1
|
Ho CM, Yen TL, Chang TH, Huang SH. COL6A3 Exosomes Promote Tumor Dissemination and Metastasis in Epithelial Ovarian Cancer. Int J Mol Sci 2024; 25:8121. [PMID: 39125689 PMCID: PMC11311469 DOI: 10.3390/ijms25158121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Our study explores the role of cancer-derived extracellular exosomes (EXs), particularly focusing on collagen alpha-3 (VI; COL6A3), in facilitating tumor dissemination and metastasis in epithelial ovarian cancer (EOC). We found that COL6A3 is expressed in aggressive ES2 derivatives, SKOV3 overexpressing COL6A3 (SKOV3/COL6A3), and mesenchymal-type ovarian carcinoma stromal progenitor cells (MSC-OCSPCs), as well as their EXs, but not in less aggressive SKOV3 cells or ES2 cells with COL6A3 knockdown (ES2/shCOL6A3). High COL6A3 expression correlates with worse overall survival among EOC patients, as evidenced by TCGA and GEO data analysis. In vitro experiments showed that EXs from MSC-OCSPCs or SKOV3/COL6A3 cells significantly enhance invasion ability in ES2 or SKOV3/COL6A3 cells, respectively (both, p <0.001). In contrast, ES2 cells with ES2/shCOL6A3 EXs exhibited reduced invasion ability (p < 0.001). In vivo, the average disseminated tumor numbers in the peritoneal cavity were significantly greater in mice receiving intraperitoneally injected SKOV3/COL6A3 cells than in SKOV3 cells (p < 0.001). Furthermore, mice intravenously (IV) injected with SKOV3/COL6A3 cells and SKOV3/COL6A3-EXs showed increased lung colonization compared to mice injected with SKOV3 cells and PBS (p = 0.007) or SKOV3/COL6A3 cells and PBS (p = 0.039). Knockdown of COL6A3 or treatment with EX inhibitor GW4869 or rapamycin-abolished COL6A3-EXs may suppress the aggressiveness of EOC.
Collapse
Affiliation(s)
- Chih-Ming Ho
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 106, Taiwan
- School of Medicine, Fu Jen Catholic University, Hsinchuang, New Taipei City 242, Taiwan
- Department of Medical Research, Cathay General Hospital, Sijhih, New Taipei City 221, Taiwan;
| | - Ting-Lin Yen
- Department of Medical Research, Cathay General Hospital, Sijhih, New Taipei City 221, Taiwan;
- School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 110, Taiwan;
| | - Shih-Hung Huang
- Department of Pathology, Cathay General Hospital, Taipei 106, Taiwan;
| |
Collapse
|
2
|
Yokomizo A, Shiota M, Morokuma F, Eto M, Matsuyama H, Matsumoto H, Kamoto T, Terada N, Kawahara K, Enokida H, Tatarano S, Fujimoto N, Higasijima K, Sakai H, Hakariya T, Igawa T, Suekane S, Kamba T, Sugiyama Y, Kishimoto J, Naito S. GnRH antagonist monotherapy versus a GnRH agonist plus bicalutamide for advanced hormone-sensitive prostate cancer; KYUCOG-1401. Int J Urol 2024; 31:362-369. [PMID: 38148124 DOI: 10.1111/iju.15371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVES To compare the effectiveness and safety of gonadotropin-releasing hormone (GnRH) antagonist monotherapy to combined androgen blockade (CAB) with a GnRH agonist and bicalutamide in patients with advanced hormone-sensitive prostate cancer (HSPC). METHODS The study was conducted as KYUCOG-1401 trial (UMIN000014243) and enrolled 200 patients who were randomly assigned to either group A (GnRH antagonist monotherapy followed by the addition of bicalutamide) or group B (CAB by a GnRH agonist and bicalutamide). The primary endpoint was PSA progression-free survival. The secondary endpoints were the time to CAB treatment failure, radiographic progression-free survival, overall survival, changes in serum parameters, including PSA, hormones, and bone and lipid metabolic markers, and adverse events. RESULTS PSA progression-free survival was significantly longer in group B (hazard ratio [HR], 95% confidence interval [CI]; 1.40, 1.01-1.95, p = 0.041). The time to CAB treatment failure was slightly longer in group A (HR, 95% CI; 0.80, 0.59-1.08, p = 0.146). No significant differences were observed in radiographic progression-free survival or overall survival. The percentage of patients with serum testosterone that did not reach the castration level was higher at 60 weeks (p = 0.046) in group A. No significant differences were noted in the serum levels of bone metabolic or lipid markers between the two groups. An injection site reaction was more frequent in group A. CONCLUSIONS The present results support the potential of CAB using a GnRH agonist and bicalutamide as a more effective treatment for advanced HSPC than GnRH antagonist monotherapy.
