preclinical and clinical data for checkpoint blockade in GBM. We also include a discussion of novel, emerging targets for checkpoint blockade which may play an important role in GBM immunotherapy. EXPERT OPINION Evidence indicates that while clinical success of checkpoint blockade for the treatment of GBM has been limited to date, through improved preclinical models, optimization in the context of standard of care therapies, assay standardization and harmonization, and combinatorial approaches which may include novel targets for checkpoint blockade, checkpoint inhibitor immunotherapy may yield a safe and effective therapeutic option for the treatment of GBM.
Collapse
Affiliation(s)
- Patrick C Gedeon
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, MA, USA
| | - Cosette D Champion
- Department of Neurosurgery, Duke University Medical Center , Durham, NC, USA
| | - Kristen E Rhodin
- Department of Surgery, Duke University Medical Center , Durham, NC, USA
| | - Karolina Woroniecka
- Department of Neurosurgery, Duke University Medical Center , Durham, NC, USA.,Department of Pathology, Duke University Medical Center , Durham, NC, USA
| | - Hanna R Kemeny
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| | - Alexa N Bramall
- Department of Neurosurgery, Duke University Medical Center , Durham, NC, USA
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School , Boston, MA, USA
| | - Bryan D Choi
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School , Boston, MA, USA
| | - John H Sampson
- Department of Neurosurgery, Duke University Medical Center , Durham, NC, USA.,Department of Pathology, Duke University Medical Center , Durham, NC, USA
| |
Collapse
|
17
|
Hao C, Chen G, Zhao H, Li Y, Chen J, Zhang H, Li S, Zhao Y, Chen F, Li W, Jiang WG. PD-L1 Expression in Glioblastoma, the Clinical and Prognostic Significance: A Systematic Literature Review and Meta-Analysis. Front Oncol 2020; 10:1015. [PMID: 32670884 PMCID: PMC7326811 DOI: 10.3389/fonc.2020.01015] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/22/2020] [Indexed: 01/11/2023] Open
Abstract
Background: The clinical and prognostic value of programmed death-ligand 1, PD-L1, in glioblastoma remains controversial. The present study aimed to identify the expression of PD-L1 for its prognostic value in glioblastoma. Methods: A comprehensive literature search was performed using the PubMed and CNKI databases. The overall survival (OS) and disease-free survival (DFS) of GBM was analyzed based on Hazard ratios (HRs) and 95% confidence intervals (CIs). Furthermore, Odds ratios (ORs) and 95% CIs were summarized for clinicopathological parameters. The statistical analysis was using RevMan 5.3 software. Results: The meta-analysis was performed by using total nine studies including 806 patients who had glioblastoma. The pooled results indicated that PD-L1 expression in tumor tissues was significantly related to a poor OS (HR = 1.63, 95%CI: 1.19–2.24, P = 0.003, random effects model) with heterogeneity (I2 = 51%). In subgroup analyses, PD-L1 positivity was significantly associated with a worse OS for patients of American and Asian regions, but not for those of European regions. Moreover, PD-L1 expression implied a trend toward the mutation status of the IDH1 gene [coding the Isocitrate Dehydrogenase (NADP(+))-1 protein] (HR = 9.92, 95%CI: 1.85–53.08, P = 0.007, fixed effects model). However, the prediction overall survival (OS) of the patients showed that PD-L1 expression was independent from other clinicopathological features, such as gender and age. Conclusions: Our analyses indicated that high expression of PD-L1 in glioblastoma tumor tissues is associated with poor survival of patients, and PD-L1 may act as a prognostic predictor and an effective therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Chengcheng Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Gang Chen
- Beijing Qinglian Biotech, Co., Ltd., Beijing, China
| | - Huishan Zhao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yan Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jianxin Chen
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hongmei Zhang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shan Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yuze Zhao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Feng Chen
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
18
|
Shu C, Li Q. Current advances in PD-1/PD-L1 axis-related tumour-infiltrating immune cells and therapeutic regimens in glioblastoma. Crit Rev Oncol Hematol 2020; 151:102965. [PMID: 32442903 DOI: 10.1016/j.critrevonc.2020.102965] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/21/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumour in the brain, and current treatments are not curative and cannot control recurrence. This limitation indirectly places immunotherapy at the focus of translational GBM research. Many studies on the PD-1/PD-L1 axis in GBM are ongoing, and the immunosuppressive mechanism of PD-1/PD-L1 in GBM is different from that in other solid tumours. This review focuses on the effect of the PD-1/PD-L1 axis on infiltrating immune cells in the suppressive GBM immune microenvironment and summarizes the recent progress in PD-1/PD-L1 axis-related therapies reported in preclinical and clinical GBM studies, providing a reference for the systematic study of PD-1/PD-L1 axis-related anti-GBM immunity.
