1
|
Seif SE, Wardakhan WW, Hassan RA, Abdou AM, Mahmoud Z. New S-substituted-3-phenyltetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one scaffold with promising anticancer activity profile through the regulation and inhibition of mutated B-RAF signaling pathway. Drug Dev Res 2024; 85:e70007. [PMID: 39425261 DOI: 10.1002/ddr.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Novel 3-phenyltetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives were synthesized and screened for their antiproliferative activity against a panel of 60 cancer cell lines. Derivatives 5b, 5f, and 9c showed significant antitumor activity at a single dose with mean growth inhibition of 55.62%, 55.79%, and 71.40%, respectively. These compounds were further investigated against HCT-116, colon cancer cell line, and FHC, normal colon cell line. Compound 9c showed the highest activity with IC50 = 0.904 ± 0.03 µM and SI = 20.42 excelling doxorubicin which scored IC50 = 2.556 ± 0.09 µM and SI = 6.19. Compound 9c was also the most potent against B-RAFWT and mutated B-RAFV600E with IC50 = 0.145 ± 0.005 and 0.042 ± 0.002 µM, respectively in comparison with vemurafenib with IC50 = 0.229 ± 0.008 and 0.038 ± 0.001 µM, respectively. The cell cycle analysis showed that 9c increased the cell population and induced an arrest in the cell cycle of HCT-116 cancer cells at the G0-G1 stage with 1.23-fold. Apoptosis evaluation showed that compound 9c displayed an 18.18-fold elevation in total apoptosis of HCT-116 cancer cells in comparison to the control. Compound 9c increased the content of caspase-3 by 3.52-fold versus the control. A molecular modeling study determined the binding profile and interaction of 9c with the B-RAF active site.
Collapse
Affiliation(s)
- Safaa E Seif
- National Organization for Drug Control and Research, Cairo, Egypt
| | | | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Zeinab Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
2
|
Al-Khazraji Y, Muzammil MA, Javid S, Tangella AV, Gohil NV, Saifullah H, Kanagala SG, Fariha F, Muneer A, Ahmed S, Shariq A. Novel regimens and treatment strategies in neoadjuvant therapy for colorectal cancer: A systematic review. Int J Health Sci (Qassim) 2024; 18:43-58. [PMID: 39282125 PMCID: PMC11393386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Objective The objective of this systematic review was to describe novel regimens and treatment strategies in neoadjuvant therapy for colorectal cancer (CRC). The aim was to summarize the current advancements in neoadjuvant chemotherapy (NACT) for CRC, including the use of cytotoxic drugs, targeted treatments, and immunotherapy. The analysis aimed to provide insights into the potential benefits and drawbacks of these novel approaches and highlight the need for further research to optimize NACT use in CRC and improve patient outcomes. Methods From October 20, 2023, to December 10, 2023, a comprehensive literature search was conducted across multiple databases, including PubMed, Ovid, Web of Science, the Cochrane Library, Cumulative Index to Nursing and Allied Health Literature, Embase, and Scopus. Studies addressing the use of and treatment strategies for CRC and neoadjuvant therapies were included. Screening was conducted in two steps, initially by title and abstract and then by full-text articles. English-language articles were considered, while preprints, non-English publications, and articles published as grey literature were excluded from the study. A total of 85 studies were selected for further analysis after screening and filtering. Results After filtering out duplicates and items that were irrelevant to our research query from the initial database search's 510 results, 397 unique articles were found. Eighty-five studies were chosen for additional analysis after the articles underwent two rounds of screening. Conclusion The review concluded that neoadjuvant therapy for CRC has evolved beyond conventional approaches and holds promise for improving patient outcomes. Future prospects for advancing neoadjuvant approaches are promising, with ongoing clinical trials investigating the refinement of strategies, identification of predictive biomarkers, and optimization of patient selection. The adoption of novel regimens, precision medicine, and immunotherapy offers opportunities to redefine treatment paradigms and enhance patient care in CRC.
Collapse
Affiliation(s)
| | | | - Saman Javid
- Department of Medicine, CMH Kharian Medical College, Kharian, Pakistan
| | | | - Namra Vinay Gohil
- Department of Medicine, Medical College Baroda, Vadodara, Gujarat, India
| | - Hanya Saifullah
- Department of Medicine, Medical College Baroda, CMH Lahore Medical College, Lahore, Pakistan
| | | | - Fnu Fariha
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Asim Muneer
- Department of Adult Hematology Oncology, Prince Faisal Ca ncer Centre Buraidah, Al qaseem, Saudi Arabia
| | - Sumaira Ahmed
- Department of Gastroenterology, King Fahad Hospital, Burydah, KSA
| | - Ali Shariq
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
3
|
Chen S, Gu J, Wu K, Zhao X, Lu Y. Progress in clinical diagnosis and treatment of colorectal cancer with rare genetic variants. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0026. [PMID: 38940668 PMCID: PMC11208903 DOI: 10.20892/j.issn.2095-3941.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
Targeted therapy is crucial for advanced colorectal cancer (CRC) positive for genetic drivers. With advances in deep sequencing technology and new targeted drugs, existing standard molecular pathological detection systems and therapeutic strategies can no longer meet the requirements for careful management of patients with advanced CRC. Thus, rare genetic variations require diagnosis and targeted therapy in clinical practice. Rare gene mutations, amplifications, and rearrangements are usually associated with poor prognosis and poor response to conventional therapy. This review summarizes the clinical diagnosis and treatment of rare genetic variations, in genes including erb-b2 receptor tyrosine kinase 2 (ERBB2), B-Raf proto-oncogene, serine/threonine kinase (BRAF), ALK receptor tyrosine kinase/ROS proto-oncogene 1, receptor tyrosine kinase (ALK/ROS1), neurotrophic receptor tyrosine kinases (NTRKs), ret proto-oncogene (RET), fibroblast growth factor receptor 2 (FGFR2), and epidermal growth factor receptor (EGFR), to enhance understanding and identify more accurate personalized treatments for patients with rare genetic variations.
Collapse
Affiliation(s)
- Shuyi Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an 710032, China
| | - Jing Gu
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an 710032, China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
4
|
Alhamdan YR, Ayoub NM, Jaradat SK, Shatnawi A, Yaghan RJ. BRAF Expression and Copy Number Alterations Predict Unfavorable Tumor Features and Adverse Outcomes in Patients With Breast Cancer. Int J Breast Cancer 2024; 2024:6373900. [PMID: 38919805 PMCID: PMC11199069 DOI: 10.1155/2024/6373900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 06/27/2024] Open
Abstract
Background: The role of BRAF in breast cancer pathogenesis is still unclear. To address this knowledge gap, this study is aimed at evaluating the impact of BRAF gene expression and copy number alterations (CNAs) on clinicopathologic characteristics and survival in patients with breast cancer. Methods: The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset was obtained from the cBioPortal public domain. Tumoral BRAF mRNA expression and CNAs along with demographic and tumor data for patients with breast cancer were retrieved. The association of BRAF expression and CNAs with breast cancer clinicopathologic characteristics was analyzed. The impact of BRAF mRNA expression on the overall survival of patients was assessed using Kaplan-Meier survival analysis. Results: BRAF gene mRNA log intensity expression was positively correlated with tumor size and the Nottingham Prognostic Index (NPI) (p < 0.001). Alternatively, BRAF gene expression was negatively correlated with the age at diagnosis (p = 0.003). The average BRAF mRNA expression was significantly higher in premenopausal patients, patients with high tumor grade, hormone receptor-negative status, and non-luminal tumors compared to postmenopausal patients, patients with low-grade, hormone receptor-positive, and luminal disease. BRAF gain and high-level amplification copy numbers were significantly associated with higher NPI scores and larger tumor sizes compared to neutral copy number status. Survival analysis revealed no discernible differences in overall survival for patients with low and high BRAF mRNA expression. Conclusion: High BRAF mRNA expression as well as the gain and high-level amplification copy numbers were associated with advanced tumor characteristics and unfavorable prognostic factors in breast cancer. BRAF could be an appealing target for the treatment of premenopausal patients with hormone receptor-negative breast cancer.
Collapse
Affiliation(s)
- Yazan R. Alhamdan
- Department of Clinical PharmacyFaculty of PharmacyJordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan
| | - Nehad M. Ayoub
- Department of Clinical PharmacyFaculty of PharmacyJordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan
| | - Sara K. Jaradat
- Department of Clinical PharmacyFaculty of PharmacyJordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan
| | - Aymen Shatnawi
- Department of Drug Discovery and Biomedical SciencesCollege of PharmacyMedical University of South Carolina, 70 President St., Charleston, South Carolina 29425, USA
| | - Rami J. Yaghan
- Department of SurgeryCollege of Medicine and Medical SciencesArabian Gulf University, Road 2904, Building 293, Manama, Bahrain
- Department of General Surgery and UrologyFaculty of MedicineJordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan
| |
Collapse
|
5
|
Guerrero P, Albarrán V, San Román M, González-Merino C, García de Quevedo C, Moreno J, Calvo JC, González G, Orejana I, Chamorro J, Martínez-Delfrade Í, Morón B, de Frutos B, Ferreiro MR. BRAF Inhibitors in Metastatic Colorectal Cancer and Mechanisms of Resistance: A Review of the Literature. Cancers (Basel) 2023; 15:5243. [PMID: 37958416 PMCID: PMC10649848 DOI: 10.3390/cancers15215243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Metastatic colorectal cancer (mCRC) with mutated BRAF exhibits distinct biological and molecular features that set it apart from other subtypes of CRC. Current standard treatment for these tumors involves a combination of chemotherapy (CT) and VEGF inhibitors. Recently, targeted therapy against BRAF and immunotherapy (IT) for cases with microsatellite instability (MSI) have been integrated into clinical practice. While targeted therapy has shown promising results, resistance to treatment eventually develops in a significant portion of responsive patients. This article aims to review the available literature on mechanisms of resistance to BRAF inhibitors (BRAFis) and potential therapeutic strategies to overcome them.
Collapse
Affiliation(s)
- Patricia Guerrero
- Department of Medical Oncology, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (V.A.); (M.S.R.); (C.G.-M.); (C.G.d.Q.); (J.M.); (J.C.C.); (G.G.); (I.O.); (J.C.); (Í.M.-D.); (B.M.); (B.d.F.); (M.R.F.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Postwala H, Shah Y, Parekh PS, Chorawala MR. Unveiling the genetic and epigenetic landscape of colorectal cancer: new insights into pathogenic pathways. Med Oncol 2023; 40:334. [PMID: 37855910 DOI: 10.1007/s12032-023-02201-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is a complex disease characterized by genetic and epigenetic alterations, playing a crucial role in its development and progression. This review aims to provide insights into the emerging landscape of these alterations in CRC pathogenesis to develop effective diagnostic tools and targeted therapies. Genetic alterations in signaling pathways such as Wnt/β-catenin, and PI3K/Akt/mTOR are pivotal in CRC development. Genetic profiling has identified distinct molecular subtypes, enabling personalized treatment strategies. Epigenetic modifications, including DNA methylation and histone modifications, also contribute to CRC pathogenesis by influencing critical cellular processes through gene silencing or activation. Non-coding RNAs have emerged as essential players in epigenetic regulation and CRC progression. Recent research highlights the interplay between genetic and epigenetic alterations in CRC. Genetic mutations can affect epigenetic modifications, leading to dysregulated gene expression and signaling cascades. Conversely, epigenetic changes can modulate genetic expression, amplifying or dampening the effects of genetic alterations. Advancements in understanding pathogenic pathways have potential clinical applications. Identifying genetic and epigenetic markers as diagnostic and prognostic biomarkers promises more accurate risk assessment and early detection. Challenges remain, including validating biomarkers and developing robust therapeutic strategies through extensive research and clinical trials. The dynamic nature of genetic and epigenetic alterations necessitates a comprehensive understanding of their temporal and spatial patterns during CRC progression. In conclusion, the genetic and epigenetic landscape of CRC is increasingly being unraveled, providing valuable insights into its pathogenesis. Integrating genetic and epigenetic knowledge holds great potential for improving diagnostics, prognostics, and personalized therapies in CRC. Continued research efforts are vital to translate these findings into clinical practice, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, Florida, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
7
|
R I A, Vatsyayan A, Damodaran D, Sivadas A, Van der Speeten K. Multi-omics Analysis Classifies Colorectal Cancer into Distinct Methylated Immunogenic and Angiogenic Subtypes Based on Anatomical Laterality. Indian J Surg Oncol 2023; 14:209-219. [PMID: 37359923 PMCID: PMC10284779 DOI: 10.1007/s13193-023-01760-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
We employed supervised machine learning algorithms to a cohort of colorectal cancer patients from the NCI to differentiate and classify the heterogenous disease based on anatomical laterality and multi-omics stratification, in a first of its kind. Multi-omics integrative analysis shows distinct clustering of left and right colorectal cancer with disentangled representation of methylome and delineation of transcriptome and genome. We present novel multi-omics findings consistent with augmented hypermethylation of genes in right CRC, epigenomic biomarkers on the right in conjunction with immune-mediated pathway signatures, and lymphocytic invasion which unlocks unique therapeutic avenues. Contrarily, left CRC multi-omics signature is found to be marked by angiogenesis, cadherins, and epithelial-mesenchymal transition (EMT). An integrated multi-omics molecular signature of RNF217-AS1, hsa-miR-10b, and panel of FBX02, FBX06, FBX044, MAD2L2, and MIIP copy number altered genes have been found by the study. Overall survival analysis reveals genomic biomarkers ABCA13 and TTN in 852 LCRC cases, and SOX11 in 170 RCRC cases that predicts a significant survival benefit. Our study exemplifies the translational competence and robustness of machine learning in effective translational bridging of research and clinic. Supplementary Information The online version contains supplementary material available at 10.1007/s13193-023-01760-6.