Collapse
Affiliation(s)
- Akira Yokomizo
- Department of Urology, Harasanshin Hospital, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Futoshi Morokuma
- Urology Department, Saga-Ken Medical Centre Koseikan, Saga, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideyasu Matsuyama
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Hiroaki Matsumoto
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | | | - Naoki Terada
- Department of Urology, University of Fukui, Fukui, Japan
| | | | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Katsuyoshi Higasijima
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoaki Hakariya
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tsukasa Igawa
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Shigetaka Suekane
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Tomomi Kamba
- Department of Urology, Kumamoto University, Kumamoto, Japan
| | | | - Junji Kishimoto
- Center for Clinical and Translational Research, Kyushu University, Fukuoka, Japan
| | - Seiji Naito
- Department of Urology, Harasanshin Hospital, Fukuoka, Japan
| |
Collapse
|
3
|
Owen JS, Clayton A, Pearson HB. Cancer-Associated Fibroblast Heterogeneity, Activation and Function: Implications for Prostate Cancer. Biomolecules 2022; 13:67. [PMID: 36671452 PMCID: PMC9856041 DOI: 10.3390/biom13010067] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The continuous remodeling of the tumor microenvironment (TME) during prostate tumorigenesis is emerging as a critical event that facilitates cancer growth, progression and drug-resistance. Recent advances have identified extensive communication networks that enable tumor-stroma cross-talk, and emphasized the functional importance of diverse, heterogeneous stromal fibroblast populations during malignant growth. Cancer-associated fibroblasts (CAFs) are a vital component of the TME, which mediate key oncogenic events including angiogenesis, immunosuppression, metastatic progression and therapeutic resistance, thus presenting an attractive therapeutic target. Nevertheless, how fibroblast heterogeneity, recruitment, cell-of-origin and differential functions contribute to prostate cancer remains to be fully delineated. Developing our molecular understanding of these processes is fundamental to developing new therapies and biomarkers that can ultimately improve clinical outcomes. In this review, we explore the current challenges surrounding fibroblast identification, discuss new mechanistic insights into fibroblast functions during normal prostate tissue homeostasis and tumorigenesis, and illustrate the diverse nature of fibroblast recruitment and CAF generation. We also highlight the promise of CAF-targeted therapies for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jasmine S. Owen
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Aled Clayton
- Tissue Microenvironment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
4
|
Toledo B, Picon-Ruiz M, Marchal JA, Perán M. Dual Role of Fibroblasts Educated by Tumour in Cancer Behavior and Therapeutic Perspectives. Int J Mol Sci 2022; 23:15576. [PMID: 36555218 PMCID: PMC9778751 DOI: 10.3390/ijms232415576] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Tumours are complex systems with dynamic interactions between tumour cells, non-tumour cells, and extracellular components that comprise the tumour microenvironment (TME). The majority of TME's cells are cancer-associated fibroblasts (CAFs), which are crucial in extracellular matrix (ECM) construction, tumour metabolism, immunology, adaptive chemoresistance, and tumour cell motility. CAF subtypes have been identified based on the expression of protein markers. CAFs may act as promoters or suppressors in tumour cells depending on a variety of factors, including cancer stage. Indeed, CAFs have been shown to promote tumour growth, survival and spread, and secretome changes, but they can also slow tumourigenesis at an early stage through mechanisms that are still poorly understood. Stromal-cancer interactions are governed by a variety of soluble factors that determine the outcome of the tumourigenic process. Cancer cells release factors that enhance the ability of fibroblasts to secrete multiple tumour-promoting chemokines, acting on malignant cells to promote proliferation, migration, and invasion. This crosstalk between CAFs and tumour cells has given new prominence to the stromal cells, from being considered as mere physical support to becoming key players in the tumour process. Here, we focus on the concept of cancer as a non-healing wound and the relevance of chronic inflammation to tumour initiation. In addition, we review CAFs heterogeneous origins and markers together with the potential therapeutic implications of CAFs "re-education" and/or targeting tumour progression inhibition.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain
| | - Manuel Picon-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, E-18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, E-18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| |
Collapse
|
5
|
Tao J, Li X, Liang C, Liu Y, Zhou J. Expression of basement membrane genes and their prognostic significance in clear cell renal cell carcinoma patients. Front Oncol 2022; 12:1026331. [PMID: 36353536 PMCID: PMC9637577 DOI: 10.3389/fonc.2022.1026331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/06/2022] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a malignant tumor with limited treatment options. A recent study confirmed the involvement of basement membrane (BM) genes in the progression of many cancers. Therefore, we studied the role and prognostic significance of BM genes in ccRCC. METHODS Co-expression analysis of ccRCC-related information deposited in The Cancer Genome Atlas database and a BM geneset from a recent study was conducted. The differentially expressed BM genes were validated using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Least absolute shrinkage and selection operator regression and univariate Cox regression analyses were performed to identify a BM gene signature with prognostic significance for ccRCC. Multivariate Cox regression, time-dependent receiver operating characteristic, Kaplan-Meier, and nomogram analyses were implemented to appraise the prognostic ability of the signature and the findings were further verified using a Gene Expression Omnibus dataset. Additionally, immune cell infiltration and and pathway enrichment analyses were performed using ImmuCellAI and Gene Set Enrichment Analysis (GSEA), respectively. Finally, the DSIGDB dataset was used to screen small-molecule therapeutic drugs that may be useful in treating ccRCC patients. RESULTS We identified 108 BM genes exhibiting different expression levels compared to that in normal kidney tissues, among which 32 genes had prognostic values. The qRT-PCR analyses confirmed that the expression patterns of four of the ten selected genes were the same as the predicted ones. Additionally, we successfully established and validated a ccRCC patient prediction model based on 16 BM genes and observed that the model function is an independent predictor. GSEA revealed that differentially expressed BM genes mainly displayed significant enrichment of tumor and metabolic signaling cascades. The BM gene signature was also associated with immune cell infiltration and checkpoints. Eight small-molecule drugs may have therapeutic effects on ccRCC patients. CONCLUSION This study explored the function of BM genes in ccRCC for the first time. Reliable prognostic biomarkers that affect the survival of ccRCC patients were determined, and a BM gene-based prognostic model was established.
Collapse
Affiliation(s)
- Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Xiao Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Abstract
Cancer is a complex disease and a significant cause of mortality worldwide. Over the course of nearly all cancer types, collagen within the tumor microenvironment influences emergence, progression, and metastasis. This review discusses collagen regulation within the tumor microenvironment, pathological involvement of collagen, and predictive values of collagen and related extracellular matrix components in main cancer types. A survey of predictive tests leveraging collagen assays using clinical cohorts is presented. A conclusion is that collagen has high predictive value in monitoring cancer processes and stratifying by outcomes. New approaches should be considered that continue to define molecular facets of collagen related to cancer.