Collapse
Affiliation(s)
- Chang Shu
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Tianjin Huan Hu Hospital, Tianjin, 300350, China; Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Qingguo Li
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China.
| |
Collapse
|
19
|
CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc Natl Acad Sci U S A 2019; 117:1129-1138. [PMID: 31879345 DOI: 10.1073/pnas.1910856117] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy directed at the PD-L1/PD-1 axis has produced treatment advances in various human cancers. Unfortunately, progress has not extended to glioblastoma (GBM), with phase III clinical trials assessing anti-PD-1 monotherapy failing to show efficacy in newly diagnosed and recurrent tumors. Myeloid-derived suppressor cells (MDSCs), a subset of immunosuppressive myeloid derived cells, are known to infiltrate the tumor microenvironment of GBM. Growing evidence suggests the CCL2-CCR2 axis is important for this process. This study evaluated the combination of PD-1 blockade and CCR2 inhibition in anti-PD-1-resistant gliomas. CCR2 deficiency unmasked an anti-PD-1 survival benefit in KR158 glioma-bearing mice. CD11b+/Ly6Chi/PD-L1+ MDSCs within established gliomas decreased with a concomitant increase in overall CCR2+ cells and MDSCs within bone marrow of CCR2-deficient mice. The CCR2 antagonist CCX872 increased median survival as a monotherapy in KR158 glioma-bearing animals and further increased median and overall survival when combined with anti-PD-1. Additionally, combination of CCX872 and anti-PD-1 prolonged median survival time in 005 GSC GBM-bearing mice. In both models, CCX872 decreased tumor associated MDSCs and increased these cells within the bone marrow. Examination of tumor-infiltrating lymphocytes revealed an elevated population, increased IFNγ expression, indicating enhanced cytolytic activity, as well as decreased expression of exhaustion markers in CD4+ and CD8+ T cells following combination treatment. These data establish that combining CCR2 and PD-1 blockade extends survival in clinically relevant murine glioma models and provides the basis on which to advance this combinatorial treatment toward early-phase human trials.
Collapse
|
20
|
Treatment Results for Recurrent Glioblastoma and Alteration of Programmed Death-Ligand 1 Expression After Recurrence. World Neurosurg 2019; 135:e459-e467. [PMID: 31843727 DOI: 10.1016/j.wneu.2019.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study was designed to analyze the results of recurrent glioblastoma (GBM) treatment, investigate the changes in molecular expression on paired primary and recurrent tumor specimens of GBM, and evaluate the effect of these changes on patient survival. METHODS A total of 170 adult patients were diagnosed with recurrent GBM at a single institution between 2005 and 2015. Patients were divided into the reoperation and nonoperation groups. In addition, we evaluated the expression of immunologic markers of 43 paired surgical specimens from the first and second operations. RESULTS The median overall survival (OS) after recurrence in the reoperation group was significantly longer than that in the nonoperation group (median, 9.1 months vs. 5.6 months; P = 0.024). The groups differed in characteristics such as age, performance scale, and progression-free survival. In the reoperation group, higher performance scale at recurrence, better extent of resection, and adjuvant treatment were related to longer overall survival. Among 43 paired surgical specimens, programmed death-ligand 1 (PD-L1) was positively expressed in 17 (39.5%) and 6 (13.9%) patients after the first and second operations, respectively. PD-L1 expression after recurrence showed an increase, decrease, and no change in 6 (13.9%), 14 (32.5%), and 23 (53.4%) patients, respectively. Changes in PD-L1 expression after recurrence did not affect survival after recurrence during progression. CONCLUSIONS The extent of resection and adjuvant treatment was important for prolonged survival. Reoperation without adjuvant treatment was not effective for prolonged survival. Initial and follow-up PD-L1 expression from both operations did not influence patient survival.