Collapse
Affiliation(s)
- Anu R I
- Department of Cancer Biology and Therapeutics, MVR Cancer Center and Research Institute, Calicut, Kerala India
- Department of Clinical Biochemistry, MVR Cancer Center and Research Institute, Calicut, Kerala India
| | - Aastha Vatsyayan
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dileep Damodaran
- Department of Surgical Oncology, MVR Cancer Center and Research Institute, Calicut, Kerala India
| | - Ambily Sivadas
- Division of Nutrition, St. John’s Research Institute, Bangalore, India
| | - Kurt Van der Speeten
- Department of Surgical Oncology, Ziekenhuis Oost-Limburg, Genk, Belgium
- Faculty of Medicine and Life Sciences, BIOMED Research Institute, University Hasselt, Hasselt, Belgium
| |
Collapse
|
8
|
Piringer G, Decker J, Trommet V, Kühr T, Heibl S, Dörfler K, Thaler J. Ongoing complete response after treatment cessation with dabrafenib, trametinib, and cetuximab as third-line treatment in a patient with advanced BRAF V600E mutated, microsatellite-stable colon cancer: A case report and literature review. Front Oncol 2023; 13:1166545. [PMID: 37213293 PMCID: PMC10196488 DOI: 10.3389/fonc.2023.1166545] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/28/2023] [Indexed: 05/23/2023] Open
Abstract
Metastatic BRAFV600E mutated colorectal cancer is associated with poor overall survival and modest effectiveness to standard therapies. Furthermore, survival is influenced by the microsatellite status. Patients with microsatellite-stable and BRAFV600E mutated colorectal cancer have the worst prognosis under the wide range of genetic subgroups in colorectal cancer. Herein, we present a patient case of an impressive therapeutic efficacy of dabrafenib, trametinib, and cetuximab as later-line therapy in a 52-year-old woman with advanced BRAFV600E mutated, microsatellite-stable colon cancer. This patient achieved a complete response after 1 year of triple therapy. Due to skin toxicity grade 3 and recurrent urinary tract infections due to mucosal toxicity, a therapy de-escalation to dabrafenib and trametinib was performed, and the double therapy was administered for further 41 months with ongoing complete response. For 1 year, the patient was off therapy and is still in complete remission.
Collapse
Affiliation(s)
- Gudrun Piringer
- Department of Internal Medicine IV, Wels-Grieskirchen Medical Hospital, Wels, Austria
- Department of Hematology and Oncology, Kepler University Hospital, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Jörn Decker
- Department of Internal Medicine, Klinikum Rohrbach, Rohrbach, Austria
| | - Vera Trommet
- Department of Internal Medicine IV, Wels-Grieskirchen Medical Hospital, Wels, Austria
| | - Thomas Kühr
- Department of Internal Medicine IV, Wels-Grieskirchen Medical Hospital, Wels, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Sonja Heibl
- Department of Internal Medicine IV, Wels-Grieskirchen Medical Hospital, Wels, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Konrad Dörfler
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Josef Thaler
- Department of Internal Medicine IV, Wels-Grieskirchen Medical Hospital, Wels, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
9
|
Tan L, Tran B, Tie J, Markman B, Ananda S, Tebbutt NC, Michael M, Link E, Wong SQ, Chandrashekar S, Guinto J, Ritchie D, Koldej R, Solomon BJ, McArthur GA, Hicks RJ, Gibbs P, Dawson SJ, Desai J. A Phase Ib/II Trial of Combined BRAF and EGFR Inhibition in BRAF V600E Positive Metastatic Colorectal Cancer and Other Cancers: The EVICT (Erlotinib and Vemurafenib In Combination Trial) Study. Clin Cancer Res 2023; 29:1017-1030. [PMID: 36638198 PMCID: PMC10011885 DOI: 10.1158/1078-0432.ccr-22-3094] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/02/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
PURPOSE BRAF V600E mutant metastatic colorectal cancer represents a significant clinical problem, with combination approaches being developed clinically with oral BRAF inhibitors combined with EGFR-targeting antibodies. While compelling preclinical data have highlighted the effectiveness of combination therapy with vemurafenib and small-molecule EGFR inhibitors, gefitinib or erlotinib, in colorectal cancer, this therapeutic strategy has not been investigated in clinical studies. PATIENTS AND METHODS We conducted a phase Ib/II dose-escalation/expansion trial investigating the safety/efficacy of the BRAF inhibitor vemurafenib and EGFR inhibitor erlotinib. RESULTS Thirty-two patients with BRAF V600E positive metastatic colorectal cancer (mCRC) and 7 patients with other cancers were enrolled. No dose-limiting toxicities were observed in escalation, with vemurafenib 960 mg twice daily with erlotinib 150 mg daily selected as the recommended phase II dose. Among 31 evaluable patients with mCRC and 7 with other cancers, overall response rates were 32% [10/31, 16% (5/31) confirmed] and 43% (3/7), respectively, with clinical benefit rates of 65% and 100%. Early ctDNA dynamics were predictive of treatment efficacy, and serial ctDNA monitoring revealed distinct patterns of convergent genomic evolution associated with acquired treatment resistance, with frequent emergence of MAPK pathway alterations, including polyclonal KRAS, NRAS, and MAP2K1 mutations, and MET amplification. CONCLUSIONS The Erlotinib and Vemurafenib In Combination Trial study demonstrated a safe and novel combination of two oral inhibitors targeting BRAF and EGFR. The dynamic assessment of serial ctDNA was a useful measure of underlying genomic changes in response to this combination and in understanding potential mechanisms of resistance.
Collapse
Affiliation(s)
- Lavinia Tan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ben Tran
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Division of Personalized Oncology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Jeanne Tie
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Division of Personalized Oncology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Ben Markman
- Monash Health, Melbourne, Victoria, Australia
| | - Sumi Ananda
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Niall C Tebbutt
- Olivia Newton John Cancer Wellness and Research Centre, Melbourne, Victoria, Australia
| | - Michael Michael
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Emma Link
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Stephen Q Wong
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Jerick Guinto
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David Ritchie
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Rachel Koldej
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Benjamin J Solomon
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Grant A McArthur
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rodney J Hicks
- The University of Melbourne Department of Medicine, St Vincent's Hospital, Melbourne, Victoria, Australia.,Centre for Cancer Research, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Gibbs
- Division of Personalized Oncology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Centre for Cancer Research, The University of Melbourne, Parkville, Victoria, Australia
| | - Jayesh Desai
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
A novel prognostic model of methylation-associated genes in acute myeloid leukemia. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1719-1728. [PMID: 36715873 DOI: 10.1007/s12094-022-03069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/29/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND There is growing evidence that methylation-associated genes (MAGs) play an important role in the prognosis of acute myeloid leukemia (AML) patients. Thus, the aim of this research was to investigate the impact of MAGs in predicting the outcomes of AML patients. METHODS The expression profile and clinical information of patients were downloaded from public databases. A novel prognostic model based on 7 MAGs was established in the TCGA training cohort and validated in the GSE71014 dataset. To validate the clinical implications, the correlation between MAGs signature and drug sensitivity was further investigated. RESULTS 76 genes were screened out by the univariate Cox regression and significantly enriched in multiple methylation-related pathways. After filtering variables using LASSO regression analysis, 7 MAGs were introduced to construct the predictive model. The survival analysis showed overall survival of patients with the high-risk score was considerably poorer than that with the low-risk score in both the training and validating cohorts (p < 0.01). Furthermore, the risk score system as a prognostic factor also worked in the intermediate-risk patients based on ELN-2017 classification. Importantly, the risk score was demonstrated to be an independent prognostic factor for AML in the univariate and multivariate Cox regression analysis. Interestingly, GSEA analysis revealed that multiple metabolism-related pathways were significantly enriched in the high-risk group. Drug sensitivity analysis showed there was a significant difference in sensitivity of some drugs between the two groups. CONCLUSION We developed a robust and accurate prognostic model with 7 MAGs. Our findings might provide a reference for the clinical prognosis and management of AML.
Collapse
|
11
|
O'Riordan E, Bennett MW, Daly L, Power DG. The implication of BRAF mutation in advanced colorectal cancer. Ir J Med Sci 2022; 191:2467-2474. [PMID: 34877621 PMCID: PMC9672001 DOI: 10.1007/s11845-021-02689-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/09/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Advanced colorectal cancer (CRC) is frequently a lethal disease. Mutations in the BRAF gene is a key driver in CRC pathogenesis and confers a poor prognosis. To date, Irish data on this molecular subtype of CRC is lacking. AIMS Our aim was to compare the natural history of Irish patients with BRAF (BRAFMUT) metastatic CRC with a control group of metastatic CRC patients without BRAF mutation (BRAFWT wild- type). METHOD A retrospective observational analysis of advanced CRC patients with known BRAFMUT was conducted by chart review. BRAFMUT patients were identified from the Cork University Hospital (CUH) histopathology database. Controls with known BRAFWT were randomly selected from the database. Demographic characteristics and clinicopathological data were recorded. Survival was assessed with Kaplan-Meier curve/Cox proportional hazard models. RESULTS Twenty patients with BRAFMUT and 36 with BRAFWT were studied. BRAFMUT were more likely female (75% vs 33%, p = 0.007) and right-sided (65% vs 31.4%, p = 0.033). Median overall survival was lower in BRAFMUT group (17.3 months (95% CI 0-40.8)) compared to patients with BRAFWT (median survival not reached, log rank p = 0.001). On multivariate analysis, BRAFMUT was independently associated with an increased risk of mortality (HR 12.76 (95% CI 3.15-51.7), p < 0.001). CONCLUSION BRAFMUT advanced colorectal cancer was associated with significantly reduced overall survival in this Irish CRC population. Knowledge of mutation status should now be considered standard of care and should dictate management. Surgeons should be aware of this genetic signature as the natural history of the disease may mitigate against an aggressive surgical strategy. A prospective study should be conducted to further corroborate these findings.
Collapse
Affiliation(s)
- Emma O'Riordan
- School of Medicine, University College Cork, Cork, Republic of Ireland.
| | | | - Louise Daly
- School of Food & Nutritional Sciences, University College Cork, Cork, Republic of Ireland
| | - Derek G Power
- Department of Medical Oncology, Mercy & Cork University Hospitals, Cork, Republic of Ireland
| |
Collapse
|
12
|
Hofmann MC, Kunnimalaiyaan M, Wang JR, Busaidy NL, Sherman SI, Lai SY, Zafereo M, Cabanillas ME. Molecular mechanisms of resistance to kinase inhibitors and redifferentiation in thyroid cancers. Endocr Relat Cancer 2022; 29:R173-R190. [PMID: 35975971 PMCID: PMC9534048 DOI: 10.1530/erc-22-0129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022]
Abstract
Protein kinases play critical roles in cell survival, proliferation, and motility. Their dysregulation is therefore a common feature in the pathogenesis of a number of solid tumors, including thyroid cancers. Inhibiting activated protein kinases has revolutionized thyroid cancer therapy, offering a promising strategy in treating tumors refractory to radioactive iodine treatment or cytotoxic chemotherapies. However, despite satisfactory early responses, these drugs are not curative and most patients inevitably progress due to drug resistance. This review summarizes up-to-date knowledge on various mechanisms that thyroid cancer cells develop to bypass protein kinase inhibition and outlines strategies that are being explored to overcome drug resistance. Understanding how cancer cells respond to drugs and identifying novel molecular targets for therapy still represents a major challenge for the treatment of these patients.