Collapse
|
7
|
Thorlacius-Ussing J, Jensen C, Madsen EA, Nissen NI, Manon-Jensen T, Chen IM, Johansen JS, Diab HMH, Jørgensen LN, Karsdal MA, Willumsen N. Type XX Collagen Is Elevated in Circulation of Patients with Solid Tumors. Int J Mol Sci 2022; 23:4144. [PMID: 35456962 PMCID: PMC9032593 DOI: 10.3390/ijms23084144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
In the tumor microenvironment, the extracellular matrix (ECM) has been recognized as an important part of cancer development. The dominant ECM proteins are the 28 types of collagens, each with a unique function in tissue architecture. Type XX collagen, however, is poorly characterized, and little is known about its involvement in cancer. We developed an ELISA quantifying type XX collagen, named PRO-C20, using a monoclonal antibody raised against the C-terminus. PRO-C20 and PRO-C1, an ELISA targeting the N-terminal pro-peptide of type I collagen, was measured in sera of 219 patients with various solid cancer types and compared to sera levels of 33 healthy controls. PRO-C20 was subsequently measured in a separate cohort comprising 36 patients with pancreatic ductal adenocarcinoma (PDAC) and compared to 20 healthy controls and 11 patients with chronic pancreatitis. PRO-C20 was significantly elevated in all cancers tested: bladder, breast, colorectal, head and neck, kidney, lung, melanoma, ovarian, pancreatic, prostate, and stomach cancer (p < 0.01−p < 0.0001). PRO-C1 was only elevated in patients with ovarian cancer. PRO-C20 could discriminate between patients and healthy controls with AUROC values ranging from 0.76 to 0.92. Elevated levels were confirmed in a separate cohort of patients with PDAC (p < 0.0001). High PRO-C20 levels (above 2.57 nM) were predictive of poor survival after adjusting for the presence of metastasis, age, and sex (HR: 4.25, 95% CI: 1.52−11.9, p-value: 0.006). Circulating type XX collagen is elevated in sera of patients with various types of cancer and has prognostic value in PDAC. If validated, PRO-C20 may be a novel biomarker for patients with solid tumors and can help understand the ECM biology of cancer.
Collapse
Affiliation(s)
- Jeppe Thorlacius-Ussing
- Biomarkers and Research, Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (E.A.M.); (N.I.N.); (T.M.-J.); (M.A.K.); (N.W.)
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christina Jensen
- Biomarkers and Research, Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (E.A.M.); (N.I.N.); (T.M.-J.); (M.A.K.); (N.W.)
| | - Emilie A. Madsen
- Biomarkers and Research, Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (E.A.M.); (N.I.N.); (T.M.-J.); (M.A.K.); (N.W.)
| | - Neel I. Nissen
- Biomarkers and Research, Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (E.A.M.); (N.I.N.); (T.M.-J.); (M.A.K.); (N.W.)
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen (UCPH), 2200 Copenhagen, Denmark
| | - Tina Manon-Jensen
- Biomarkers and Research, Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (E.A.M.); (N.I.N.); (T.M.-J.); (M.A.K.); (N.W.)
| | - Inna M. Chen
- Department of Oncology, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark; (I.M.C.); (J.S.J.)
| | - Julia S. Johansen
- Department of Oncology, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark; (I.M.C.); (J.S.J.)
- Department of Medicine, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Hadi M. H. Diab
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark;
| | - Lars N. Jørgensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark;
| | - Morten A. Karsdal
- Biomarkers and Research, Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (E.A.M.); (N.I.N.); (T.M.-J.); (M.A.K.); (N.W.)
| | - Nicholas Willumsen
- Biomarkers and Research, Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (E.A.M.); (N.I.N.); (T.M.-J.); (M.A.K.); (N.W.)
| |
Collapse
|
8
|
Zhang W, Zhao W, Li W, Geng Q, Zhao R, Yang Y, Lv L, Chen W. The Imbalance of Cytokines and Lower Levels of Tregs in Elderly Male Primary Osteoporosis. Front Endocrinol (Lausanne) 2022; 13:779264. [PMID: 35721756 PMCID: PMC9205399 DOI: 10.3389/fendo.2022.779264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Osteoporosis (OP) is a debilitating disease that brings a heavy burden to individuals and society with reduced quality of life and lifespan. However, it's frequently overlooked and poorly studied in elderly male patients. Worse still, few anti-osteoporosis drugs are effective at the prevention and treatment of osteoporosis in men. It has been reported that the cells of bone and the immune system share common progenitors, cytokines and growth factors, and that reciprocal interactions occur during health and disease. Nevertheless, the role of immune system in OP is not fully understood, especially in male patients. Therefore, this study aimed to investigate molecular alterations in immune cells in men with OP and to identify immunomodulatory strategies with potential therapeutic value. MATERIALS AND METHODS A population of 121 men aged between 51 and 80 years old was recruited. Bone mineral density (BMD) was measured at the lumbar spine L1-4 and femoral neck using dual-energy X-ray absorptiometry (DXA). Twenty people were healthy, 66 people had osteopenia and 35 people had OP. Bone metabolic markers, Th1, Th2, Tregs and immune molecules were evaluated at the time of enrollment. RESULTS Smoking was a risk factor for OP. C-terminal crosslinking of type I collagen (β-CTX) and the ratio of receptor activator of nuclear factor-κB ligand (RANKL) to osteoprotegerin (OPG) were higher in OP group, which had lower 25-hydroxyvitamin D [25(OH)D] levels. OP had the higher levels of IL-6 and TNF-α and lower levels of IFN-γ and IL-10. CD4+CD25+CD127-/low Tregs were significantly lower in the OP group. The imbalance of Th1/Th2 cells may play an important role in the development of OP. 25(OH)D may play essential roles in maintaining bone health. The low level of Tregs is also one of the underlying immune mechanism that leads to male primary OP. CONCLUSION The active function of osteoclasts and the decline in osteoblasts were characteristics of OP, and the imbalance in cytokines and lower levels of Tregs were observed in elderly male patients with primary OP.