Collapse
|
21
|
Chen RQ, Xu XH, Liu F, Li CY, Li YJ, Li XR, Jiang GY, Hu F, Liu D, Pan F, Qiu XY, Chen XQ. The Binding of PD-L1 and Akt Facilitates Glioma Cell Invasion Upon Starvation via Akt/Autophagy/F-Actin Signaling. Front Oncol 2019; 9:1347. [PMID: 31850228 PMCID: PMC6901431 DOI: 10.3389/fonc.2019.01347] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/15/2019] [Indexed: 01/20/2023] Open
Abstract
Glioma, especially glioblastoma, is pathologically characterized by high aggressiveness, which largely contributed to the ineffectiveness of current therapies. It has been recently reported that intrinsic PD-L1 can regulate tumor malignancy, whereas underlying mechanisms remain mostly unclear. Here, we report a novel mechanism by which PD-L1 promotes glioma cell infiltration. In orthotopic glioma models, PD-L1 expression was up-regulated predominantly in glioma cells in the infiltrating front. For PD-L1-overexpressed glioma cells, PI3K/Akt and actin regulations were among the top six most altered signaling pathways as detected by RNA-sequencing. PD-L1 significantly activated Akt/F-actin signaling while suppressed autophagic signaling upon cell starvation. Mechanistically, PD-L1 preferentially bound to Akt among various PI3K/Akt signaling proteins. Serial truncation identified the interaction between the 128-237aa fragment of PD-L1 and the 112-480aa fragment of Akt, which facilitates the membrane translocation/activation of Akt, and was unaffected by Perifosin (specific p-Akt inhibitor targeting Akt PH-domain). Taken together, our data indicate that in glioma cells, PD-L1 is induced to prevent autophagic cytoskeleton collapse via Akt binding/activation, facilitating glioma cell invasion upon starvation stress.
Collapse
Affiliation(s)
- Ruo Qiao Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Hong Xu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Yang Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Jun Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Rui Li
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Yong Jiang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yao Qiu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Qian Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
London NR, Rooper LM, Bishop JA, Xu H, Bernhardt LJ, Ishii M, Hann CL, Taube JM, Izumchenko E, Gaykalova DA, Gallia GL. Expression of Programmed Cell Death Ligand 1 and Associated Lymphocyte Infiltration in Olfactory Neuroblastoma. World Neurosurg 2019; 135:e187-e193. [PMID: 31785431 DOI: 10.1016/j.wneu.2019.11.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Programmed cell death ligand 1 (PD-L1) is a transmembrane glycoprotein that interacts with the receptor programmed cell death 1 (PD-1) to suppress T-cell activation, reduce adjacent tissue damage, and promote tolerance to self-antigens. Tumors may express PD-L1 as a mechanism to evade immune detection. Recent clinical trials have demonstrated the efficacy of PD-L1/PD-1 antagonists through activation of tumor-infiltrated CD8+ T cells. The aim of this study was to determine the expression pattern of PD-L1 and PD-1 in olfactory neuroblastoma (ONB) tumor cells and to determine the presence of PD-1+ and CD8+ lymphocytes in the ONB immune microenvironment. METHODS Immunohistochemistry for expression of PD-L1, PD-1, and CD8 was performed on paraffin-embedded ONB tissue. RESULTS Of the 10 primary site ONB samples, 4 demonstrated positive PD-L1 expression. Of PD-L1+ tumors, the 2 highest expressing samples were found to contain PD-1+ tumor cells. Of the 4 available metastatic samples, all of which arose from PD-L1- primary site ONB, 3 were positive for PD-L1 and contained PD-1+ tumor cells. PD-L1+ primary and metastatic tumors also demonstrated increased PD-1+ infiltrating lymphocytes in the tumor and stroma (11.6- and 4.62-fold increase) compared with PD-L1- samples (P < 0.05 and P = 0.068 respectively). PD-L1+ specimens demonstrated increased CD8+ lymphocytes in the tumor and stroma (7.46- and 2.14-fold increase) compared with PD-L1- tumors (P < 0.05 for both). CONCLUSIONS These data demonstrate that a proportion of ONB primary and metastatic tumors express PD-L1 and possess an associated tumor and stromal infiltrate of PD-1+ and CD8+ lymphocytes.
