1
|
Hoy JA, Haas GT, Hallock P. Was the massive increase in use of teratogenic agrichemicals in western states (USA) associated with declines in wild ruminant populations between 1994 and 2013? CHEMOSPHERE 2024; 359:142320. [PMID: 38735490 DOI: 10.1016/j.chemosphere.2024.142320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Population declines were documented in multiple ruminant species in Montana and surrounding states starting in 1995. While weather, food sources, and predation certainly contributed, the declines were often attributed, at least partly, to unexplained factors. Use of teratogenic agrichemicals, notably neonicotinoid insecticides, fungicides, and glyphosate-based herbicides, massively increased regionally in 1994-96. The question explored in this review is whether this vastly increased use of these teratogenic pesticides might have contributed to observed population declines. We provide references and data documenting that specific developmental malformations on vertebrates can be associated with exposure to one or more of these agrichemicals. These pesticides are known to disrupt thyroid and other hormonal functions, mitochondrial functions, and biomineralization, all of which are particularly harmful to developing fetuses. Exposures can manifest as impaired embryonic development of craniofacial features, internal and reproductive organs, and musculoskeletal/integumental systems, often resulting in reproductive failure or weakened neonates. This paper reviews: a) studies of ruminant populations in the region, especially elk and white-tailed deer, prior to and after 1994; b) published and new data on underdeveloped facial bones in regional ruminants; c) published and new data on reproductive abnormalities in live and necropsied animals before and after 1994; and d) studies documenting the effects of exposures to three of the most applied teratogenic chemicals. While answers to the question posed above are complex and insufficient evidence is available for definitive answers, this review provides ideas for further consideration.
Collapse
Affiliation(s)
- Judith A Hoy
- 2858 Pheasant Lane, Stevensville, MT, 59870, USA; Bitterroot Wildlife Rehab Center, Stevensville, MT, 59870, (now retired), USA
| | - Gary T Haas
- Big Sky Beetle Works, 5189 Highway 93 North, Box 776, Florence, MT, 59833-0776, USA
| | - Pamela Hallock
- College of Marine Science, University of South Florida, 140 Seventh Avenue S., St. Petersburg, FL, 33701, USA.
| |
Collapse
|
2
|
Robinson GC, Toliver-Smith A, Stigar LV. Teaching Queer Concepts to Graduate Students in Communication Sciences and Disorders: Culturally Responsive Pedagogy to Foster Affirmative Clinical Practice. Semin Speech Lang 2023; 44:104-118. [PMID: 36882073 DOI: 10.1055/s-0043-1761947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
There is a growing body of literature informing pedagogical content and strategies of diversity, equity, and inclusion in the education of speech-language pathologists. However, little discussion has included content related to LGBTQ+ people, even though LGBTQ+ people exist across all racial/ethnic groups. This article seeks to fill that void and provide instructors of speech-language pathology with practical information to educate their graduate students. The discussion uses a critical epistemology and invokes theoretical models, such as Queer/Quare theory, DisCrit, the Minority Stress Model, the Ethics of Care, and Culturally Responsive Pedagogy. Information is organized according to developing graduate students' awareness, knowledge, and skills and challenges instructors to modify current course content to disrupt systemic oppression.
Collapse
Affiliation(s)
- Gregory C Robinson
- Department of Audiology and Speech-Language Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Andrea Toliver-Smith
- Department of Audiology and Speech-Language Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Lorraine V Stigar
- Department of Audiology and Speech-Language Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
3
|
De Clercq E, Starke G, Rost M. "Waking up" the sleeping metaphor of normality in connection to intersex or DSD: a scoping review of medical literature. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:50. [PMID: 36282442 PMCID: PMC9596528 DOI: 10.1007/s40656-022-00533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
The aim of the study is to encourage a critical debate on the use of normality in the medical literature on DSD or intersex. For this purpose, a scoping review was conducted to identify and map the various ways in which "normal" is used in the medical literature on DSD between 2016 and 2020. We identified 75 studies, many of which were case studies highlighting rare cases of DSD, others, mainly retrospective observational studies, focused on improving diagnosis or treatment. The most common use of the adjective normal was in association with phenotypic sex. Overall, appearance was the most commonly cited criteria to evaluate the normality of sex organs. More than 1/3 of the studies included also medical photographs of sex organs. This persistent use of normality in reference to phenotypic sex is worrisome given the long-term medicalization of intersex bodies in the name of a "normal" appearance or leading a "normal" life. Healthcare professionals should be more careful about the ethical implications of using photographs in publications given that many intersex persons describe their experience with medical photography as dehumanizing.