Collapse
Affiliation(s)
- Wei Zhang
- Departments of Endocrinology, Qujing Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Wei Zhao
- Department of Spinal Surgery, Dali Bai Autonomous Prefecture People’s Hospital, Yunnan, China
| | - Wei Li
- Departments of Medical Administration, Qujing Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Qi Geng
- Department of Medical Laboratories, Qujing Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Rui Zhao
- Departments of Endocrinology, Qujing Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Yungui Yang
- Departments of Geriatrics, The Third People’s Hospital of Qujing City, Yunnan, China
- *Correspondence: Yungui Yang, ; Luyan Lv, ; Weiwen Chen,
| | - Luyan Lv
- Departments of Geriatrics, Qujing Affiliated Hospital of Kunming Medical University, Yunnan, China
- *Correspondence: Yungui Yang, ; Luyan Lv, ; Weiwen Chen,
| | - Weiwen Chen
- Departments of Endocrinology, Qujing Affiliated Hospital of Kunming Medical University, Yunnan, China
- *Correspondence: Yungui Yang, ; Luyan Lv, ; Weiwen Chen,
| |
Collapse
|
9
|
Lorenzo-Gómez R, Casero-Álvarez A, Miranda-Castro R, García-Ocaña M, de Los Toyos JR, de-Los-Santos-Alvarez N, Lobo-Castañón MJ. A competitive assay for the detection of a 16-mer peptide from α1 chain of human collagen XI. Talanta 2021; 240:123196. [PMID: 34998145 DOI: 10.1016/j.talanta.2021.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022]
Abstract
Characterization of extracellular matrix (ECM) is becoming more and more important to decipher cancer progression. Constant remodeling results in ECM components degradation or unusual ECM accumulation that releases short fragments to the body fluids. These fragments might be potential cancer biomarkers but to detect them specific receptors are needed. In response to this demand, we present the first electrochemical aptamer-based competitive assay for the minor collagen XI, dysregulated in several carcinomas. It was performed on magnetic beads using enzymatic labeling. First, we selected the most appropriate tag for the aptamer (biotin or 6-carboxyfluorescein). The former yielded higher currents by chronoamperometry and it was used for the competitive assay. The collagen fragment, a 16mer peptide used as the target, was detected from 52 to 1000 nM with an RSD of about 5%. The LOD of the assay was estimated as 24 nM (44 ng/mL). The performance of the assay in serum diluted 1:2 was equivalent to the assay in PBS. The detection of α1 chain of human collagen XI was also possible in cell lysates and confirmed by aptacytofluorescence, which is promising as a new tool to validate this fragment as a cancer biomarker.
Collapse
Affiliation(s)
- Ramón Lorenzo-Gómez
- Departamento de Química Física y Analítica. Facultad de Química, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Av. de Roma s/n, 33011, Oviedo, Spain.
| | - Alfonso Casero-Álvarez
- Departamento de Química Física y Analítica. Facultad de Química, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain.
| | - Rebeca Miranda-Castro
- Departamento de Química Física y Analítica. Facultad de Química, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Av. de Roma s/n, 33011, Oviedo, Spain.
| | - Marcos García-Ocaña
- Unidad de Biotecnología y Ensayos Biomédicos. Servicios Científico Técnicos, Universidad de Oviedo, Oviedo, Spain.
| | - Juan R de Los Toyos
- Instituto de Investigación Sanitaria del Principado de Asturias, Av. de Roma s/n, 33011, Oviedo, Spain; Área de Inmunología, Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Av. Julián Clavería 6, 33006, Oviedo, Spain.
| | - Noemí de-Los-Santos-Alvarez
- Departamento de Química Física y Analítica. Facultad de Química, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Av. de Roma s/n, 33011, Oviedo, Spain.
| | - M Jesús Lobo-Castañón
- Departamento de Química Física y Analítica. Facultad de Química, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Av. de Roma s/n, 33011, Oviedo, Spain.
| |
Collapse
|
10
|
Hassanein SS, Abdel-Mawgood AL, Ibrahim SA. EGFR-Dependent Extracellular Matrix Protein Interactions Might Light a Candle in Cell Behavior of Non-Small Cell Lung Cancer. Front Oncol 2021; 11:766659. [PMID: 34976811 PMCID: PMC8714827 DOI: 10.3389/fonc.2021.766659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death and is associated with a poor prognosis. Lung cancer is divided into 2 main types: the major in incidence is non-small cell lung cancer (NSCLC) and the minor is small cell lung cancer (SCLC). Although NSCLC progression depends on driver mutations, it is also affected by the extracellular matrix (ECM) interactions that activate their corresponding signaling molecules in concert with integrins and matrix metalloproteinases (MMPs). These signaling molecules include cytoplasmic kinases, small GTPases, adapter proteins, and receptor tyrosine kinases (RTKs), particularly the epidermal growth factor receptor (EGFR). In NSCLC, the interplay between ECM and EGFR regulates ECM stiffness, angiogenesis, survival, adhesion, migration, and metastasis. Furthermore, some tumor-promoting ECM components (e.g., glycoproteins and proteoglycans) enhance activation of EGFR and loss of PTEN. On the other hand, other tumor-suppressing glycoproteins and -proteoglycans can inhibit EGFR activation, suppressing cell invasion and migration. Therefore, deciphering the molecular mechanisms underlying EGFR and ECM interactions might provide a better understanding of disease pathobiology and aid in developing therapeutic strategies. This review critically discusses the crosstalk between EGFR and ECM affecting cell behavior of NSCLC, as well as the involvement of ECM components in developing resistance to EGFR inhibition.
Collapse
Affiliation(s)
- Sarah Sayed Hassanein
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed Lotfy Abdel-Mawgood
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| | | |
Collapse
|
11
|
Song L, Xie C, Liu X, Huo Z, Xie Y, Gao J, Zhou S, Shen J, Tang X, Liu X. Development of a Sandwich Chemiluminescence Immunoassay for the Detection of Intact Procollagen Type I N Propeptide with Magnetic Nanosphere Carrier Technology. J Biomed Nanotechnol 2021; 17:1690-1698. [PMID: 34544545 DOI: 10.1166/jbn.2021.3132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The metabolic product of type I collagen synthesis, intact procollagen type I N propeptide (intact PINP), is a potential marker of bone formation and osteoporosis, which is not affected by kidney function. We sought to establish a chemiluminescent immunoassay method for the detection of serum intact PINP with previously prepared paired monoclonal antibodies and to evaluate the diagnostic value of the assay in osteoporosis. Using the capture molecule and monoclonal antibody as detection molecule, a diagnostic reagent was developed to detect intact PINP in serum with magnetic nanosphere carriers by the chemiluminescence method, and its analytical performance in the laboratory was evaluated. Serum intact PINP was measured in 142 healthy people and 115 osteoporosis patients. Results were matched with results of a similar test kit, Roche total PINP Elecsys Chemiluminescent Immunoassay Assay. Compared with the performance of the Roche PINP assay product, our method had higher sensitivity (0.02 ng/mL), wider linear range (0.02-1500 ng/mL), and anti-interference. Serum intact PINP values in osteoporosis patients were significantly higher than in healthy subjects (p < 0.001). Our method had good consistency compared with the Roche PINP assay (r = 0.9794). This chemiluminescence method for detecting serum intact PINP (CLIA-intact PINP) with magnetic nanosphere carrier technology meets the requirements of a clinical testing reagent and is expected to have clinical application after further evaluation and can compete with expensive imported kits on the market.