Collapse
Affiliation(s)
- Nyall R London
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa M Rooper
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Justin A Bishop
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Haiying Xu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lydia J Bernhardt
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Masaru Ishii
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine L Hann
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Janis M Taube
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daria A Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gary L Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
23
|
Shi X, Yu PC, Lei BW, Li CW, Zhang Y, Tan LC, Shi RL, Wang J, Ma B, Xu WB, Wang X, Hu JQ, Huang NS, Wei WJ, Wang Y, Chen TZ, Wang YL, Ji QH. Association Between Programmed Death-Ligand 1 Expression and Clinicopathological Characteristics, Structural Recurrence, and Biochemical Recurrence/Persistent Disease in Medullary Thyroid Carcinoma. Thyroid 2019; 29:1269-1278. [PMID: 31328653 DOI: 10.1089/thy.2019.0079] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Expression of the programmed death-ligand 1 (PD-L1) in medullary thyroid carcinoma (MTC) has been rarely reported. In this study, we evaluated PD-L1 positivity in MTC and analyzed its correlation with clinicopathological characteristics, structural recurrence (SR), and biochemical recurrence/persistent disease (BcR/BcPD). We also evaluated the prevalence of PD-L1 expression in patients developing distant or unresectable locoregional recurrence. Methods: In total, 201 consecutive MTC patients who underwent initial surgery in our institution from January 2006 to December 2015 were included. PD-L1 expression was evaluated by immunohistochemical staining and was considered positive in case of a combined positive score ≥1. The association of PD-L1 positivity with clinicopathological characteristics, structural recurrence-free survival (SRFS), and BcR/BcPD was retrospectively investigated. Results: The median follow-up length of the entire cohort was 73 months. We observed positive PD-L1 staining in 29 (14.4%) patients who were more likely to have a larger tumor size (p = 0.002), lymph node metastases (p = 0.036), and advanced TNM staging (p = 0.019). The five-year SRFS of the PD-L1-negative and PD-L1-positive groups was 85.4% and 57.9% (p = 0.001). Multivariate Cox analysis showed that PD-L1 positivity was independently associated with SR (hazard ratio = 2.19 [95% confidence interval (CI) 1.01-4.77], p = 0.047). Furthermore, multivariate logistic analysis showed that PD-L1 positivity was significantly associated with BcR/BcPD (odds ratio = 3.16 [CI 1.16-8.66], p = 0.025). During the study period, 20 patients developed distant or unresectable locoregional recurrence, among whom 8 (40%) were PD-L1 positive, which was much higher than in the entire MTC population. Conclusions: Using a large cohort of MTC patients, we demonstrate that PD-L1 positivity is associated with aggressive clinicopathological features and is independently predictive of SR and BcR/BcPD. Furthermore, a higher rate of PD-L1 expression in patients with incurable recurrence has been observed. Therefore, immune checkpoint inhibitors targeting the programmed cell death-1 (PD-1)/PD-L1 pathway may be a potential therapeutic strategy to treat advanced MTC.
Collapse
Affiliation(s)
- Xiao Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Peng-Cheng Yu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Bo-Wen Lei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Cui-Wei Li
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Li-Cheng Tan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Rong-Liang Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jie Wang
- Department of General Surgery, Fudan University Zhongshan Hospital, Shanghai, People's Republic of China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Wei-Bo Xu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Xiao Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jia-Qian Hu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Nai-Si Huang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Wen-Jun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Tong-Zhen Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
24
|
Wang X, Guo G, Guan H, Yu Y, Lu J, Yu J. Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma. J Exp Clin Cancer Res 2019; 38:87. [PMID: 30777100 PMCID: PMC6380009 DOI: 10.1186/s13046-019-1085-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/06/2019] [Indexed: 01/23/2023] Open
Abstract
PD-1/PD-L1 checkpoint blockades have achieved significant progress in several kinds of tumours. Pembrolizumab, which targets PD-1, has been approved as a first-line treatment for advanced non-small cell lung cancer (NSCLC) patients with positive PD-L1 expression. However, PD-1/PD-L1 checkpoint blockades have not achieved breakthroughs in treating glioblastoma because glioblastoma has a low immunogenic response and an immunosuppressive microenvironment caused by the precise crosstalk between cytokines and immune cells. A phase III clinical trial, Checkmate 143, reported that nivolumab, which targets PD-1, did not demonstrate survival benefits compared with bavacizumab in recurrent glioblastoma patients. Thus, the combination of a PD-1/PD-L1 checkpoint blockade with RT, TMZ, antibodies targeting other inhibitory or stimulatory molecules, targeted therapy, and vaccines may be an appealing solution aimed at achieving optimal clinical benefit. There are many ongoing clinical trials exploring the efficacy of various approaches based on PD-1/PD-L1 checkpoint blockades in primary or recurrent glioblastoma patients. Many challenges need to be overcome, including the identification of discrepancies between different genomic subtypes in their response to PD-1/PD-L1 checkpoint blockades, the selection of PD-1/PD-L1 checkpoint blockades for primary versus recurrent glioblastoma, and the identification of the optimal combination and sequence of combination therapy. In this review, we describe the immunosuppressive molecular characteristics of the tumour microenvironment (TME), candidate biomarkers of PD-1/PD-L1 checkpoint blockades, ongoing clinical trials and challenges of PD-1/PD-L1 checkpoint blockades in glioblastoma.