Collapse
Affiliation(s)
- Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muthusamy Kunnimalaiyaan
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer R. Wang
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naifa L. Busaidy
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven I. Sherman
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen Y. Lai
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Zafereo
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria E. Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Dain Md Opo FA, Alsaiari AA, Rahman Molla MH, Ahmed Sumon MA, Yaghmour KA, Ahammad F, Mohammad F, Simal-Gandara J. Identification of novel natural drug candidates against BRAF mutated carcinoma; An integrative in-silico structure-based pharmacophore modeling and virtual screening process. Front Chem 2022; 10:986376. [PMID: 36267655 PMCID: PMC9577413 DOI: 10.3389/fchem.2022.986376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/07/2022] [Indexed: 12/30/2022] Open
Abstract
The BRAF gene is responsible for transferring signals from outside of the cell to inside of the nucleus by converting a protein namely B-Raf through the RAS/MAPK pathway. This pathway contribute to cell division, proliferation, migration, and apoptotic cell death of human and animal. Mutation in this gene may cause the development of several cancers, including lung, skin, colon, and neuroblastoma. Currently, a few available drugs are being used that has developed by targeting the BRAF mutated protein, and due to the toxic side effects, patients suffer a lot during their treatment. Therefore this study aimed to identify potentially lead compounds that can target and block the expression of BRAF and subsequently inhibit the cancer. The hits were generated through the pharmacophore model-based virtual screening, molecular docking, pharmacohore model validation, ADME (absorption, distribution, metabolism, and excretion) analysis molecular dynamics (MD) simulation to find more suitable candidate against the overexpress BRAF gene. The pharmacophore based screening initially identified 14 k possible hits from online database which were further screened by ligand scout advance software to get hit compound. Based on molecular docking score of ZINC70454679 (-10.6 kcal/mol), ZINC253500968 (-9.4 kcal/mol), ZINC106887736 (-8.6 kcal/mol), and ZINC107434492 (-8.1 kcal/mol), pharmacophore feature and toxicity evaluation, we selected four possible lead compounds. The dynamic simulation with Schrodinger Maestro software was used to determine the stability of the potential lead candidates with target protein (PDB ID: 5VAM). The results showed that the newly obtained four compounds were more stable than the control ligand (Pub Chem ID: 90408826). The current results showed that the ZINC70454679, ZINC253500968, ZINC106887736, and ZINC107434492 compounds may be able to work against several cancers through targeting the BRAF overexpressed gene. To develop a novel drug candidate, however the evaluation of the web lab based experimental work are necessary to evaluate the efficiency of the each compound against the BRAF target gene.
Collapse
Affiliation(s)
- F. A. Dain Md Opo
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center (KFMRC), KAU, Jeddah, Saudi Arabia
| | - Ahad Amer Alsaiari
- Clinical Laboratories, Science Department, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | | | - Md Afsar Ahmed Sumon
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled A. Yaghmour
- Family Medicine Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Foysal Ahammad
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
- *Correspondence: Foysal Ahammad, ; Farhan Mohammad, ; Jesus Simal-Gandara,
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
- *Correspondence: Foysal Ahammad, ; Farhan Mohammad, ; Jesus Simal-Gandara,
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- *Correspondence: Foysal Ahammad, ; Farhan Mohammad, ; Jesus Simal-Gandara,
| |
Collapse
|
14
|
In silico high throughput screening and in vitro validation of a novel Raf/Mek dual inhibitor against colorectal carcinoma. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Youssef ASED, Abdel-Fattah MA, Lotfy MM, Nassar A, Abouelhoda M, Touny AO, Hassan ZK, Mohey Eldin M, Bahnassy AA, Khaled H, Zekri ARN. Multigene Panel Sequencing Reveals Cancer-Specific and Common Somatic Mutations in Colorectal Cancer Patients: An Egyptian Experience. Curr Issues Mol Biol 2022; 44:1332-1352. [PMID: 35723313 PMCID: PMC8947625 DOI: 10.3390/cimb44030090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
This study aims at identifying common pathogenic somatic mutations at different stages of colorectal carcinogenesis in Egyptian patients. Our cohort included colonoscopic biopsies collected from 120 patients: 20 biopsies from patients with inflammatory bowel disease, 38 from colonic polyp patients, and 62 from patients with colorectal cancer. On top of this, the cohort included 20 biopsies from patients with non-specific mild to moderated colitis. Targeted DNA sequencing using a customized gene panel of 96 colorectal related genes running on the Ion Torrent NGS technology was used to process the samples. Our results revealed that 69% of all cases harbored at least one somatic mutation. Fifty-seven genes were found to carry 232 somatic non-synonymous variants. The most frequently pathogenic somatic mutations were localized in TP53, APC, KRAS, and PIK3CA. In total, 16 somatic mutations were detected in the CRC group and in either the IBD or CP group. In addition, our data showed that 51% of total somatic variants were CRC-specific variants. The average number of CRC-specific variants per sample is 2.4. The top genes carrying CRC-specific mutations are APC, TP53, PIK3CA, FBXW7, ATM, and SMAD4. It seems obvious that TP53 and APC genes were the most affected genes with somatic mutations in all groups. Of interest, 85% and 28% of the APC and TP53 deleterious somatic mutations were located in Exon 14 and Exon 3, respectively. Besides, 37% and 28% of the total somatic mutations identified in APC and TP53 were CRC-specific variants, respectively. Moreover, we identified that, in 29 somatic mutations in 21 genes, their association with CRC patients was unprecedented. Ten detected variants were likely to be novel: six in PIK3CA and four variants in FBXW7. The detected P53, Wnt/βcatenin, Angiogenesis, EGFR, TGF-β and Interleukin signaling pathways were the most altered pathways in 22%, 16%, 12%, 10%, 9% and 9% of the CRC patients, respectively. These results would contribute to a better understanding of the colorectal cancer and in introducing personalized therapies for Egyptian CRC patients.
Collapse
Affiliation(s)
- Amira Salah El-Din Youssef
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | | | - Mai M. Lotfy
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | - Auhood Nassar
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | | | - Ahmed O. Touny
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Zeinab K. Hassan
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | - Mohammed Mohey Eldin
- Tropical Medicine Department, El Kasr Al-Aini, Cairo University, Cairo 11562, Egypt;
| | - Abeer A. Bahnassy
- Molecular Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Hussein Khaled
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Abdel Rahman N. Zekri
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| |
Collapse
|
16
|
Lin YF, Liu JJ, Chang YJ, Yu CS, Yi W, Lane HY, Lu CH. Predicting Anticancer Drug Resistance Mediated by Mutations. Pharmaceuticals (Basel) 2022; 15:ph15020136. [PMID: 35215249 PMCID: PMC8878306 DOI: 10.3390/ph15020136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer drug resistance presents a challenge for precision medicine. Drug-resistant mutations are always emerging. In this study, we explored the relationship between drug-resistant mutations and drug resistance from the perspective of protein structure. By combining data from previously identified drug-resistant mutations and information of protein structure and function, we used machine learning-based methods to build models to predict cancer drug resistance mutations. The performance of our combined model achieved an accuracy of 86%, a Matthews correlation coefficient score of 0.57, and an F1 score of 0.66. We have constructed a fast, reliable method that predicts and investigates cancer drug resistance in a protein structure. Nonetheless, more information is needed concerning drug resistance and, in particular, clarification is needed about the relationships between the drug and the drug resistance mutations in proteins. Highly accurate predictions regarding drug resistance mutations can be helpful for developing new strategies with personalized cancer treatments. Our novel concept, which combines protein structure information, has the potential to elucidate physiological mechanisms of cancer drug resistance.
Collapse
Affiliation(s)
- Yu-Feng Lin
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan; (Y.-F.L.); (W.Y.)
| | - Jia-Jun Liu
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 40402, Taiwan; (J.-J.L.); (Y.-J.C.)
| | - Yu-Jen Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 40402, Taiwan; (J.-J.L.); (Y.-J.C.)
| | - Chin-Sheng Yu
- Department of Information Engineering and Computer Science, Feng Chia University, Taichung 40201, Taiwan;
| | - Wei Yi
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan; (Y.-F.L.); (W.Y.)
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Psychiatry, China Medical University Hospital, Taichung 40402, Taiwan
- Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chih-Hao Lu
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 40402, Taiwan; (J.-J.L.); (Y.-J.C.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
- Correspondence:
| |
Collapse
|
17
|
Mutational spectrum of BRAF gene in colorectal cancer patients in Saudi Arabia. Saudi J Biol Sci 2021; 28:5906-5912. [PMID: 34588906 PMCID: PMC8459112 DOI: 10.1016/j.sjbs.2021.06.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the topmost causes of death in males in Saudi Arabia. In females, it was also within the top five cancer types. CRC is heterogeneous in terms of pathogenicity and molecular genetic pathways. It is very important to determine the genetic causes of CRC in the Saudi population. BRAF is one of the major genes involved in cancers, it participates in transmitting chemical signals from outside the cells into the nucleus of the cells and it is also shown to participate in cell growth. In this study, we mapped the spectrum of BRAF mutations in 100 Saudi patients with CRC. We collected tissue samples from colorectal cancer patients, sequenced the BRAF gene to identify gene alterations, and analyzed the data using different bioinformatics tools. We designed a three-dimensional (3D) homology model of the BRAF protein using the Swiss Model automated homology modeling platform to study the structural impact of these mutations using the Missense3D algorithm. We found six mutations in 14 patients with CRC. Four of these mutations are being reported for the first time. The novel frameshift mutations observed in CRC patients, such as c.1758delA (E586E), c.1826insT (Q609L), c.1860insA and c.1860insA/C (M620I), led to truncated proteins of 589, 610, and 629 amino acids, respectively, and potentially affected the structure and the normal functions of BRAF. These findings provide insights into the molecular etiology of CRC in general and to the Saudi population. BRAF genetic testing may also guide treatment modalities, and the treatment may be optimized based on personalized gene variations.
Collapse
|
18
|
Fassan M, Scarpa A, Remo A, De Maglio G, Troncone G, Marchetti A, Doglioni C, Ingravallo G, Perrone G, Parente P, Luchini C, Mastracci L. Current prognostic and predictive biomarkers for gastrointestinal tumors in clinical practice. Pathologica 2021; 112:248-259. [PMID: 33179625 PMCID: PMC7931577 DOI: 10.32074/1591-951x-158] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The pathologist emerged in the personalized medicine era as a central actor in the definition of the most adequate diagnostic and therapeutic algorithms. In the last decade, gastrointestinal oncology has seen a significantly increased clinical request for the integration of novel prognostic and predictive biomarkers in histopathological reports. This request couples with the significant contraction of invasive sampling of the disease, thus conferring to the pathologist the role of governor for both proper pathologic characterization and customized processing of the biospecimens. This overview will focus on the most commonly adopted immunohistochemical and molecular biomarkers in the routine clinical characterization of gastrointestinal neoplasms referring to the most recent published recommendations, guidelines and expert opinions.
Collapse
Affiliation(s)
- Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Italy
| | - Aldo Scarpa
- ARC-NET Research Centre, University of Verona, Italy.,Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Andrea Remo
- Pathology Unit, Service Department, ULSS9 "Scaligera", Verona, Italy
| | | | - Giancarlo Troncone
- Department of Public Health, Federico II University Medical School Naples, Italy
| | - Antonio Marchetti
- Center of Predictive Molecular Medicine, Center for Excellence on Aging and Translational Medicine, University of Chieti-Pescara, Italy
| | - Claudio Doglioni
- Vita e Salute University, Milan, Italy.,Pathology Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Ingravallo
- Department of Emergency and Organ Transplantation, Section of Pathological Anatomy, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Perrone
- Department of Pathology, Campus Bio-Medico University, Rome, Italy
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Mastracci
- Anatomic Pathology, San Martino IRCCS Hospital,, Genova, Italy.,Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| |
Collapse
|
19
|
Zhuang Y, Wang H, Jiang D, Li Y, Feng L, Tian C, Pu M, Wang X, Zhang J, Hu Y, Liu P. Multi gene mutation signatures in colorectal cancer patients: predict for the diagnosis, pathological classification, staging and prognosis. BMC Cancer 2021; 21:380. [PMID: 33836681 PMCID: PMC8034139 DOI: 10.1186/s12885-021-08108-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/28/2021] [Indexed: 12/14/2022] Open
Abstract
Background Identifying gene mutation signatures will enable a better understanding for the occurrence and development of colorectal cancer (CRC), and provide some potential biomarkers for clinical practice. Currently, however, there is still few effective biomarkers for early diagnosis and prognostic judgment in CRC patients. The purpose was to identify novel mutation signatures for the diagnosis and prognosis of CRC. Methods Clinical information of 531 CRC patients and their sequencing data were downloaded from TCGA database (training group), and 53 clinical patients were collected and sequenced with targeted next generation sequencing (NGS) technology (validation group). The relationship between the mutation genes and the diagnosis, pathological type, stage and prognosis of CRC were compared to construct signatures for CRC, and then analyzed their relationship with RNA expression, immunocyte infiltration and tumor microenvironment (TME). Results Mutations of TP53, APC, KRAS, BRAF and ATM covered 97.55% of TCGA population and 83.02% validation patients. Moreover, 57.14% validation samples and 22.06% TCGA samples indicated that patients with mucinous adenocarcinoma tended to have BRAF mutation, but no TP53 mutation. Mutations of TP53, PIK3CA, FAT4, FMN2 and TRRAP had a remarkable difference between I-II and III-IV stage patients (P < 0.0001). Besides, the combination of PIK3CA, LRP1B, FAT4 and ROS1 formed signatures for the prognosis and survival of CRC patients. The mutations of TP53, APC, KRAS, BRAF, ATM, PIK3CA, FAT4, FMN2, TRRAP, LRP1B, and ROS1 formed the signatures for predicting diagnosis and prognosis of CRC. Among them, mutation of TP53, APC, KRAS, BRAF, ATM, PIK3CA, FAT4 and TRRAP significantly reduced their RNA expression level. Stromal score, immune score and ESTIMATE score were lower in patients with TP53, APC, KRAS, PIK3CA mutation compared non-mutation patients. All the 11 gene mutations affected the distributions of immune cells. Conclusion This study constructed gene mutation signatures for the diagnosis, treatment and prognosis in CRC, and proved that their mutations affected RNA expression levels, TME and immunocyte infiltration. Our results put forward further insights into the genotype of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08108-9.