Collapse
Affiliation(s)
- Li Song
- Clinical Laboratory Medicine, Anhui University of Science & Technology, Huainan, 232001, China
| | - Chunmei Xie
- Department of Blood Transfusion, Guangzhou 8th People's Hospital, Guangzhou Medical University, Guangzhou, 510440, People's Republic of China
| | - Xueke Liu
- Department of Clinical Laboratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Zhen Huo
- Clinical Laboratory Medicine, Anhui University of Science & Technology, Huainan, 232001, China
| | - Yinhai Xie
- Clinical Laboratory Medicine, Anhui University of Science & Technology, Huainan, 232001, China
| | - Jiafeng Gao
- Clinical Laboratory Medicine, Anhui University of Science & Technology, Huainan, 232001, China
| | - Shuping Zhou
- Clinical Laboratory Medicine, Anhui University of Science & Technology, Huainan, 232001, China
| | - Jing Shen
- Clinical Laboratory Medicine, Anhui University of Science & Technology, Huainan, 232001, China
| | - Xiaolong Tang
- Clinical Laboratory Medicine, Anhui University of Science & Technology, Huainan, 232001, China
| | - Xinkuang Liu
- Clinical Laboratory Medicine, Anhui University of Science & Technology, Huainan, 232001, China
| |
Collapse
|
12
|
Nissen NI, Kehlet S, Johansen AZ, Chen IM, Karsdal M, Johansen JS, Diab HMH, Jørgensen LN, Sun S, Manon-Jensen T, He Y, Langholm L, Willumsen N. Noninvasive prognostic biomarker potential of quantifying the propeptides of Type XI collagen alpha-1 chain (PRO-C11) in patients with pancreatic ductal adenocarcinoma. Int J Cancer 2021; 149:228-238. [PMID: 33687786 DOI: 10.1002/ijc.33551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/22/2023]
Abstract
Type XI collagen has been associated with tumor fibrosis and aggressiveness in patients with pancreatic ductal adenocarcinoma (PDAC). The propeptide on Type XI collagen is released into the circulation after proteolytic processing at either amino acid 253 or 511. This allows for a noninvasive biomarker approach to quantify Type XI collagen production. We developed two ELISA-based biomarkers, targeting the two enzymatic cleavage sites (PRO-C11-253 and PRO-C11-511). In a discovery cohort including serum from patients with PDAC (n = 39, Stages 1-4), chronic pancreatitis (CP, n = 12) and healthy controls (n = 20), PRO-C11-511, but not PRO-C11-253, was significantly upregulated in patients with PDAC and CP compared to healthy controls. Furthermore, PRO-C11-511 levels >75th percentile were associated with poor overall survival (OS) (HR, 95% CI: 3.40, 1.48-7.83). The PRO-C11-511 biomarker potential was validated in serum from 686 patients with PDAC. Again, high levels of PRO-C11-511 (>75th percentile) were associated with poor OS (HR, 95% CI: 1.68, 1.40-2.02). Furthermore, PRO-C11-511 remained significant after adjusting for clinical risk factors (HR, 95% CI: 1.50, 1.22-1.86). In conclusion, quantifying serum levels of Type XI collagen with PRO-C11-511 predicts poor OS in patients with PDAC. This supports that Type XI collagen is important for PDAC biology and that PRO-C11-511 has prognostic noninvasive biomarker potential for patients with PDAC.
Collapse
Affiliation(s)
- Neel Ingemann Nissen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | | - Astrid Z Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Inna M Chen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Karsdal
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hadi M H Diab
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars N Jørgensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Shu Sun
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | | - Yi He
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | - Lasse Langholm
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | |
Collapse
|
13
|
Aiello S, Casiraghi F. Lysophosphatidic Acid: Promoter of Cancer Progression and of Tumor Microenvironment Development. A Promising Target for Anticancer Therapies? Cells 2021; 10:cells10061390. [PMID: 34200030 PMCID: PMC8229068 DOI: 10.3390/cells10061390] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Increased expression of the enzyme autotaxin (ATX) and the consequently increased levels of its product, lysophosphatidic acid (LPA), have been reported in several primary tumors. The role of LPA as a direct modulator of tumor cell functions—motility, invasion and migration capabilities as well as resistance to apoptotic death—has been recognized by numerous studies over the last two decades. Notably, evidence has recently been accumulating that shows that LPA also contributes to the development of the tumor microenvironment (TME). Indeed, LPA plays a crucial role in inducing angiogenesis and lymphangiogenesis, triggering cellular glycolytic shift and stimulating intratumoral fibrosis. In addition, LPA helps tumoral cells to escape immune surveillance. Treatments that counter the TME components, in order to deprive cancer cells of their crucial support, have been emerging among the promising new anticancer therapies. This review aims to summarize the latest knowledge on how LPA influences both tumor cell functions and the TME by regulating the activity of its different elements, highlighting why and how LPA is worth considering as a molecular target for new anticancer therapies.