Collapse
Affiliation(s)
- Xin Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei Province China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Gaochao Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Hui Guan
- Department of Radiation Oncology, The Fourth People’s Hospital of Jinan, Jinan, Shandong Province China
| | - Yang Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Jie Lu
- Department of Neurosurgery, Shandong Province Qianfoshan Hospital of Shandong University, Shandong Province, Jinan, 250014 China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| |
Collapse
|
25
|
Chen RQ, Liu F, Qiu XY, Chen XQ. The Prognostic and Therapeutic Value of PD-L1 in Glioma. Front Pharmacol 2019; 9:1503. [PMID: 30687086 PMCID: PMC6333638 DOI: 10.3389/fphar.2018.01503] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most common type of primary brain tumors. After standard treatment regimen (surgical section, radiotherapy and chemotherapy), the average survival time remains merely around 14 months for glioblastoma (grade IV glioma). Recent immune therapy targeting to the immune inhibitory checkpoint axis, i.e., programmed cell death protein 1 (PD-1) and its ligand PD-L1 (i.e., CD274 or B7-H1), has achieved breakthrough in many cancers but still not in glioma. PD-L1 is considered a major prognostic biomarker for immune therapy in many cancers, with anti-PD-1 or anti-PD-L1 antibodies being used. However, the expression and subcellular distribution of PD-L1 in glioma cells exhibits great variance in different studies, severely impairing PD-L1's value as therapeutic and prognostic biomarker in glioma. The role of PD-L1 in modulating immune therapy is complicated. In addition, endogenous PD-L1 plays tumorigenic roles in glioma development. In this review, we summarize PD-L1 mRNA expression and protein levels detected by using different methods and antibodies in human glioma tissues in all literatures, and we evaluate the prognostic value of PD-L1 in glioma. We also summarize the relationships between PD-L1 and immune cell infiltration in glioma. The mechanisms regulating PD-L1 expression and the oncogenic roles of endogenous PD-L1 are discussed. Further, the therapeutic results of using anti-PD-1/PD-L1 antibodies or PD-L1 knockdown are summarized and evaluated. In summary, current results support that PD-L1 is not only a prognostic biomarker of immune therapy, but also a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Ruo Qiao Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Liu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yao Qiu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Qian Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Sato F, Akiba J, Kawahara A, Naito Y, Ono T, Takase Y, Murata K, Abe H, Yamaguchi T, Miyoshi H, Abe Y, Mihara Y, Tanikawa M, Akashi M, Kurose H, Umeno H, Yano H. The expression of programed death ligand-1 could be related with unfavorable prognosis in salivary duct carcinoma. J Oral Pathol Med 2018; 47:683-690. [DOI: 10.1111/jop.12722] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Fumihiko Sato
- Department of Pathology; Kurume University School of Medicine; Kurume Japan
- Department of Otolaryngology, Head and Neck Surgery; Kurume University School of Medicine; Kurume Japan
| | - Jun Akiba
- Department of Diagnostic Pathology; Kurume University Hospital; Kurume, Fukuoka Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology; Kurume University Hospital; Kurume, Fukuoka Japan
| | - Yoshiki Naito
- Department of Pathology; Kurume University School of Medicine; Kurume Japan
- Department of Diagnostic Pathology; Kurume University Hospital; Kurume, Fukuoka Japan
| | - Takeharu Ono
- Department of Otolaryngology, Head and Neck Surgery; Kurume University School of Medicine; Kurume Japan
| | - Yorihiko Takase
- Department of Diagnostic Pathology; Kurume University Hospital; Kurume, Fukuoka Japan
| | - Kazuya Murata
- Department of Diagnostic Pathology; Kurume University Hospital; Kurume, Fukuoka Japan
| | - Hideyuki Abe
- Department of Diagnostic Pathology; Kurume University Hospital; Kurume, Fukuoka Japan
| | - Tomohiko Yamaguchi
- Department of Diagnostic Pathology; Kurume University Hospital; Kurume, Fukuoka Japan
| | - Hiroaki Miyoshi