Collapse
Affiliation(s)
- Yan Zhuang
- Department of Colorectal Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Hailong Wang
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No.354 Beima Road, Hongqiao District, Tianjin, 300120, China
| | - Da Jiang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Ying Li
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Lixia Feng
- Department of Nursing, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300300, China
| | - Caijuan Tian
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd, Tianjin, 300381, China
| | - Mingyu Pu
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd, Tianjin, 300381, China
| | - Xiaowei Wang
- Tianjin Yunquan Intelligent Technology Co., Ltd, Tianjin, 300381, China
| | - Jiangyan Zhang
- Tianjin Yunquan Intelligent Technology Co., Ltd, Tianjin, 300381, China
| | - Yuanjing Hu
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics & Gynecology, No. 156 Nankai Third Road, Nankai District, Tianjin, 300100, China.
| | - Pengfei Liu
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No.354 Beima Road, Hongqiao District, Tianjin, 300120, China.
| |
Collapse
|
20
|
Alabi S, Jaime-Figueroa S, Yao Z, Gao Y, Hines J, Samarasinghe KTG, Vogt L, Rosen N, Crews CM. Mutant-selective degradation by BRAF-targeting PROTACs. Nat Commun 2021; 12:920. [PMID: 33568647 PMCID: PMC7876048 DOI: 10.1038/s41467-021-21159-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
Over 300 BRAF missense mutations have been identified in patients, yet currently approved drugs target V600 mutants alone. Moreover, acquired resistance inevitably emerges, primarily due to RAF lesions that prevent inhibition of BRAF V600 with current treatments. Therefore, there is a need for new therapies that target other mechanisms of activated BRAF. In this study, we use the Proteolysis Targeting Chimera (PROTAC) technology, which promotes ubiquitination and degradation of neo-substrates, to address the limitations of BRAF inhibitor-based therapies. Using vemurafenib-based PROTACs, we achieve low nanomolar degradation of all classes of BRAF mutants, but spare degradation of WT RAF family members. Our lead PROTAC outperforms vemurafenib in inhibiting cancer cell growth and shows in vivo efficacy in a Class 2 BRAF xenograft model. Mechanistic studies reveal that BRAFWT is spared due to weak ternary complex formation in cells owing to its quiescent inactivated conformation, and activation of BRAFWT sensitizes it to degradation. This study highlights the degree of selectivity achievable with degradation-based approaches by targeting mutant BRAF-driven cancers while sparing BRAFWT, providing an anti-tumor drug modality that expands the therapeutic window. Hundreds of BRAF mutations have been identified in patients with cancer but currently approved drugs only target BRAF V600 mutants. Here, the authors develop a vemurafenib-based PROTAC that induces degradation of all classes of BRAF mutants without affecting wild-type RAF proteins.
Collapse
Affiliation(s)
| | - Saul Jaime-Figueroa
- Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Zhan Yao
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yijun Gao
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Hines
- Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | | | - Lea Vogt
- Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Neal Rosen
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Craig M Crews
- Department of Pharmacology, New Haven, CT, USA. .,Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA. .,Department of Chemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
21
|
Affiliation(s)
- Cathy Eng
- Vanderbilt-Ingram Cancer Center, Nashville, TN
| |
Collapse
|
22
|
Katopodis P, Khalifa MS, Anikin V. Molecular characteristics of uveal melanoma and intraocular tumors. Oncol Lett 2021; 21:9. [PMID: 33240415 PMCID: PMC7681201 DOI: 10.3892/ol.2020.12270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Malignant melanomas within the eye present different types of metabolic and metastatic behavior. Uveal melanoma (UM) affects a quarter of a million individuals in the USA; however, the molecular pathogenesis is not well understood. Although UV radiation is a risk factor in cutaneous melanomas, it is not crucial for UM progression. Apart from chromosomal abnormalities, numerous major tumorigenic signaling pathways, including the PI3K/Akt, MAPK/ERK, Ras-association domain family 1 isoform A and Yes-associated protein/transcriptional co-activator with PDZ-binding motif signaling pathways, are associated with intraocular tumors. The present review describes the current insights regarding these signaling pathways that regulate the cell cycle and apoptosis, and could be used as potential targets for the treatment of UMs.
Collapse
Affiliation(s)
- Periklis Katopodis
- College of Health, Medicine and Life Sciences, Brunel University, Uxbridge, London UB8 3PH, UK
- Division of Thoracic Surgery, The Royal Brompton and Harefield National Health Service Foundation Trust, Harefield Hospital, London UB9 6JH, UK
| | - Mohammad S. Khalifa
- College of Health, Medicine and Life Sciences, Brunel University, Uxbridge, London UB8 3PH, UK
| | - Vladimir Anikin
- College of Health, Medicine and Life Sciences, Brunel University, Uxbridge, London UB8 3PH, UK
- Division of Thoracic Surgery, The Royal Brompton and Harefield National Health Service Foundation Trust, Harefield Hospital, London UB9 6JH, UK
- Department of Oncology and Reconstructive Surgery, Sechenov First Moscow State Medical University, Moscow 119146, Russia
| |
Collapse
|
23
|
Rumpold H, Niedersüß-Beke D, Heiler C, Falch D, Wundsam HV, Metz-Gercek S, Piringer G, Thaler J. Prediction of mortality in metastatic colorectal cancer in a real-life population: a multicenter explorative analysis. BMC Cancer 2020; 20:1149. [PMID: 33238958 PMCID: PMC7691098 DOI: 10.1186/s12885-020-07656-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Metastatic colorectal cancer (mCRC) remains a lethal disease. Survival, however, is increasing due to a growing number of treatment options. Yet due to the number of prognostic factors and their interactions, prediction of mortality is difficult. The aim of this study is to provide a clinical model supporting prognostication of mCRC mortality in daily practice. METHODS Data from 1104 patients with mCRC in three prospective cancer datasets were used to construct and validate Cox models. Input factors for stepwise backward method variable selection were sex, RAS/BRAF-status, microsatellite status, treatment type (no treatment, systemic treatment with or without resection of metastasis), tumor load, location of primary tumor, metastatic patterns and synchronous or metachronous disease. The final prognostic model for prediction of survival at two and 3 years was validated via bootstrapping to obtain calibration and discrimination C-indices and dynamic time dependent AUC. RESULTS Age, sidedness, number of organs with metastases, lung as only site of metastasis, BRAF mutation status and treatment type were selected for the model. Treatment type had the most prominent influence on survival (resection of metastasis HR 0.26, CI 0.21-0.32; any treatment vs no treatment HR 0.31, CI 0.21-0.32), followed by BRAF mutational status (HR 2.58, CI 1.19-1.59). Validation showed high accuracy with C-indices of 72.2 and 71.4%, and dynamic time dependent AUC's of 76.7 ± 1.53% (both at 2 or 3 years), respectively. CONCLUSION The mCRC mortality prediction model is well calibrated and internally valid. It has the potential to support both, clinical prognostication for treatment decisions and patient communication.
Collapse
Affiliation(s)
- Holger Rumpold
- Gastrointestinal Cancer Center, Ordensklinikum Linz, Seilerstaette 4, 4010, Linz, Austria.
| | | | - Cordula Heiler
- Department of Internal Medicine I, Wilhelminenspital, Vienna, Austria
| | - David Falch
- Department of Internal Medicine I, Wilhelminenspital, Vienna, Austria
| | | | | | - Gudrun Piringer
- Department of Internal Medicine IV, Hospital Wels-Grieskirchen, Wels, Austria
| | - Josef Thaler
- Department of Internal Medicine IV, Hospital Wels-Grieskirchen, Wels, Austria
| |
Collapse
|
24
|
Li M, Zhang Z, Li L, Wang X. An algorithm to quantify intratumor heterogeneity based on alterations of gene expression profiles. Commun Biol 2020; 3:505. [PMID: 32917965 PMCID: PMC7486929 DOI: 10.1038/s42003-020-01230-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 08/18/2020] [Indexed: 12/23/2022] Open
Abstract
Intratumor heterogeneity (ITH) is a biomarker of tumor progression, metastasis, and immune evasion. Previous studies evaluated ITH mostly based on DNA alterations. Here, we developed a new algorithm (DEPTH) for quantifying ITH based on mRNA alterations in the tumor. DEPTH scores displayed significant correlations with ITH-associated features (genomic instability, tumor advancement, unfavorable prognosis, immunosuppression, and drug response). Compared to DNA-based ITH scores (EXPANDS, PhyloWGS, MATH, and ABSOLUTE), DEPTH scores had stronger correlations with antitumor immune signatures, cell proliferation, stemness, tumor advancement, survival prognosis, and drug response. Compared to two other mRNA-based ITH scores (tITH and sITH), DEPTH scores showed stronger and more consistent associations with genomic instability, unfavorable tumor phenotypes and clinical features, and drug response. We further validated the reliability and robustness of DEPTH in 50 other datasets. In conclusion, DEPTH may provide new insights into tumor biology and potential clinical implications for cancer prognosis and treatment.
Collapse
Affiliation(s)
- Mengyuan Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhilan Zhang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Lin Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China. .,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China. .,Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
25
|
Spiegelberg D, Mortensen ACL, Palupi KD, Micke P, Wong J, Vojtesek B, Lane DP, Nestor M. The Novel Anti-cMet Antibody seeMet 12 Potentiates Sorafenib Therapy and Radiotherapy in a Colorectal Cancer Model. Front Oncol 2020; 10:1717. [PMID: 33014851 PMCID: PMC7516085 DOI: 10.3389/fonc.2020.01717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/31/2020] [Indexed: 12/23/2022] Open
Abstract
Rational cMet is abnormally regulated in gastrointestinal cancer, and is associated with increased invasiveness of the disease and poor overall survival. There are indications that targeted therapy against cMet, alone or in combination with additional cancer therapies, can help improve treatment outcome. Thus, in the present study we investigated the therapeutic efficacy of a novel cMet-targeting antibody therapy in gastrointestinal cancer models, and assessed potential augmenting effects in combination with tyrosine kinase inhibitor (TKI) targeted therapy or radiotherapy. Methods Three different cMet-targeting antibodies were first characterized with respect to antigen binding and effects on cell viability in vitro. The best performing candidate seeMet 12 was then further assessed for effects on colorectal cancer cell growth, proliferation and migration. Combinations with the TKI-inhibitor sorafenib or external beam radiotherapy were then evaluated for potential additive or synergistic effects in vitro using monolayer- and multicellular tumor spheroid assays. Finally, the combination of seeMet 12 and radiotherapy was evaluated in vivo in a proof-of-concept colorectal cancer xenograft study. Results Dose-dependent therapeutic effects were demonstrated for all three cMet-targeting antibodies. Monotherapy using seeMet 12 resulted in impaired cellular migration/proliferation and reduced tumor spheroid growth. Moreover, seeMet 12 was able to potentiate therapeutic effects in vitro for both sorafenib and radiotherapy treatments. Finally, the in vivo therapy study demonstrated promising results, where a combination of seeMet 12 and fractionated radiotherapy increased median survival by 79% compared to radiotherapy alone, and tripled maximum survival. Conclusion The novel anti-cMet antibody seeMet 12 demonstrated therapeutic effects in cMet positive gastrointestinal cancer cells in vitro. Moreover, the addition of seeMet 12 augmented the effects of sorafenib and radiotherapy. An in vivo proof-of-concept study of seeMet 12 and radiotherapy further validated the results. Thus, cMet-targeted therapy should be further explored as a promising approach to increase therapeutic effects, circumvent treatment resistance, and reduce side effects.
Collapse
Affiliation(s)
- Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Kartika Dyah Palupi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Julin Wong
- p53 Laboratory, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
| | - David Philip Lane
- p53 Laboratory, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Sammarco G, Gallo G, Vescio G, Picciariello A, De Paola G, Trompetto M, Currò G, Ammendola M. Mast Cells, microRNAs and Others: The Role of Translational Research on Colorectal Cancer in the Forthcoming Era of Precision Medicine. J Clin Med 2020; 9:jcm9092852. [PMID: 32899322 PMCID: PMC7564551 DOI: 10.3390/jcm9092852] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease, molecularly and anatomically, that develops in a multi-step process requiring the accumulation of several genetic or epigenetic mutations that lead to the gradual transformation of normal mucosa into cancer. In fact, tumorigenesis is extremely complex, with many immunologic and non-immunologic factors present in the tumor microenvironment that can influence tumorigenesis. In the last few years, a role for mast cells (MCs), microRNAs (miRNAs), Kirsten rat sarcoma (KRAS) and v-raf murine sarcoma viral oncogene homologue B (BRAF) in cancer development and progression has been suggested, and numerous efforts have been made to thoroughly assess their correlation with CRC to improve patient survival and quality of life. The identification of easily measurable, non-invasive and cost-effective biomarkers, the so-called "ideal biomarkers", for CRC screening and treatment remains a high priority. The aim of this review is to discuss the emerging role of mast cells (MCs), microRNAs (miRNAs), KRAS and BRAF as diagnostic and prognostic biomarkers for CRC, evaluating their influence as potential therapy targets in the forthcoming era of precision medicine.