Collapse
|
14
|
Sanegre S, Eritja N, de Andrea C, Diaz-Martin J, Diaz-Lagares Á, Jácome MA, Salguero-Aranda C, García Ros D, Davidson B, Lopez R, Melero I, Navarro S, Ramon Y Cajal S, de Alava E, Matias-Guiu X, Noguera R. Characterizing the Invasive Tumor Front of Aggressive Uterine Adenocarcinoma and Leiomyosarcoma. Front Cell Dev Biol 2021; 9:670185. [PMID: 34150764 PMCID: PMC8209546 DOI: 10.3389/fcell.2021.670185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
The invasive tumor front (the tumor–host interface) is vitally important in malignant cell progression and metastasis. Tumor cell interactions with resident and infiltrating host cells and with the surrounding extracellular matrix and secreted factors ultimately determine the fate of the tumor. Herein we focus on the invasive tumor front, making an in-depth characterization of reticular fiber scaffolding, infiltrating immune cells, gene expression, and epigenetic profiles of classified aggressive primary uterine adenocarcinomas (24 patients) and leiomyosarcomas (11 patients). Sections of formalin-fixed samples before and after microdissection were scanned and studied. Reticular fiber architecture and immune cell infiltration were analyzed by automatized algorithms in colocalized regions of interest. Despite morphometric resemblance between reticular fibers and high presence of macrophages, we found some variance in other immune cell populations and distinctive gene expression and cell adhesion-related methylation signatures. Although no evident overall differences in immune response were detected at the gene expression and methylation level, impaired antimicrobial humoral response might be involved in uterine leiomyosarcoma spread. Similarities found at the invasive tumor front of uterine adenocarcinomas and leiomyosarcomas could facilitate the use of common biomarkers and therapies. Furthermore, molecular and architectural characterization of the invasive front of uterine malignancies may provide additional prognostic information beyond established prognostic factors.
Collapse
Affiliation(s)
- Sabina Sanegre
- Cancer CIBER (CIBERONC), Madrid, Spain.,Department of Pathology, School of Medical, University of Valencia-INCLIVA, Valencia, Spain
| | - Núria Eritja
- Cancer CIBER (CIBERONC), Madrid, Spain.,Institut de Recerca Biomèdica de LLeida (IRBLLEIDA), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Department of Pathology, Hospital U Arnau de Vilanova and Hospital U de Bellvitge, University of Lleida - University of Barcelona, Barcelona, Spain
| | - Carlos de Andrea
- Cancer CIBER (CIBERONC), Madrid, Spain.,Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Juan Diaz-Martin
- Cancer CIBER (CIBERONC), Madrid, Spain.,Institute of Biomedicine of Sevilla, Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - Ángel Diaz-Lagares
- Cancer CIBER (CIBERONC), Madrid, Spain.,Cancer Epigenomics, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - María Amalia Jácome
- Department of Mathematics, MODES Group, CITIC, Faculty of Science, Universidade da Coruña, A Coruña, Spain
| | - Carmen Salguero-Aranda
- Cancer CIBER (CIBERONC), Madrid, Spain.,Institute of Biomedicine of Sevilla, Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - David García Ros
- Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Ben Davidson
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Rafel Lopez
- Cancer CIBER (CIBERONC), Madrid, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Ignacio Melero
- Cancer CIBER (CIBERONC), Madrid, Spain.,Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Samuel Navarro
- Cancer CIBER (CIBERONC), Madrid, Spain.,Department of Pathology, School of Medical, University of Valencia-INCLIVA, Valencia, Spain
| | - Santiago Ramon Y Cajal
- Cancer CIBER (CIBERONC), Madrid, Spain.,Department of Pathology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Enrique de Alava
- Cancer CIBER (CIBERONC), Madrid, Spain.,Institute of Biomedicine of Sevilla, Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - Xavier Matias-Guiu
- Cancer CIBER (CIBERONC), Madrid, Spain.,Institut de Recerca Biomèdica de LLeida (IRBLLEIDA), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Department of Pathology, Hospital U Arnau de Vilanova and Hospital U de Bellvitge, University of Lleida - University of Barcelona, Barcelona, Spain
| | - Rosa Noguera
- Cancer CIBER (CIBERONC), Madrid, Spain.,Department of Pathology, School of Medical, University of Valencia-INCLIVA, Valencia, Spain
| |
Collapse
|
15
|
Mukherjee S, Zhelnin L, Sanfiz A, Pan J, Li Z, Yarde M, McCarty J, Jarai G. Development and validation of an in vitro 3D model of NASH with severe fibrotic phenotype. Am J Transl Res 2019; 11:1531-1540. [PMID: 30972180 PMCID: PMC6456529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Nonalcoholic steatohepatitis represents a significant and rapidly growing unmet medical need. The development of novel therapies has been hindered in part, by the limitations of existing preclinical models. There is a strong need for physiologically relevant in vivo and in vitro liver fibrosis models that are characterized by better translational predictability. In this study, we used the InSphero 3D InSightTM three-dimensional (3D) human liver microtissue (3D-hLMT) system prepared by co-culturing primary human hepatocytes with hepatic stellate cells, Kupffer cells and endothelial cells to develop a model of NASH with a severe fibrotic phenotype. In our model, palmitic acid (PA) induced a robust proinflammatory and profibrogenic phenotype in the 3D-hLMT. PA significantly increased several markers of the inflammatory and profibrotic process including gene expression of collagens, α-sma, tissue inhibitor of matrix metalloprotease 1 (timp1) and the stellate cell activation marker pdgfrβ as well as secreted CXCL8 (IL8) levels. We also observed TGFβ pathway activation, increase in active collagen synthesis and significant overall increase in tissue damage in the 3D-hLMTs. Immunohistochemistry analysis demonstrated the upregulation of collagen, cleaved caspase 3 as well as of the PDGFRβ protein. We further validated the model using a phase 3 clinical compound, GS-4997, an apoptosis signal-regulating kinase 1 (ASK-1) inhibitor and showed that GS-4997 significantly decreased PA induced profibrotic and proinflammatory response in the 3D-hLMTs with decreases in apoptosis and stellate cell activation in the microtissues. Taken together we have established and validated an in vitro 3D-hLMT NASH model with severe fibrotic phenotype that can be a powerful tool to investigate experimental compounds for the treatment of NASH.