- Department of Pathology; Kurume University School of Medicine; Kurume Japan
| | - Yushi Abe
- Department of Pathology; Kurume University School of Medicine; Kurume Japan
| | - Yutaro Mihara
- Department of Pathology; Kurume University School of Medicine; Kurume Japan
| | - Masahiko Tanikawa
- Department of Pathology; Kurume University School of Medicine; Kurume Japan
| | - Momoko Akashi
- Department of Pathology; Kurume University School of Medicine; Kurume Japan
| | - Hirofumi Kurose
- Department of Pathology; Kurume University School of Medicine; Kurume Japan
| | - Hirohito Umeno
- Department of Otolaryngology, Head and Neck Surgery; Kurume University School of Medicine; Kurume Japan
| | - Hirohisa Yano
- Department of Pathology; Kurume University School of Medicine; Kurume Japan
| |
Collapse
|
27
|
Owen D, Chu B, Lehman AM, Annamalai L, Yearley JH, Shilo K, Otterson GA. Expression Patterns, Prognostic Value, and Intratumoral Heterogeneity of PD-L1 and PD-1 in Thymoma and Thymic Carcinoma. J Thorac Oncol 2018; 13:1204-1212. [PMID: 29702286 DOI: 10.1016/j.jtho.2018.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Thymic epithelial tumors (TETs) including thymoma and thymic carcinoma are rare tumors with little data available to guide treatment. Immunotherapy with checkpoint blockade has shown promising activity, but data regarding the expression patterns and prognostic implications of programmed death 1 (PD-1) and its ligand (PD-L1) in TETs have yielded conflicting results. Intratumoral heterogeneity of PD-1/L1 expression has been shown in other cancers, but has not been described in the TET literature. METHODS We performed a retrospective single-center review of 35 patients with resected TET. PD-1/L1 expression was assessed by immunohistochemistry using PD-1 clone: NAT105 and PD-L1 clone: 22C3. Tumor samples from 35 patients were evaluated including 32 patients with thymoma and 3 patients with thymic carcinoma. RESULTS PD-L1 expression was detected in 83% (29 of 35) tumor samples, including 100% (3 of 3) of thymic carcinoma patients and 81% (26 of 32) of thymoma patients. PD-1 expression was detected in 77% (27 of 35), including 33% (1 of 3) of thymic carcinoma patients and 81% (26 of 32) thymoma patients. High PD-1 expression was associated with lower grade tumors. Unlike prior studies, PD-L1 expression was not associated with higher grade tumors or higher stage. Neither PD-L1 nor PD-1 expression was significantly associated with survival. Three patients with thymoma had multiple tumor sections evaluated for expression of PD-1/L1, with differing expression patterns of both PD-L1 and PD-1 observed in two patients. CONCLUSIONS This study confirms high expression of PD-L1 and PD-1 in TET and shows for the first time intratumoral heterogeneity of PD-L1 and PD-1 in thymoma patients.
Collapse
Affiliation(s)
- Dwight Owen
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, Ohio
| | - Benjamin Chu
- Helen and Gary Gray Cancer Center, Hartford Hospital, and University of Connecticut School of Medicine, Hartford, Connecticut
| | - Amy M Lehman
- Center for Biostatistics, Ohio State University, Columbus, Ohio
| | | | | | - Konstantin Shilo
- Department of Pathology, Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, Ohio
| | - Gregory A Otterson
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, Ohio.
| |
Collapse
|
28
|
Abstract
OPINION STATEMENT Immune checkpoint inhibitors have changed the landscape of cancer immunotherapy and are being integrated into the standard of care for a variety of solid and hematologic malignancies. Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and carries a grave prognosis despite advances in surgical resection, chemotherapy, and radiation therapy. Implementing immunotherapy for brain tumors mandates additional considerations due to the unique structural and immunologic milieu of the central nervous system (CNS). Nevertheless, strong data from preclinical studies have driven clinical trials of immune checkpoint blockade for newly diagnosed and recurrent GBM. The focus of this review is to discuss the ongoing clinical trials of checkpoint inhibitors in GBM and review the immunologic rationale for ongoing and future trial designs.