Collapse
Affiliation(s)
- Giuseppe Sammarco
- Department of Health Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.S.); (G.C.); (M.A.)
| | - Gaetano Gallo
- Department of Medical and Surgical Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.V.); (G.D.P.)
- Correspondence: ; Tel.: +39-32-8438-5222
| | - Giuseppina Vescio
- Department of Medical and Surgical Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.V.); (G.D.P.)
| | - Arcangelo Picciariello
- Department of Emergency and Organ Transplantation, University “Aldo Moro” of Bari, Piazza G Cesare, 11, 70124 Bari, Italy;
| | - Gilda De Paola
- Department of Medical and Surgical Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.V.); (G.D.P.)
| | - Mario Trompetto
- Department of Colorectal Surgery, S. Rita Clinic, 13100 Vercelli, Italy;
| | - Giuseppe Currò
- Department of Health Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.S.); (G.C.); (M.A.)
| | - Michele Ammendola
- Department of Health Sciences, University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.S.); (G.C.); (M.A.)
| |
Collapse
|
27
|
Krenacs T, Meggyeshazi N, Forika G, Kiss E, Hamar P, Szekely T, Vancsik T. Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models. Int J Mol Sci 2020; 21:E6270. [PMID: 32872532 PMCID: PMC7504298 DOI: 10.3390/ijms21176270] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
The benefits of high-fever range hyperthermia have been utilized in medicine from the Ancient Greek culture to the present day. Amplitude-modulated electro-hyperthermia, induced by a 13.56 MHz radiofrequency current (mEHT, or Oncothermia), has been an emerging means of delivering loco-regional clinical hyperthermia as a complementary of radiation-, chemo-, and molecular targeted oncotherapy. This unique treatment exploits the metabolic shift in cancer, resulting in elevated oxidative glycolysis (Warburg effect), ion concentration, and electric conductivity. These promote the enrichment of electric fields and induce heat (controlled at 42 °C), as well as ion fluxes and disequilibrium through tumor cell membrane channels. By now, accumulating preclinical studies using in vitro and in vivo models of different cancer types have revealed details of the mechanism and molecular background of the oncoreductive effects of mEHT monotherapy. These include the induction of DNA double-strand breaks, irreversible heath and cell stress, and programmed cells death; the upregulation of molecular chaperones and damage (DAMP) signaling, which may contribute to a secondary immunogenic tumor cell death. In combination therapies, mEHT proved to be a good chemosensitizer through increasing drug uptake and tumor reductive effects, as well as a good radiosensitizer by downregulating hypoxia-related target genes. Recently, immune stimulation or intratumoral antigen-presenting dendritic cell injection have been able to extend the impact of local mEHT into a systemic "abscopal" effect. The complex network of pathways emerging from the published mEHT experiments has not been overviewed and arranged yet into a framework to reveal links between the pieces of the "puzzle". In this paper, we review the mEHT-related damage mechanisms published in tumor models, which may allow some geno-/phenotype treatment efficiency correlations to be exploited both in further research and for more rational clinical treatment planning when mEHT is involved in combination therapies.
Collapse
Affiliation(s)
- Tibor Krenacs
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Nora Meggyeshazi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Gertrud Forika
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Eva Kiss
- Institute of Oncology at 1st Department of Internal Medicine, Semmelweis University, H-1083 Budapest, Hungary;
| | - Peter Hamar
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary; (P.H.); (T.V.)
| | - Tamas Szekely
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Tamas Vancsik
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary; (P.H.); (T.V.)
| |
Collapse
|
28
|
Najmuddin SUFS, Amin ZM, Tan SW, Yeap SK, Kalyanasundram J, Ani MAC, Veerakumarasivam A, Chan SC, Chia SL, Yusoff K, Alitheen NB. Cytotoxicity study of the interleukin-12-expressing recombinant Newcastle disease virus strain, rAF-IL12, towards CT26 colon cancer cells in vitro and in vivo. Cancer Cell Int 2020; 20:278. [PMID: 32612457 PMCID: PMC7325054 DOI: 10.1186/s12935-020-01372-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background Oncolytic viruses have emerged as an alternative therapeutic modality for cancer as they can replicate specifically in tumour cells and induce toxic effects leading to apoptosis. Despite the great potentials and promising results shown in multiple studies, it appears that their efficacy is still moderate and deemed as not sufficient in clinical studies. In addressing this issue, genetic/molecular engineering approach has paved its way to improve the therapeutic efficacy as observed in the case of herpes simplex virus (HSV) expressing granulocyte–macrophage colony-stimulating factor (GM-CSF). This study aimed to explore the cytotoxicity effects of recombinant NDV strain AF2240-i expressing interleukin-12 (rAF-IL12) against CT26 colon cancer cells. Methods The cytotoxicity effect of rAF-IL12 against CT26 colon cancer cell line was determined by MTT assay. Based on the IC50 value from the anti-proliferative assay, further downward assays such as Annexin V FITC and cell cycle progression were carried out and measured by flow cytometry. Then, the in vivo study was conducted where the rAF-IL12 viral injections were given at the intra-tumoral site of the CT26 tumour-burden mice. At the end of the experiment, serum biochemical, T cell immunophenotyping, serum cytokine, histopathology of tumour and organ section, TUNEL assay, and Nanostring gene expression analysis were performed. Results The rAF-IL12 induced apoptosis of CT26 colon cancer cells in vitro as revealed in the Annexin V FITC analysis and also arrested the cancer cells progression at G1 phase of the cell cycle analysis. On the other hand, the rAF-IL12 significantly (p < 0.05) inhibited the growth of CT26 tumour in Balb/c mice and had regulated the immune system by increasing the level of CD4 + , CD8 + , IL-2, IL-12, and IFN-γ. Furthermore, the expression level of apoptosis-related genes (bax and p53) was up-regulated as a result of the rAF-IL12 treatment. Additionally, the rAF-IL12 had also down-regulated the expression level of KRAS, BRAF, MAPK1, Notch1, CCL2, and VEGF oncogenes. Besides, rAF-IL12 intra-tumoral delivery was considered safe and not hazardous to the host as evidenced in pathophysiology of the normal tissues and organs of the mice as well as from the serum biochemistry profile of liver and kidney. Conclusions These results indicated that rAF-IL12 had better anti-tumoral and cytotoxicity effects compared to its parental wild-type, AF2240-i in combatting the CT26 colon cancer model.
Collapse
Affiliation(s)
| | - Zahiah Mohamed Amin
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia
| | - Sheau Wei Tan
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia
| | - Swee Keong Yeap
- Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang, Selangor Darul Ehsan Malaysia
| | - Jeevanathan Kalyanasundram
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia
| | - Muhamad Alhapis Che Ani
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia
| | | | - Soon Choy Chan
- School of Foundation Studies, Perdana University, Block B and D1, MAEPS Building, MARDI Complex, Jalan MAEPS Perdana, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Suet Lin Chia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia.,Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia
| | - Khatijah Yusoff
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia.,Malaysian Genome Institute, National Institute of Biotechnology, Kajang, Jalan Bangi, 43000 Selangor Darul Ehsan Malaysia
| | - Noorjahan Banu Alitheen
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia.,Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan 43400 Malaysia
| |
Collapse
|
29
|
Gui H, Husson MA, Mannan R. Correlations of morphology and molecular alterations in traditional serrated adenoma. World J Gastrointest Pathophysiol 2020; 11:78-83. [PMID: 32587787 PMCID: PMC7303981 DOI: 10.4291/wjgp.v11.i4.78] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Traditional serrated adenoma was first reported by Longacre and Fenoglio-Presier in 1990. Their initial study described main features of this lesion, but the consensus diagnostic criteria were not widely adopted until recently. Traditional serrated adenoma presents with grossly protuberant configuration and pinecone-like appearance upon endoscopy. Histologically, it is characterized by ectopic crypt formation, slit-like serration, eosinophilic cytoplasm and pencillate nuclei. Although much is now known about the morphology and molecular changes, the mechanisms underlying the morphological alterations are still not fully understood. Furthermore, the origin of traditional serrated adenoma is not completely known. We review recent studies of the traditional serrated adenoma and provide an overview on current understanding of this rare entity.
Collapse
Affiliation(s)
- Hongxing Gui
- Department of Pathology and Laboratory Medicine, Pennsylvania Hospital of the University of Pennsylvania Health System, Philadelphia, PA 19107, United States
| | - Michael A Husson
- Department of Pathology and Laboratory Medicine, Pennsylvania Hospital of the University of Pennsylvania Health System, Philadelphia, PA 19107, United States
| | - Rifat Mannan
- Department of Pathology and Laboratory Medicine, Pennsylvania Hospital of the University of Pennsylvania Health System, Philadelphia, PA 19107, United States
| |
Collapse
|
30
|
Rafoxanide Induces Immunogenic Death of Colorectal Cancer Cells. Cancers (Basel) 2020; 12:cancers12051314. [PMID: 32455811 PMCID: PMC7281008 DOI: 10.3390/cancers12051314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related death in the world. Emerging evidence suggests that the clinical success of conventional chemotherapy does not merely rely on cell toxicity, but also results from the restoration of tumor immune surveillance. Anti-tumor immune response can be primed by immunogenic cell death (ICD), a form of apoptosis associated with endoplasmic reticulum stress (ERS) induction and the expression/release of specific damage-associated molecular patterns (DAMPs). Unfortunately, a limited number of ICD inducers have been identified so far. The anti-helmintic drug rafoxanide has recently showed anti-tumor activity in different cancer types, including CRC. As such latter effects relied on ERS activation, we here investigated whether rafoxanide could promote ICD of CRC cells. The potential of rafoxanide to induce ICD-related DAMPs in both human and mouse CRC cells was assessed by flow-cytometry, chemiluminescent assay and ELISA. In addition, the immunogenic potential of rafoxanide was assessed in vivo using a vaccination assay. Rafoxanide induced all the main DAMPs (ecto-calreticulin exposure, adenosine triphosphate (ATP)/high mobility group box 1 (HMGB1) release) required for ICD. We observed a marked increase of tumor-free survival among immunocompetent mice immunized with rafoxanide-treated dying tumor cells as compared with sham. Altogether, our data indicate rafoxanide as a bona fide ICD inducer.
Collapse
|
31
|
The mutational impact of culturing human pluripotent and adult stem cells. Nat Commun 2020; 11:2493. [PMID: 32427826 PMCID: PMC7237696 DOI: 10.1038/s41467-020-16323-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
Genetic changes acquired during in vitro culture pose a risk for the successful application of stem cells in regenerative medicine. To assess the genetic risks induced by culturing, we determined all mutations in individual human stem cells by whole genome sequencing. Individual pluripotent, intestinal, and liver stem cells accumulate 3.5 ± 0.5, 7.2 ± 1.1 and 8.3 ± 3.6 base substitutions per population doubling, respectively. The annual in vitro mutation accumulation rate of adult stem cells is nearly 40-fold higher than the in vivo mutation accumulation rate. Mutational signature analysis reveals that in vitro induced mutations are caused by oxidative stress. Reducing oxygen tension in culture lowers the mutational load. We use the mutation rates, spectra, and genomic distribution to model the accumulation of oncogenic mutations during typical in vitro expansion, manipulation or screening experiments using human stem cells. Our study provides empirically defined parameters to assess the mutational risk of stem cell based therapies. Genetic changes acquired during in vitro culture pose a challenge to application of stem cells. Here the authors use whole genome sequencing to show that cultured human adult and pluripotent stem cells have a high mutational load caused by oxidative stress and reduced oxygen tension in culture lowers mutation rates.
Collapse
|
32
|
Synthesis and biological evaluation of a new series of 1-aryl-3-[4-(pyridin-2-ylmethoxy)phenyl]urea derivatives as new anticancer agents. Med Chem Res 2020; 29:1413-1423. [PMID: 32427204 PMCID: PMC7232929 DOI: 10.1007/s00044-020-02554-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 04/27/2020] [Indexed: 01/09/2023]
Abstract
The diaryl ureas are very important fragments in medicinal chemistry. By means of computer-aided design, 1-aryl-3-[4-(pyridin-2-ylmethoxy)phenyl]urea derivatives were designed and synthesized, and evaluated for their antiproliferative activity against A549, HCT-116, PC-3 cancer cell lines, and HL7702 human normal liver cell lines in vitro by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Most of the target compounds demonstrate significant antiproliferative effects on all the selective cancer cell lines. The calculated IC50 values were reported. The target compound 1-(4-chlorophenyl)-3-{4-{[3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methoxy}phenyl}urea (7u) demonstrated the most potent inhibitory activity (IC50 = 2.39 ± 0.10 μM for A549 and IC50 = 3.90 ± 0.33 μM for HCT-116), comparable to the positive-control sorafenib (IC50 = 2.12 ± 0.18 μM for A549 and IC50 = 2.25 ± 0.71 μM for HCT-116). Conclusively, 1-aryl-3-[4-(pyridin-2-ylmethoxy)phenyl]urea derivatives as the new anticancer agents were discovered, and could be used as the potential BRAF inhibitors for further research.