Collapse
Affiliation(s)
| | - Leonid Zhelnin
- Fibrosis Discovery, Bristol Myers SquibbPennington 08534, NJ
| | - Anthony Sanfiz
- Fibrosis Discovery, Bristol Myers SquibbPennington 08534, NJ
| | - Jie Pan
- Lead Discovery and Optimization, Bristol Myers SquibbLawrenceville 08543, NJ
| | - Zhuyin Li
- Lead Discovery and Optimization, Bristol Myers SquibbLawrenceville 08543, NJ
| | - Melissa Yarde
- Lead Discovery and Optimization, Bristol Myers SquibbLawrenceville 08543, NJ
| | - Jean McCarty
- Department of Pathology, Bristol Myers SquibbLawrenceville 08543, NJ
| | - Gabor Jarai
- Fibrosis Discovery, Bristol Myers SquibbPennington 08534, NJ
| |
Collapse
|
16
|
Nissen NI, Karsdal M, Willumsen N. Collagens and Cancer associated fibroblasts in the reactive stroma and its relation to Cancer biology. J Exp Clin Cancer Res 2019; 38:115. [PMID: 30841909 PMCID: PMC6404286 DOI: 10.1186/s13046-019-1110-6] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
The extracellular matrix (ECM) plays an important role in cancer progression. It can be divided into the basement membrane (BM) that supports epithelial/endothelial cell behavior and the interstitial matrix (IM) that supports the underlying stromal compartment. The major components of the ECM are the collagens. While breaching of the BM and turnover of e.g. type IV collagen, is a well described part of tumorigenesis, less is known regarding the impact on tumorigenesis from the collagens residing in the stroma. Here we give an introduction and overview to the link between tumorigenesis and stromal collagens, with focus on the fibrillar collagens type I, II, III, V, XI, XXIV and XXVII as well as type VI collagen. Moreover, we discuss the impact of the cells responsible for this altered stromal collagen remodeling, the cancer associated fibroblasts (CAFs), and how these cells are key players in orchestrating the tumor microenvironment composition and tissue microarchitecture, hence also driving tumorigenesis and affecting response to treatment. Lastly, we discuss how specific collagen-derived biomarkers reflecting the turnover of stromal collagens and CAF activity may be used as tools to non-invasively interrogate stromal reactivity in the tumor microenvironment and predict response to treatment.
Collapse
Affiliation(s)
- Neel I. Nissen
- Biomarkers and Research, Nordic Bioscience A/S, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Morten Karsdal
- Biomarkers and Research, Nordic Bioscience A/S, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
| | - Nicholas Willumsen
- Biomarkers and Research, Nordic Bioscience A/S, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
| |
Collapse
|
17
|
Pointer KB, Clark PA, Schroeder AB, Salamat MS, Eliceiri KW, Kuo JS. Association of collagen architecture with glioblastoma patient survival. J Neurosurg 2016; 126:1812-1821. [PMID: 27588592 DOI: 10.3171/2016.6.jns152797] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Glioblastoma (GBM) is the most malignant primary brain tumor. Collagen is present in low amounts in normal brain, but in GBMs, collagen gene expression is reportedly upregulated. However, to the authors' knowledge, direct visualization of collagen architecture has not been reported. The authors sought to perform the first direct visualization of GBM collagen architecture, identify clinically relevant collagen signatures, and link them to differential patient survival. METHODS Second-harmonic generation microscopy was used to detect collagen in a GBM patient tissue microarray. Focal and invasive GBM mouse xenografts were stained with Picrosirius red. Quantitation of collagen fibers was performed using custom software. Multivariate survival analysis was done to determine if collagen is a survival marker for patients. RESULTS In focal xenografts, collagen was observed at tumor brain boundaries. For invasive xenografts, collagen was intercalated with tumor cells. Quantitative analysis showed significant differences in collagen fibers for focal and invasive xenografts. The authors also found that GBM patients with more organized collagen had a longer median survival than those with less organized collagen. CONCLUSIONS Collagen architecture can be directly visualized and is different in focal versus invasive GBMs. The authors also demonstrate that collagen signature is associated with patient survival. These findings suggest that there are collagen differences in focal versus invasive GBMs and that collagen is a survival marker for GBM.
Collapse
Affiliation(s)
- Kelli B Pointer
- Departments of 1 Neurological Surgery and.,Cellular and Molecular Biology Graduate Program.,Laboratory for Optical and Computational Instrumentation
| | | | - Alexandra B Schroeder
- Laboratory for Optical and Computational Instrumentation.,Medical Physics Graduate Program.,Morgridge Institute for Research; and
| | - M Shahriar Salamat
- Pathology and Laboratory Medicine.,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin; and
| | - Kevin W Eliceiri
- Cellular and Molecular Biology Graduate Program.,Laboratory for Optical and Computational Instrumentation.,Medical Physics Graduate Program.,Morgridge Institute for Research; and.,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin; and
| | - John S Kuo
- Departments of 1 Neurological Surgery and.,Cellular and Molecular Biology Graduate Program.,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin; and.,Department of Surgery, National University of Singapore, Singapore
| |
Collapse
|
18
|
Spheroid culture of LuCaP 136 patient-derived xenograft enables versatile preclinical models of prostate cancer. Clin Exp Metastasis 2016; 33:325-37. [PMID: 26873136 DOI: 10.1007/s10585-016-9781-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
Abstract
LuCaP serially transplantable patient-derived xenografts (PDXs) are valuable preclinical models of locally advanced or metastatic prostate cancer. Using spheroid culture methodology, we recently established cell lines from several LuCaP PDXs. Here, we characterized in depth the features of xenografts derived from LuCaP 136 spheroid cultures and found faithful retention of the phenotype of the original PDX. In vitro culture enabled luciferase transfection into LuCaP 136 spheroids, facilitating in vivo imaging. We showed that LuCaP 136 spheroids formed intratibial, orthotopic, and subcutaneous tumors when re-introduced into mice. Intratibial tumors responded to castration and were highly osteosclerotic. LuCaP 136 is a realistic in vitro-in vivo preclinical model of a subtype of bone metastatic prostate cancer.