Collapse
|
29
|
Radiological evaluation of response to immunotherapy in brain tumors: Where are we now and where are we going? Crit Rev Oncol Hematol 2018; 126:135-144. [PMID: 29759556 DOI: 10.1016/j.critrevonc.2018.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/14/2018] [Accepted: 03/29/2018] [Indexed: 11/21/2022] Open
|
30
|
Prognostic relevance of programmed cell death ligand 1 expression in glioblastoma. J Neurooncol 2017; 136:453-461. [PMID: 29147863 DOI: 10.1007/s11060-017-2675-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 11/11/2017] [Indexed: 12/26/2022]
Abstract
The aim of this study was to determine the clinicopathological significance of programmed cell death ligand 1 (PD-L1) expression in glioblastoma (GBM). In a retrospective cohort of 115 consecutive patients with GBM, PD-L1 expression was determined using immunohistochemistry (IHC). Membranous and fibrillary PD-L1 staining of any intensity in > 5% neoplastic cells and tumour infiltrating immune cells (TIIs) was considered positive staining. In addition, isocitrate dehydrogenase-1 (IDH-1) (R132H) expression and cluster of differentiation 3 (CD3)-positive T-cell infiltration were investigated using IHC. O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation assay and fluorescence in situ hybridization (FISH) for the assessment of 1p/19q deletion were performed. Expression of PD-L1 in tumour cells and TIIs was found in 37 (32.2%) and 6 (5.2%) patients, respectively. Kaplan-Meier analysis indicated that PD-L1 expression in tumour cells was significantly associated with poor overall survival (OS) (P = 0.017), though multivariate Cox analysis did not confirm this association (hazard ratio 1.204; P = 0.615). PD-L1 expression in TIIs did not correlate with the patient prognosis (P = 0.545). In addition, MGMT methylation and IDH-1 (R132H) expression were associated with a better prognosis (P < 0.001 and P = 0.024, respectively). The expression of PD-L1 was associated with CD3-positive T-cell infiltration (P < 0.001), and IDH-1 wild type status (P = 0.008). A deeper insight into PD-L1 expression could help to ensure the success of future immunotherapy in GBM. Our study suggested that PD-L1 target therapy might be beneficial for PD-L1-expressing GBM patients with a poor prognosis.
Collapse
|
31
|
An HJ, Ko GH, Lee JH, Lee JS, Kim DC, Yang JW, Kim MH, Kim JP, Jung EJ, Song DH. Programmed Death-Ligand 1 Expression and Its Correlation with Lymph Node Metastasis in Papillary Thyroid Carcinoma. J Pathol Transl Med 2017; 52:9-13. [PMID: 28994272 PMCID: PMC5784225 DOI: 10.4132/jptm.2017.07.26] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022] Open
Abstract
Background The immunotherapeutic role of programmed death-ligand 1 (PD-L1) in life expectancy in many cancers has been highlighted. However, data regarding PD-L1 expression in papillary thyroid carcinoma (PTC) are limited. In this study, we describe the PD-L1 and programmed cell death protein 1 (PD-1) expressions in PTC and analyze their correlation with lymph node (LN) metastasis. Methods Clinicopathological data were obtained from 116 patients with PTC who were treated in Gyeongsang National University Hospital, Jinju, Korea in 2009. Tissue microarray blocks were made using representative paraffin blocks of classical PTCs excluding follicular variants. Two pathologists graded the proportion and intensity of PD-L1 and PD-1 expression in both tumor and inflammatory cells. According to their proportions, positive PTC cells were scored as negative (0%), grade 1 (1%–50%), and grade 2 (51%–100%). Similarly, positive inflammatory cells were graded as negative (0%), grade 1 (1%–10%), and grade 2 (11%–20%). The intensity of each protein expression was simplified as positive or negative. Results A statistically significant correlation exists between the proportions of PD-1 and PD-L1 expression both in papillary carcinoma (p=.001) and peritumoral lymphoid cells in the thyroid (p<.001). In addition, the proportion of PD-L1 expression in PTC cells was closely related to metastatic LNs (p=.036). Conclusions PD-L1 is a valuable predictive marker for LN metastasis in PTC. Immunomodulating therapies that inhibit PD-L1 might be an option for patients with LN metastasis.