Collapse
|
33
|
Kim SC, Kim HS, Kim JH, Jeong N, Shin YK, Kim MJ, Park JW, Jeong SY, Ku JL. Establishment and characterization of 18 human colorectal cancer cell lines. Sci Rep 2020; 10:6801. [PMID: 32321971 PMCID: PMC7176734 DOI: 10.1038/s41598-020-63812-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/07/2020] [Indexed: 11/28/2022] Open
Abstract
Colorectal cancer (CRC) represents the third most frequently diagnosed malignancy worldwide and is the second most common cause of tumor-associated mortalities in Korea. Due to the disease’s aggressive behavior, the 5-year survival rate for CRC patients remains unpromising. Well-characterized cell lines have been used as a biological model for studying the biology of cancer and developing novel therapeutics. To assist in vitro studies, 18 CRC cell lines (SNU-1566, SNU-1983, SNU-2172, SNU-2297, SNU-2303, SNU-2353B, SNU-2359, SNU-2373B, SNU-2407, SNU-2423, SNU-2431, SNU-2465, SNU-2493, SNU-2536C, SNU-2621B, SNU-NCC-61, SNU-NCC-376, and SNU-NCC-377) derived from Korean patients were established and characterized in the present study. General characteristics of each cell line including doubling time, in vitro morphology, mutational profiles, and protein expressions of CRC-related genes were described. Whole exome sequencing was performed on each cell line to configure mutational profiles. Single nucleotide variation, frame shift, in-frame deletions and insertions, start codon deletion, and splice stop codon mutation of various genes were found and classified based on their pathogenicity reports. In addition, cell viability was assayed to measure their sensitivities to 24 anti-cancer drugs including anti-metabolites, kinase inhibitors, histone deacetylase inhibitors, alkylating inhibitors, and topoisomerase inhibitors, all widely used for various cancers. On testing, five CRC cell lines showed MSI, of which MLH1 or MSH6 gene was mutated. These newly established CRC cell lines can be used to investigate biological characteristics of CRC, particularly for investigating gene alterations associated with CRC.
Collapse
Affiliation(s)
- Soon-Chan Kim
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.,Deparntment of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hyun-Soo Kim
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jae Hyeon Kim
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Nahyun Jeong
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Young-Kyoung Shin
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Min Jung Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Korea.,Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul, 03080, Korea
| | - Ji Won Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Korea.,Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul, 03080, Korea
| | - Seung-Yong Jeong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul, 03080, Korea.
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Deparntment of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
34
|
Ahmed M. Colon Cancer: A Clinician's Perspective in 2019. Gastroenterology Res 2020; 13:1-10. [PMID: 32095167 PMCID: PMC7011914 DOI: 10.14740/gr1239] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
Colon cancer is a common preventable cancer. With the adoption of widespread colon cancer screening in the developed countries, the incidence and mortality of colon cancer have decreased in the targeted population. But unfortunately, the incidence and mortality of colorectal cancer (CRC) have been increasing over the last 25 years in the young adults below the age of 50. There is disparity in benefit, i.e. reduction in risk of death between right-sided and left-sided colon cancer by screening colonoscopy. The reason could be multifactorial and various measures have been taken to decrease this disparity. Although most of the screened populations are average risk individuals, a minority of the population have various risk factors for developing colon cancer and need to follow specific colon cancer screening guidelines. Gene mutations (adenomatous polyposis coli (APC), deleted in colon cancer (DCC), K-ras, p53, B-Raf proto-oncogene serine/threonine kinase (BRAF), mismatch repair genes) and microsatellite instability lead to the development of colon cancer. Although various non-invasive methods of colon cancer screening are now available, colonoscopy remains the gold standard of colon cancer screening and adenoma detection rate is now being used as the quality metrics in screening colonoscopy. Although Multi-Society Task Force (MSTF) and American College of Physicians (ACP) recommend initiating screening colonoscopy at age 50 years in all individuals except African Americans who should begin screening colonoscopy at age 45 years, the American Cancer Society (ACS) recommends initiating screening colonoscopy at age 45 years in all individuals irrespective of race and ethnicity. Low-volume split-dose prep has been found to be as effective as high-volume split-dose prep and more tolerable to patients with increased compliance. Boston bowel preparation scale is recommended to measure the quality of colon cleansing. CRC is curative if it is diagnosed at an early stage but various palliative treatment options (endoscopic, oncologic and surgical) are available in advanced stages of this cancer. Adequate number of lymph node assessment during surgery is essential in accurate staging of CRC. Checkpoint inhibitors have been found to have dramatic response and durable clinical benefit in dMMR/MSI-H metastatic CRC. Different genetic and immune-oncologic research trials are ongoing for early detection and better management of CRC.
Collapse
Affiliation(s)
- Monjur Ahmed
- 132 South 10th Street, Main Building, Suite 468, Philadelphia, PA 19107, USA.
| |
Collapse
|
35
|
Prognostic and Predictive Molecular Biomarkers for Colorectal Cancer: Updates and Challenges. Cancers (Basel) 2020; 12:cancers12020319. [PMID: 32019056 PMCID: PMC7072488 DOI: 10.3390/cancers12020319] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of death among cancer patients. This heterogeneous disease is characterized by alterations in multiple molecular pathways throughout its development. Mutations in RAS, along with the mismatch repair gene deficiency, are currently routinely tested in clinics. Such biomarkers provide information for patient risk stratification and for the choice of the best treatment options. Nevertheless, reliable and powerful prognostic markers that can identify “high-risk” CRC patients, who might benefit from adjuvant chemotherapy, in early stages, are currently missing. To bridge this gap, genomic information has increasingly gained interest as a potential method for determining the risk of recurrence. However, due to several limitations of gene-based signatures, these have not yet been clinically implemented. In this review, we describe the different molecular markers in clinical use for CRC, highlight new markers that might become indispensable over the next years, discuss recently developed gene expression-based tests and highlight the challenges in biomarker research.
Collapse
|
36
|
Fanelli GN, Dal Pozzo CA, Depetris I, Schirripa M, Brignola S, Biason P, Balistreri M, Dal Santo L, Lonardi S, Munari G, Loupakis F, Fassan M. The heterogeneous clinical and pathological landscapes of metastatic Braf-mutated colorectal cancer. Cancer Cell Int 2020; 20:30. [PMID: 32015690 PMCID: PMC6990491 DOI: 10.1186/s12935-020-1117-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/20/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a complex and molecularly heterogeneous disease representing one of the most frequent causes of cancer-related death worldwide. About 8–15% of CRCs harbor a mutation in BRAF gene, a proto-oncogene involved in cell proliferation, differentiation and survival through the MAPK signaling cascade. The acquisition of BRAF mutation is an early event in the “serrated” CRC carcinogenetic pathway and is associated with specific and aggressive clinico-pathological and molecular features. Despite that the presence of BRAF mutation is a well-recognized negative prognostic biomarker in metastatic CRC (mCRC), a great heterogeneity in survival outcome characterizes these patients, due to the complex, and still not completely fully elucidated, interactions between the clinical, genetic and epigenetic landscape of BRAF mutations. Because of the great aggressiveness of BRAF-mutated mCRCs, only 60% of patients can receive a second-line chemotherapy; so intensive combined and tailored first-line approach could be a potentially effective strategy, but to minimize the selective pressure of resistant clones and to reduce side effects, a better stratification of patients bearing BRAF mutations is needed. ![]()
Collapse
Affiliation(s)
- Giuseppe Nicolò Fanelli
- 1Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| | - Carlo Alberto Dal Pozzo
- 1Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| | - Ilaria Depetris
- 2Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marta Schirripa
- 2Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Stefano Brignola
- 1Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| | - Paola Biason
- 2Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Mariangela Balistreri
- 1Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| | - Luca Dal Santo
- 1Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| | - Sara Lonardi
- 2Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Giada Munari
- 1Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy.,2Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Fotios Loupakis
- 2Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Matteo Fassan
- 1Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, via Gabelli 61, 35121 Padua, Italy
| |
Collapse
|
37
|
Bardia A, Gounder M, Rodon J, Janku F, Lolkema MP, Stephenson JJ, Bedard PL, Schuler M, Sessa C, LoRusso P, Thomas M, Maacke H, Evans H, Sun Y, Tan DS. Phase Ib Study of Combination Therapy with MEK Inhibitor Binimetinib and Phosphatidylinositol 3-Kinase Inhibitor Buparlisib in Patients with Advanced Solid Tumors with RAS/RAF Alterations. Oncologist 2020; 25:e160-e169. [PMID: 31395751 PMCID: PMC6964137 DOI: 10.1634/theoncologist.2019-0297] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/18/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND This multicenter, open-label, phase Ib study investigated the safety and efficacy of binimetinib (MEK inhibitor) in combination with buparlisib (phosphatidylinositol 3-kinase [PI3K] inhibitor) in patients with advanced solid tumors with RAS/RAF alterations. MATERIALS AND METHODS Eighty-nine patients were enrolled in the study. Eligible patients had advanced solid tumors with disease progression after standard therapy and/or for which no standard therapy existed. Evaluable disease was mandatory, per RECIST version 1.1 and Eastern Cooperative Oncology Group performance status 0-2. Binimetinib and buparlisib combinations were explored in patients with KRAS-, NRAS-, or BRAF-mutant advanced solid tumors until the maximum tolerated dose and recommended phase II dose (RP2D) were defined. The expansion phase comprised patients with epidermal growth factor receptor (EGFR)-mutant, advanced non-small cell lung cancer, after progression on an EGFR inhibitor; advanced RAS- or BRAF-mutant ovarian cancer; or advanced non-small cell lung cancer with KRAS mutation. RESULTS At data cutoff, 32/89 patients discontinued treatment because of adverse events. RP2D for continuous dosing was buparlisib 80 mg once daily/binimetinib 45 mg twice daily. The toxicity profile of the combination resulted in a lower dose intensity than anticipated. Six (12.0%) patients with RAS/BRAF-mutant ovarian cancer achieved a partial response. Pharmacokinetics of binimetinib were not altered by buparlisib. Pharmacodynamic analyses revealed downregulation of pERK and pS6 in tumor biopsies. CONCLUSION Although dual inhibition of MEK and the PI3K pathways showed promising activity in RAS/BRAF ovarian cancer, continuous dosing resulted in intolerable toxicities beyond the dose-limiting toxicity monitoring period. Alternative schedules such as pulsatile dosing may be advantageous when combining therapies. IMPLICATIONS FOR PRACTICE Because dysregulation of the mitogen-activated protein kinase (MAPK) and the phosphatidylinositol 3-kinase (PI3K) pathways are both frequently involved in resistance to current targeted therapies, dual inhibition of both pathways may be required to overcome resistance mechanisms to single-agent tyrosine kinase inhibitors or to treat cancers with driver mutations that cannot be directly targeted. A study investigating the safety and efficacy of combination binimetinib (MEK inhibitor) and buparlisib (PI3K inhibitor) in patients harboring alterations in the RAS/RAF pathway was conducted. The results may inform the design of future combination therapy trials in patients with tumors harboring mutations in the PI3K and MAPK pathways.