Collapse
|
19
|
van Kruchten M, Glaudemans AWJM, de Vries EFJ, Schröder CP, de Vries EGE, Hospers GAP. Positron emission tomography of tumour [(18)F]fluoroestradiol uptake in patients with acquired hormone-resistant metastatic breast cancer prior to oestradiol therapy. Eur J Nucl Med Mol Imaging 2015; 42:1674-1681. [PMID: 26091705 PMCID: PMC4554736 DOI: 10.1007/s00259-015-3107-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/02/2015] [Indexed: 11/25/2022]
Abstract
PURPOSE Whereas anti-oestrogen therapy is widely applied to treat oestrogen receptor (ER) positive breast cancer, paradoxically, oestrogens can also induce tumour regression. Up-regulation of ER expression is a marker for oestrogen hypersensitivity. We, therefore, performed an exploratory study to evaluate positron emission tomography (PET) with the tracer 16α-[(18)F]fluoro-17β-oestradiol ((18)F-FES) as potential marker to select breast cancer patients for oestradiol therapy. METHODS Eligible patients had acquired endocrine-resistant metastatic breast cancer that progressed after ≥2 lines of endocrine therapy. All patients had prior ER-positive histology. Treatment consisted of oestradiol 2 mg, three times daily, orally. Patients underwent (18)F-FES-PET/CT imaging at baseline. Tumour (18)F-FES-uptake was quantified for a maximum of 20 lesions and expressed as maximum standardised uptake value (SUVmax). CT-scan was repeated every 3 months to evaluate treatment response. Clinical benefit was defined as time to radiologic or clinical progression ≥24 weeks. RESULTS (18)F-FES uptake, quantified for 255 lesions in 19 patients, varied greatly between lesions (median 2.8; range 0.6-24.3) and between patients (median 2.5; range 1.1-15.5). Seven (37%) patients experienced clinical benefit of oestrogen therapy, eight progressed (PD), and four were non-evaluable due to side effects. The positive and negative predictive value (PPV/NPV) of (18)F-FES-PET for response to treatment were 60% (95% CI: 31-83%) and 80% (95% CI: 38-96%), respectively, using SUVmax >1.5. CONCLUSION (18)F-FES-PET may aid identification of patients with acquired antihormone resistant breast cancer that are unlikely to benefit from oestradiol therapy.
Collapse
Affiliation(s)
- Michel van Kruchten
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Carolien P Schröder
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Geke A P Hospers
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
20
|
Cancer (stem) cell differentiation: An inherent or acquired property? Med Hypotheses 2015; 85:1012-8. [PMID: 26347071 DOI: 10.1016/j.mehy.2015.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 08/23/2015] [Indexed: 02/08/2023]
Abstract
There is a growing list of data indicating that cancer (stem) cells could functionally adapt foreign tissue features, such as endothelial-like cells or neuroendocrine cells, express lineage markers or could differentiate into various lineages in response to appropriate differentiation criteria. The finding that cancer (stem) cells may possess some kind of differentiation capacity poses the question whether this might be an inherent or acquired property. Cancer stem cells share stem cell characteristics and may thus possess an inherent differentiation capacity enabling the cells to respond to various differentiation stimuli. Considering the plasticity of cancer (stem) cells, even non-tumorigenic (and putatively non-differentiable) tumor cells could give rise to tumorigenic tumor stem cells, exhibiting stem cell characteristics including an inherent differentiation capacity. On the contrary, cancer (stem) cells may have acquired differentiation capacity as a consequence of a previous cell fusion event with cell types exhibiting differentiation potential and being fusogenic, such as macrophages or stem cells. Of pivotal interest in a tumor context are macrophages, which chiefly foster the chronically inflamed tumor microenvironment. Because chronically inflamed tissue is a well-known trigger for cell fusion and both macrophages and stem cells are highly fusogenic we conclude that cell fusion events between these cell types and cancer (stem) cells should frequently occur, thereby giving rise to hybrid cells exhibiting not only novel properties, like an enhanced metastatogenic phenotype, but also parental characteristics, such as differentiation capacity. Conceivably, the combination of both properties might be advantageous for metastasizing cancer (stem) cells to adapt better and faster to a foreign organ tissue environment.
Collapse
|
21
|
Naci D, Aoudjit F. Alpha2beta1 integrin promotes T cell survival and migration through the concomitant activation of ERK/Mcl-1 and p38 MAPK pathways. Cell Signal 2014; 26:2008-15. [PMID: 24880062 DOI: 10.1016/j.cellsig.2014.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/24/2014] [Indexed: 11/25/2022]
Abstract
Integrin-mediated attachment to extracellular matrix (ECM) is crucial for cancer progression. Malignant T cells such as acute lymphoblastic leukemia (T-ALL) express β1 integrins, which mediate their interactions with ECM. However, the role of these interactions in T-ALL malignancy is still poorly explored. In the present study, we investigated the effect of collagen; an abundant ECM, on T-ALL survival and migration. We found that collagen through α2β1 integrin promotes the survival of T-ALL cell lines in the absence of growth factors. T-ALL cell survival by collagen is associated with reduced caspase activation and maintenance of Mcl-1 levels. Collagen activated both ERK and p38 MAPKs but only MAPK/ERK was required for collagen-induced T-ALL survival. However, we found that α2β1 integrin promoted T-ALL migration via both ERK and p38. Together these data indicate that α2β1 integrin signaling can represent an important signaling pathway in T-ALL pathogenesis and suggest that its blockade could be beneficial in T-ALL treatment.
Collapse
Affiliation(s)
- Dalila Naci
- Centre de recherche du CHU de Québec, Axe des maladies infectieuses et immunitaires, Département de Microbiologie-Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Fawzi Aoudjit
- Centre de recherche du CHU de Québec, Axe des maladies infectieuses et immunitaires, Département de Microbiologie-Immunologie, Faculté de Médecine, Université Laval, Québec, Canada.
| |
Collapse
|