Collapse
Affiliation(s)
- Hyo Jung An
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Gyung Hyuck Ko
- Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Jeong-Hee Lee
- Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Jong Sil Lee
- Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Dong Chul Kim
- Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Jung Wook Yang
- Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Min Hye Kim
- Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Jin Pyeong Kim
- Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea.,Deparment of Otorhinolaryngology, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Eun Jung Jung
- Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea.,Department of Surgery, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Dae Hyun Song
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, Korea.,Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea
| |
Collapse
|
32
|
Xue S, Hu M, Li P, Ma J, Xie L, Teng F, Zhu Y, Fan B, Mu D, Yu J. Relationship between expression of PD-L1 and tumor angiogenesis, proliferation, and invasion in glioma. Oncotarget 2017; 8:49702-49712. [PMID: 28591697 PMCID: PMC5564800 DOI: 10.18632/oncotarget.17922] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/01/2017] [Indexed: 01/05/2023] Open
Abstract
Programmed death ligand 1 (PD-L1) is highly expressed in many cancers. We investigated the expression of PD-L1 and its relationship with vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 and KI-67 expression in 64 patients with primary glioma. The expression rate of PD-L1 in glioma patients was 78.12%. PD-L1 levels correlated with the tumor grade (p = 0.013), VEGF status (p = 0.002) and KI-67 status (p = 0.002). In addition, PD-L1 levels correlated positively with VEGF (r = 0.314, p = 0.011) and KI-67 (r = 0.391, p = 0.001) levels when the data were treated as continuous variables. This is the first report suggesting that PD-L1 is important for glioma angiogenesis and proliferation. Thus, further research should be conducted to assess the combination of targeted VEGF therapy and anti-PD-L1 immunotherapy for the treatment of glioma.
Collapse
Affiliation(s)
- Song Xue
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Province Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Man Hu
- Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Province Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Peifeng Li
- Department of Pathology, General Hospital of Jinan Military Command, Jinan, Shandong, China
| | - Ji Ma
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Department of Medicine, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Li Xie
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Feifei Teng
- Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Province Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yufang Zhu
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Bingjie Fan
- Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Province Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Dianbin Mu
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Department of Pathology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Jinming Yu
- Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Province Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
33
|
Frydenlund N, Mahalingam M. PD-L1 and immune escape: insights from melanoma and other lineage-unrelated malignancies. Hum Pathol 2017; 66:13-33. [PMID: 28694003 DOI: 10.1016/j.humpath.2017.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/07/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022]
Abstract
One of the major breakthroughs in oncology in the past decade has been the research and development of immune checkpoint inhibitors. Since the discovery of the PD-1/PD-L1 axis as a key mediator in peripheral self-tolerance and the subsequent discovery of its role promoting immune escape in cancers, the PD-1/PD-L1 pathway has produced considerable excitement from both a scientific and therapeutic standpoint. The past decade has seen an explosion in the number of clinical trials utilizing anti-PD-1/PD-L1 therapy. Notably, pathologists have played a critical role in the development of these trials, and in guiding the use of anti-PD-1/PD-L1 therapies in FDA-approved clinical settings. Analysis of tissue biopsies has been increasingly used to predict patients with which cancers are most likely to benefit from these new therapies. However, many open questions remain in a rapidly changing therapeutic and scientific landscape. In this review, we describe the basic functioning of the PD-1/PD-L1 axis in normal biology, how it is coopted by cancers to promote immune escape, and then review the literature regarding the prognostic value of tumoral PD-L1 expression on its own before discussing recent therapeutic advances, and the emerging role for pathologists in predicting response to anti-PD-1/PD-L1 therapies. Special attention is given to melanoma and non-small cell lung cancer, malignancies that have seen the broadest applications of anti-PD-L1/PD-1 therapies.
Collapse
Affiliation(s)
| | - Meera Mahalingam
- Dermatopathology Section, Department of Pathology and Laboratory Medicine (113), VA Integrated Systems Network (VISN1), West Roxbury, 02132, MA.
| |
Collapse
|