Collapse
Affiliation(s)
- Aditya Bardia
- Department of Hematology/Oncology, Massachusetts General Hospital Cancer Center; Harvard Medical SchoolBostonMassachusettsUSA
| | - Mrinal Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Jordi Rodon
- Medical Oncology Department, Vall D'Hebron Institute of Oncology, VHIOBarcelonaSpain
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Martijn P. Lolkema
- Department of Medical Oncology, University Medical Center UtrechtUtrechtThe Netherlands
| | - Joe J. Stephenson
- Department of Medical Oncology, GHS Cancer InstituteGreenvilleSouth CarolinaUSA
| | - Philippe L. Bedard
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Department of Medicine, University of TorontoTorontoOntarioCanada
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Center, University Duisburg‐Essen, and German Cancer Consortium (DKTK), Partner Site University Hospital EssenEssenGermany
| | - Cristiana Sessa
- Department of Medical Oncology, Oncology Institute of Southern SwitzerlandBellinzonaSwitzerland
| | - Patricia LoRusso
- Department of Medical Oncology, Yale Cancer CenterNew HavenConnecticutUSA
| | - Michael Thomas
- Internistische Onkologie der Thoraxtumoren, Thoraxklinik im Universitätsklinikum Heidelberg, Translational Lung Research Center Heidelberg (TLRC‐H), Member of the German Center for Lung Research (DZL)HeidelbergGermany
| | | | | | | | - Daniel S.W. Tan
- Department of Medical Oncology, National Cancer Centre SingaporeSingapore
| |
Collapse
|
38
|
Yang L, Lei Q, Li L, Yang J, Dong Z, Cui H. Silencing or inhibition of H3K79 methyltransferase DOT1L induces cell cycle arrest by epigenetically modulating c-Myc expression in colorectal cancer. Clin Epigenetics 2019; 11:199. [PMID: 31888761 PMCID: PMC6937672 DOI: 10.1186/s13148-019-0778-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Epigenetic regulations play pivotal roles in tumorigenesis and cancer development. Disruptor of telomeric silencing-1-like (DOT1L), also known as KMT4, is the only identified histone methyltransferase that catalyzes the mono-, di-, and tri-methylation of lysine 79 histone 3 (H3K79). However, little is known about the effect of H3K79 methylation on the modulation of colorectal cancer (CRC) development. METHODS DOT1L expression profiles in different subgroups of CRC tissues and its clinical significances were analyzed from some online datasheets. DOT1L in CRC cell lines was silenced by either lentivirus-mediated knockdown or inhibited by its specific inhibitor, EPZ004777. Then cell proliferation was detected by MTT assay, BrdU assay, and soft agar assay; cell cycle was detected by cytometry; and tumorigenicity was detected by using nude mice xenograft models. Clinical co-expression was analyzed between DOT1L and c-Myc. Chromatin immunoprecipitation (ChIP) assay was used to determine whether the translation of c-Myc was epigenetically regulated by H3K79me2 induced by DOT1L. c-Myc overexpression was used to rescue the cell cycle arrest and tumor growth induced by DOT1L silencing or inhibition in CRC. RESULTS We found that DOT1L was highly expressed in colorectal cancer and was negatively related to the prognosis of patients with CRC. Silencing or inhibition of DOT1L blocked cell proliferation, BrdU incorporation, self-renewal capability in vitro, and tumorigenicity in vivo. Besides, inhibition or silencing of DOT1L also induced cell cycle arrest at S phase, as well as decreased the expression of CDK2 and Cyclin A2. Furthermore, in the clinical databases of CRC, we found that the expression of DOT1L was positively correlated with that of c-Myc, a major regulator in the upstream of cell cycle-related factors. Besides, c-Myc expression was downregulated after DOT1L knockdown and c-Myc restoration rescued decrease of cell proliferation, BrdU corporation, self-renewal capability, cell cycle progression in vitro and tumorigenicity in vivo induced by DOT1L silencing. Then we found that H3K79 methylation was decreased after DOT1L knockdown. ChIP assay showed that H3K79me2 was enriched on the - 682~+ 284 region of c-Myc promoter, and the enrichment was decreased after DOT1L inhibition. CONCLUSIONS Our results show that DOT1L epigenetically promotes the transcription of c-Myc via H3K79me2. DOT1L silencing or inhibition induces cell cycle arrest at S phase. DOT1L is a potential marker for colorectal cancer and EPZ004777 may be a potential drug for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, No.2, Tiansheng Road, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400716, China
| | - Qian Lei
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, No.2, Tiansheng Road, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400716, China
| | - Lin Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, No.2, Tiansheng Road, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400716, China
| | - Jie Yang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, No.2, Tiansheng Road, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400716, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, No.2, Tiansheng Road, Beibei, Chongqing, 400716, China. .,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China. .,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, 400716, China. .,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400716, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, No.2, Tiansheng Road, Beibei, Chongqing, 400716, China. .,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China. .,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, 400716, China. .,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400716, China.
| |
Collapse
|
39
|
Dekaliuk M, Qiu X, Troalen F, Busson P, Hildebrandt N. Discrimination of the V600E Mutation in BRAF by Rolling Circle Amplification and Förster Resonance Energy Transfer. ACS Sens 2019; 4:2786-2793. [PMID: 31577130 DOI: 10.1021/acssensors.9b01420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The quantification of very low concentrations of circulating tumor DNA (ctDNA) biomarkers from liquid biopsies has become an important requirement for clinical diagnostics and personalized medicine. In particular, the simultaneous detection of wild-type (WT) dsDNA and their cancer-related counterparts presenting single-point mutations with simple, sensitive, specific, and reproducible technologies is paramount for ctDNA assays in clinical practice. Here, we present the development and evaluation of an amplified dsDNA assay based on a combination of isothermal rolling circle amplification (RCA) and time-gated Förster resonance energy transfer (TG-FRET) between a Tb donor and two dye (Cy3.5 and Cy5.5) acceptors. The RCA-FRET assay is free of washing and separation steps and can quantify both WT and mutated (MT) (V600E) dsDNA in the BRAF gene from a single sample in the 75 fM to 4.5 pM (4.5 × 105 to 2.7 × 107 copies) concentration range. This assay includes all steps from denaturation of the dsDNA targets to the final duplexed quantification of WT and MT targets. High assay performance at different dsDNA sequence lengths and high target specificity even in the presence of a large excess of nonspecific cell-free DNA from human plasma samples demonstrated the applicability to clinical samples. The RCA-FRET single-point mutation sensor has the potential to become an important complementary technique for analyzing liquid biopsies in advanced cancer diagnostics.
Collapse
Affiliation(s)
- Mariia Dekaliuk
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay Cedex, France
- Department of Neurochemistry, O. V. Palladin Institute of Biochemistry, Kyiv, 01030, Ukraine
| | - Xue Qiu
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay Cedex, France
| | - Frédéric Troalen
- Gustave Roussy, Université Paris-Saclay, CNRS, UMR 8126, 94805 Villejuif, France
| | - Pierre Busson
- Gustave Roussy, Université Paris-Saclay, CNRS, UMR 8126, 94805 Villejuif, France
- Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Niko Hildebrandt
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay Cedex, France
- Laboratoire Chimie Organique, Bioorganique, Réactivité et Analyse (COBRA), Université de Rouen Normandie, CNRS, INSA, 76821 Mont Saint-Aignan, France
| |
Collapse
|
40
|
Shah AB, Sommerer KR, Almhanna K. Immune checkpoint inhibitors in gastrointestinal malignancies: what can we learn from experience with other tumors? Transl Gastroenterol Hepatol 2019; 4:73. [PMID: 31728430 PMCID: PMC6851451 DOI: 10.21037/tgh.2019.09.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
Gastrointestinal (GI) malignancies are some of the most common cancers worldwide with high rates of morbidity and mortality. Immune checkpoint inhibitors have afforded additional treatment options for patients, but their success has been limited. Conversely, in other tumor types such as lung cancer, melanoma and renal cell carcinoma, treatment strategies with immune checkpoint inhibitors have propelled those agents into the front lines of treatment. Strategies utilized include combining immune checkpoint inhibitors with chemotherapy, other checkpoint inhibitors, and targeted therapy. In this review, we analyze combination strategies employed in other tumor types to help identify current and future approaches toward improving outcomes with immunotherapy in GI malignancies.
Collapse
Affiliation(s)
- Anand B. Shah
- Department of Pharmacy, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Khaldoun Almhanna
- Division of Hematology/Oncology, The Warren Alpert Medical School of Brown University, Lifespan Cancer Institute, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
41
|
Vittal A, Sharma D, Samanta I, Kasi A. Rare case of triple mutant (KRAS + NRAS + BRAF) metastatic colon adenocarcinoma. BMJ Case Rep 2019; 12:12/9/e221816. [PMID: 31519714 DOI: 10.1136/bcr-2017-221816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
KRAS is detected in 30%-50% of colorectal cancer (CRC) and BRAF mutations are found in 10% of CRC. A 62-year-old man with the long-standing smoking history presented to the emergency department with abdominal pain, weight loss and constipation. CT scan of abdomen/pelvis showed obstructive mass which was found to be colon adenocarcinoma which on further molecular analysis tested positive for KRAS, NRAS and BRAF mutations. His tumour progressed despite chemotherapy and surgery and he died within a year of diagnosis. Concomitant KRAS, NRAS and BRAF mutations are rare enough to be considered mutually exclusive but coexistent mutations appear to be a distinct molecular and clinical subset which needs new and effective treatment strategies in a setting of dismal prognosis.
Collapse
Affiliation(s)
- Anusha Vittal
- Medical Oncology, University of Kansas, Kansas City, Kansas, USA
| | - Disha Sharma
- Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Ipsita Samanta
- Medical Oncology, University of Kansas, Kansas City, Kansas, USA
| | - Anup Kasi
- Medical Oncology, University of Kansas, Kansas City, Kansas, USA
| |
Collapse
|
42
|
Mohamed A, Twardy B, AbdAllah N, Akhras A, Ismail H, Zordok M, Schrapp K, Attumi T, Tesfaye A, El-Rayes B. Clinical Impact of PI3K/BRAF Mutations in RAS Wild Metastatic Colorectal Cancer: Meta-analysis Results. J Gastrointest Cancer 2019; 50:269-275. [PMID: 29388061 DOI: 10.1007/s12029-018-0062-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Understanding the molecular mechanisms of colorectal cancer has evolved during the last decade ushering the era of personalized medicine. Alteration of BRAF and PI3K is common in colorectal cancer, and can affect several signaling pathways including EGFR (epidermal growth factor receptor). The aim of this meta-analysis is to evaluate the clinical role of PI3K and BRAF mutations in patients with KRAS wild-type metastatic colorectal cancer (MCRC) receiving an EGFR monoclonal antibody (anti-EGFR) inhibitor as first-line therapy. METHODS A literature search was performed to identify studies exploring the association between PI3K/BRAF mutations and clinical outcomes of KRAS wild-type mCRC patients treated with anti-EGFR as a first-line therapy. The primary clinical outcome was overall response rate (ORR). The secondary outcomes included progression-free survival (PFS) and overall survival (OS). The pooled relative risk (RR) or hazard ratio (HR) was estimated by using fixed-effect model or random effect model according to heterogeneity between studies. RESULTS Ten studies with 1470 mCRC patients (357 for PI3K studies and 1113 from BRAF studies) met selection criteria. We observed a trend towards lower ORR in patients with PI3K mutations (3 studies, 357 patients; ORR = 14.3% in mutant-type PI3K vs. 52.4% in wild-type PIK3CA [95% CI - 0.12-0.02]; P = 0.13). Patients with mutant-type PI3K have significant shorter PFS (3 studies, 357 patients, 3.8 vs. 4.15 months, HR = 1.36; [95% CI 1.04-1.77]; P = 0.02]), and OS (3 studies, 357 patients, 14.17 vs. 16.3 months, HR = 1.50; [95% CI 1.14-1.97]; P = 0.004) compared to those with wild PI3K. For BRAF, patients with mutant type have significantly lower ORR (7 studies, 1113 patients; ORR = 33% vs. 39%; [95% CI - 0.16-0.01]; P = 0.03), shorter PFS (5 studies, 814 patients, 3.9 vs. 5.7 months, HR = 1.72; [95% CI 1.47-2.01]; P = 0.00001), and shorter OS (4 studies, 766 pts., 9.1 vs. 18.9 months, HR = 1.22; [95% CI 1.04-1.44]; P = 0.01) compared to those with wild-type. CONCLUSION This analysis suggests that patients with mCRC and either PI3K or BRAF mutation may have a lower response and worse outcome when treated with anti-EGFR in the first line. Given their worse outcome, routine testing for BRAF and PI3K mutational status should be considered. Novel therapeutic approaches are needed for patients with mutations in BRAF or PI3K.
Collapse
Affiliation(s)
- Amr Mohamed
- Department of Medical Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Brandon Twardy
- Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Nadine AbdAllah
- Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Alaa Akhras
- Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Hibah Ismail
- Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Magdi Zordok
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kelly Schrapp
- Department of Medicine, Morehouse School of Medicine, Atlanta, GA, USA
| | - Taraq Attumi
- Department of Medicine, Morehouse School of Medicine, Atlanta, GA, USA
| | - Anteneh Tesfaye
- Department of Medical Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
43
|
Simonson C. Predictive Biomarkers: Understanding Their Use in Treatment Decision Making. Clin J Oncol Nurs 2019; 23:360-363. [DOI: 10.1188/19.cjon.360-363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Kawaguchi Y, Lillemoe HA, Vauthey JN. Gene mutation and surgical technique: Suggestion or more? Surg Oncol 2019; 33:210-215. [PMID: 31351766 DOI: 10.1016/j.suronc.2019.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022]
Abstract
Advancements in chemotherapy and molecular targeted therapy have improved long-term outcomes for patients with resectable colorectal liver metastases (CLM). RAS mutation status was an original focus as a molecular biomarker as it predicted treatments response to anti-epidermal growth factor receptor agents. More recently, studies have incorporated somatic mutation data in analyses pertaining to surgical outcomes and prognosis. This evidenced-based review covers the implications of somatic mutations in patients undergoing resection of CLM.
Collapse
Affiliation(s)
- Yoshikuni Kawaguchi
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather A Lillemoe
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
45
|
Mooi JK, Luk IY, Mariadason JM. Cell Line Models of Molecular Subtypes of Colorectal Cancer. Methods Mol Biol 2019; 1765:3-26. [PMID: 29589298 DOI: 10.1007/978-1-4939-7765-9_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a genetically diverse disease necessitating the need for well-characterized and reproducible models to enable its accurate investigation. Recent genomic analyses have confirmed that CRC cell lines accurately retain the key genetic alterations and represent the major molecular subtypes of primary CRC, underscoring their value as powerful preclinical models. In this chapter we detail the important issues to consider when using CRC cell lines, the techniques used for their appropriate molecular classification, and the methods by which they are cultured in vitro and as subcutaneous xenografts in immune-compromised mice. A panel of commonly available CRC cell lines that have been characterized for key molecular subtypes is also provided as a resource for investigators to select appropriate models to address specific research questions.
Collapse
Affiliation(s)
- Jennifer K Mooi
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia.
| |
Collapse
|
46
|
Fernandez ML, Dawson A, Hoenisch J, Kim H, Bamford S, Salamanca C, DiMattia G, Shepherd T, Cremona M, Hennessy B, Anderson S, Volik S, Collins CC, Huntsman DG, Carey MS. Markers of MEK inhibitor resistance in low-grade serous ovarian cancer: EGFR is a potential therapeutic target. Cancer Cell Int 2019. [PMID: 30636931 DOI: 10.1186/s12935-019-0725-1]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although low-grade serous ovarian cancer (LGSC) is rare, case-fatality rates are high as most patients present with advanced disease and current cytotoxic therapies are not overly effective. Recognizing that these cancers may be driven by MAPK pathway activation, MEK inhibitors (MEKi) are being tested in clinical trials. LGSC respond to MEKi only in a subgroup of patients, so predictive biomarkers and better therapies will be needed. METHODS We evaluated a number of patient-derived LGSC cell lines, previously classified according to their MEKi sensitivity. Two cell lines were genomically compared against their matching tumors samples. MEKi-sensitive and MEKi-resistant lines were compared using whole exome sequencing and reverse phase protein array. Two treatment combinations targeting MEKi resistance markers were also evaluated using cell proliferation, cell viability, cell signaling, and drug synergism assays. RESULTS Low-grade serous ovarian cancer cell lines recapitulated the genomic aberrations from their matching tumor samples. We identified three potential predictive biomarkers that distinguish MEKi sensitive and resistant lines: KRAS mutation status, and EGFR and PKC-alpha protein expression. The biomarkers were validated in three newly developed LGSC cell lines. Sub-lethal combination of MEK and EGFR inhibition showed drug synergy and caused complete cell death in two of four MEKi-resistant cell lines tested. CONCLUSIONS KRAS mutations and the protein expression of EGFR and PKC-alpha should be evaluated as predictive biomarkers in patients with LGSC treated with MEKi. Combination therapy using a MEKi with EGFR inhibition may represent a promising new therapy for patients with MEKi-resistant LGSC.
Collapse
Affiliation(s)
| | - Amy Dawson
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Joshua Hoenisch
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Hannah Kim
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Sylvia Bamford
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Clara Salamanca
- 2Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Gabriel DiMattia
- 3Translational Ovarian Cancer Research Program, London Health Science Centre, London, ON Canada.,4Oncology, University of Western Ontario, London, ON Canada
| | - Trevor Shepherd
- 3Translational Ovarian Cancer Research Program, London Health Science Centre, London, ON Canada.,4Oncology, University of Western Ontario, London, ON Canada
| | - Mattia Cremona
- Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Bryan Hennessy
- Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Shawn Anderson
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - Stanislav Volik
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - Colin C Collins
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - David G Huntsman
- 2Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada.,7Molecular Oncology, British Columbia Cancer Agency, Vancouver, BC Canada
| | - Mark S Carey
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada.,Division of Gynecologic Oncology, Diamond Health Centre, 2775 Laurel St., 6th Floor, Vancouver, BC V5Z 1M9 Canada
| |
Collapse
|
47
|
Fernandez ML, Dawson A, Hoenisch J, Kim H, Bamford S, Salamanca C, DiMattia G, Shepherd T, Cremona M, Hennessy B, Anderson S, Volik S, Collins CC, Huntsman DG, Carey MS. Markers of MEK inhibitor resistance in low-grade serous ovarian cancer: EGFR is a potential therapeutic target. Cancer Cell Int 2019. [PMID: 30636931 DOI: 10.1186/s12935-019-0725-1] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Although low-grade serous ovarian cancer (LGSC) is rare, case-fatality rates are high as most patients present with advanced disease and current cytotoxic therapies are not overly effective. Recognizing that these cancers may be driven by MAPK pathway activation, MEK inhibitors (MEKi) are being tested in clinical trials. LGSC respond to MEKi only in a subgroup of patients, so predictive biomarkers and better therapies will be needed. Methods We evaluated a number of patient-derived LGSC cell lines, previously classified according to their MEKi sensitivity. Two cell lines were genomically compared against their matching tumors samples. MEKi-sensitive and MEKi-resistant lines were compared using whole exome sequencing and reverse phase protein array. Two treatment combinations targeting MEKi resistance markers were also evaluated using cell proliferation, cell viability, cell signaling, and drug synergism assays. Results Low-grade serous ovarian cancer cell lines recapitulated the genomic aberrations from their matching tumor samples. We identified three potential predictive biomarkers that distinguish MEKi sensitive and resistant lines: KRAS mutation status, and EGFR and PKC-alpha protein expression. The biomarkers were validated in three newly developed LGSC cell lines. Sub-lethal combination of MEK and EGFR inhibition showed drug synergy and caused complete cell death in two of four MEKi-resistant cell lines tested. Conclusions KRAS mutations and the protein expression of EGFR and PKC-alpha should be evaluated as predictive biomarkers in patients with LGSC treated with MEKi. Combination therapy using a MEKi with EGFR inhibition may represent a promising new therapy for patients with MEKi-resistant LGSC.
Collapse
Affiliation(s)
| | - Amy Dawson
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Joshua Hoenisch
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Hannah Kim
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Sylvia Bamford
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Clara Salamanca
- 2Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Gabriel DiMattia
- 3Translational Ovarian Cancer Research Program, London Health Science Centre, London, ON Canada.,4Oncology, University of Western Ontario, London, ON Canada
| | - Trevor Shepherd
- 3Translational Ovarian Cancer Research Program, London Health Science Centre, London, ON Canada.,4Oncology, University of Western Ontario, London, ON Canada
| | - Mattia Cremona
- Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Bryan Hennessy
- Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Shawn Anderson
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - Stanislav Volik
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - Colin C Collins
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - David G Huntsman
- 2Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada.,7Molecular Oncology, British Columbia Cancer Agency, Vancouver, BC Canada
| | - Mark S Carey
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada.,Division of Gynecologic Oncology, Diamond Health Centre, 2775 Laurel St., 6th Floor, Vancouver, BC V5Z 1M9 Canada
| |
Collapse
|
48
|
Fernandez ML, Dawson A, Hoenisch J, Kim H, Bamford S, Salamanca C, DiMattia G, Shepherd T, Cremona M, Hennessy B, Anderson S, Volik S, Collins CC, Huntsman DG, Carey MS. Markers of MEK inhibitor resistance in low-grade serous ovarian cancer: EGFR is a potential therapeutic target. Cancer Cell Int 2019; 19:10. [PMID: 30636931 PMCID: PMC6325847 DOI: 10.1186/s12935-019-0725-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Background Although low-grade serous ovarian cancer (LGSC) is rare, case-fatality rates are high as most patients present with advanced disease and current cytotoxic therapies are not overly effective. Recognizing that these cancers may be driven by MAPK pathway activation, MEK inhibitors (MEKi) are being tested in clinical trials. LGSC respond to MEKi only in a subgroup of patients, so predictive biomarkers and better therapies will be needed. Methods We evaluated a number of patient-derived LGSC cell lines, previously classified according to their MEKi sensitivity. Two cell lines were genomically compared against their matching tumors samples. MEKi-sensitive and MEKi-resistant lines were compared using whole exome sequencing and reverse phase protein array. Two treatment combinations targeting MEKi resistance markers were also evaluated using cell proliferation, cell viability, cell signaling, and drug synergism assays. Results Low-grade serous ovarian cancer cell lines recapitulated the genomic aberrations from their matching tumor samples. We identified three potential predictive biomarkers that distinguish MEKi sensitive and resistant lines: KRAS mutation status, and EGFR and PKC-alpha protein expression. The biomarkers were validated in three newly developed LGSC cell lines. Sub-lethal combination of MEK and EGFR inhibition showed drug synergy and caused complete cell death in two of four MEKi-resistant cell lines tested. Conclusions KRAS mutations and the protein expression of EGFR and PKC-alpha should be evaluated as predictive biomarkers in patients with LGSC treated with MEKi. Combination therapy using a MEKi with EGFR inhibition may represent a promising new therapy for patients with MEKi-resistant LGSC. Electronic supplementary material The online version of this article (10.1186/s12935-019-0725-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Amy Dawson
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Joshua Hoenisch
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Hannah Kim
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Sylvia Bamford
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Clara Salamanca
- 2Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Gabriel DiMattia
- 3Translational Ovarian Cancer Research Program, London Health Science Centre, London, ON Canada.,4Oncology, University of Western Ontario, London, ON Canada
| | - Trevor Shepherd
- 3Translational Ovarian Cancer Research Program, London Health Science Centre, London, ON Canada.,4Oncology, University of Western Ontario, London, ON Canada
| | - Mattia Cremona
- Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Bryan Hennessy
- Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Shawn Anderson
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - Stanislav Volik
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - Colin C Collins
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - David G Huntsman
- 2Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada.,7Molecular Oncology, British Columbia Cancer Agency, Vancouver, BC Canada
| | - Mark S Carey
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada.,Division of Gynecologic Oncology, Diamond Health Centre, 2775 Laurel St., 6th Floor, Vancouver, BC V5Z 1M9 Canada
| |
Collapse
|
49
|
Park H, Nishino M, Hornick JL, Jacobsen ED. Imaging of Histiocytosis in the Era of Genomic Medicine. Radiographics 2018; 39:95-114. [PMID: 30500304 DOI: 10.1148/rg.2019180054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Histiocytosis describes a group of diseases that have long been considered enigmatic in the history of medicine. Recently, novel genomic analyses have identified somatic oncogenic driver mutations responsible for the pathogenesis of these entities. These discoveries have led to the recharacterization of histiocytoses as neoplastic diseases and have opened a new era of precision medicine approaches for treatment. The histiocytic disorders demonstrate a variety of imaging manifestations involving multiple organ systems, and radiologists play a major role in diagnosis and monitoring. An up-to-date knowledge of the novel genomic discoveries and their implications is essential for radiologists to understand the new approaches to treating histiocytic disorders and to contribute as key members of the multidisciplinary treatment team. This article provides a cutting-edge review of the novel concepts in histiocytosis, with a focus on recent genomic discoveries and precision medicine approaches to treating the disease, and describes imaging manifestations with correlative histologic and genomic findings, with an emphasis on adult-onset cases and uncommon subtypes. ©RSNA, 2018.
Collapse
Affiliation(s)
- Hyesun Park
- From the Departments of Radiology (H.P., M.N.), Pathology (J.L.H.), and Medical Oncology (E.D.J.), Brigham and Women's Hospital and Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215
| | - Mizuki Nishino
- From the Departments of Radiology (H.P., M.N.), Pathology (J.L.H.), and Medical Oncology (E.D.J.), Brigham and Women's Hospital and Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215
| | - Jason L Hornick
- From the Departments of Radiology (H.P., M.N.), Pathology (J.L.H.), and Medical Oncology (E.D.J.), Brigham and Women's Hospital and Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215
| | - Eric D Jacobsen
- From the Departments of Radiology (H.P., M.N.), Pathology (J.L.H.), and Medical Oncology (E.D.J.), Brigham and Women's Hospital and Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215
| |
Collapse
|
50
|
Yu IS, Cheung WY. Metastatic Colorectal Cancer in the Era of Personalized Medicine: A More Tailored Approach to Systemic Therapy. Can J Gastroenterol Hepatol 2018; 2018:9450754. [PMID: 30519549 PMCID: PMC6241232 DOI: 10.1155/2018/9450754] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer is the second most common malignancy diagnosed in Canada. Despite declining incidence and mortality rates in recent years, there is still a significant number of cases that are metastatic at presentation. Fluoropyrimidine-based chemotherapy was the backbone of colorectal cancer treatment, but the addition of irinotecan and oxaliplatin to form combination regimens has significantly improved overall survival. In the past decade, the development of novel biologic agents including therapies directed against vascular endothelial growth factor and epidermal growth factor receptor has further altered the landscape of metastatic colorectal cancer treatment. However, clinical trials have demonstrated that not all patients respond to these therapies similarly and consideration must be given to individual patient- and tumor-related factors. A more tailored and biomarker driven approach to treatment selection can optimize outcomes and avoid unnecessary adverse effects. In this review article, we offer a comprehensive overview of the panel of clinical- and tumor-associated characteristics that influence treatment decisions in metastatic colorectal cancer and how this sets the foundation for a more personalized treatment strategy in oncology.
Collapse
Affiliation(s)
- Irene S. Yu
- University of British Columbia, Vancouver, Canada
| | | |
Collapse
|