Collapse
Affiliation(s)
- Eva De Clercq
- Institute for Biomedical Ethics, University of Basel, Bernoullistrasse 28, 4056 Basel, Switzerland
- Institute of Biomedical Ethics and History of Medicine, University of Zürich, Winterthurerstrasse 30, 8006 Zurich, Switzerland
| | - Georg Starke
- Institute for Biomedical Ethics, University of Basel, Bernoullistrasse 28, 4056 Basel, Switzerland
- College of Humanities, École Polytechnique Fédérale de Lausanne, Rte Cantonale, 1015 Lausanne, Switzerland
| | - Michael Rost
- Institute for Biomedical Ethics, University of Basel, Bernoullistrasse 28, 4056 Basel, Switzerland
| |
Collapse
|
4
|
McLimans CJ, Shelledy K, Conrad W, Prendergast K, Le AN, Grant CJ, Buonaccorsi VP. Potential biomarkers of endocrine and habitat disruption identified via RNA-Seq in Salvelinus fontinalis with proximity to fracking operations in Pennsylvania headwater stream ecosystems. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1044-1055. [PMID: 35834075 DOI: 10.1007/s10646-022-02564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Unconventional natural gas development (fracking) has been a rapidly expanding technique used for the extraction of natural gas from the Marcellus Shale formation in Pennsylvania. There remains a knowledge gap regarding the ecological impacts of fracking, especially regarding the long-term health of native Brook trout (Salvelinus fontinalis) populations. During the summer of 2015, Brook trout were sampled from twelve streams located in forested, northwestern Pennsylvania in order to evaluate the impacts of fracking on Brook trout. Four stream sites were undisturbed (no fracking activity), three had a developed well pad without fracking activity, and five had active fracking with natural gas production. Liver tissue was isolated from two to five fish per stream and underwent RNA-Seq analysis to identify differentially expressed genes between ecosystems with differing fracking status. Data were analyzed individually and with samples pooled within-stream to account for hierarchical data structure and variation in sample coverage within streams. Differentially expressed and differentially alternatively spliced genes had functions related to lipid and steroid metabolism, mRNA processing, RNA polymerase and protein regulation. Unique to our study, genes related to xenobiotic and stress responses were found as well as potential markers for endocrine disruption and saline adaptation that were identified in watersheds with active fracking activity. These results support the utility of RNA-Seq to assess trout health and suggest detrimental impacts of fracking on sensitive trout populations.
Collapse
Affiliation(s)
| | | | - William Conrad
- Department of Biology, Juniata College, Huntingdon, PA, USA
| | | | - Anh N Le
- Department of Biology, Juniata College, Huntingdon, PA, USA
| | | | | |
Collapse
|
5
|
Boland MR, Elhadad N, Pratt W. Informatics for sex- and gender-related health: understanding the problems, developing new methods, and designing new solutions. J Am Med Inform Assoc 2022; 29:225-229. [PMID: 35024858 PMCID: PMC8757304 DOI: 10.1093/jamia/ocab287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/14/2023] Open
Affiliation(s)
- Mary Regina Boland
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Leonard Davis Institute for Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Noémie Elhadad
- Biomedical Informatics, Columbia University, New York, New York, USA
| | - Wanda Pratt
- Information School, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Tassinari R, Maranghi F. Rodent Model of Gender-Affirming Hormone Therapies as Specific Tool for Identifying Susceptibility and Vulnerability of Transgender People and Future Applications for Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12640. [PMID: 34886364 PMCID: PMC8656759 DOI: 10.3390/ijerph182312640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Transgenders (TGs) are individuals with gender identity and behaviour different from the social norms; they often undergo gender-affirming hormone therapy (HT). HT for TG men involves testosterone treatment and, for TG women, oestrogen plus androgen-lowering agents. Due-but not limited-to the lifelong lasting HT, usually TG people experience several physical and behavioural conditions leading to different and specific susceptibility and vulnerability in comparison to general population, including the response to chemical contaminants present in daily life. In particular, the exposure to the widespread endocrine disrupters (EDs) may affect hormonal and metabolic processes, leading to tissue and organ damage. Since the endocrine system of TG people is overstimulated by HT and, often, the targets overlap with ED, it is reasonable to hypothesize that TG health deserves special attention. At present, no specific tools are available to study the toxicological effects of environmental contaminants, including EDs, and the potential long-term consequences of HT on TG people. In this context, the development of adequate and innovative animal models to mimic gender-affirming HT have a high priority, since they can provide robust data for hazard identification in TG women and men, leading to more reliable risk assessment.
Collapse
Affiliation(s)
- Roberta Tassinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | | |
Collapse
|
7
|
Santi M, Graf S, Zeino M, Cools M, Van De Vijver K, Trippel M, Aliu N, Flück CE. Approach to the Virilizing Girl at Puberty. J Clin Endocrinol Metab 2021; 106:1530-1539. [PMID: 33367768 PMCID: PMC8063244 DOI: 10.1210/clinem/dgaa948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 11/19/2022]
Abstract
UNLABELLED Virilization is the medical term for describing a female who develops characteristics associated with male hormones (androgens) at any age, or when a newborn girl shows signs of prenatal male hormone exposure at birth. In girls, androgen levels are low during pregnancy and childhood. A first physiologic rise of adrenal androgens is observed at the age of 6 to 8 years and reflects functional activation of the zona reticularis of the adrenal cortex at adrenarche, manifesting clinically with first pubic and axillary hairs. Early adrenarche is known as "premature adrenarche." It is mostly idiopathic and of uncertain pathologic relevance but requires the exclusion of other causes of androgen excess (eg, nonclassic congenital adrenal hyperplasia) that might exacerbate clinically into virilization. The second modest physiologic increase of circulating androgens occurs then during pubertal development, which reflects the activation of ovarian steroidogenesis contributing to the peripheral androgen pool. However, at puberty initiation (and beyond), ovarian steroidogenesis is normally devoted to estrogen production for the development of secondary female bodily characteristics (eg, breast development). Serum total testosterone in a young adult woman is therefore about 10- to 20-fold lower than in a young man, whereas midcycle estradiol is about 10- to 20-fold higher. But if androgen production starts too early, progresses rapidly, and in marked excess (usually more than 3 to 5 times above normal), females will manifest with signs of virilization such as masculine habitus, deepening of the voice, severe acne, excessive facial and (male typical) body hair, clitoromegaly, and increased muscle development. Several medical conditions may cause virilization in girls and women, including androgen-producing tumors of the ovaries or adrenal cortex, (non)classical congenital adrenal hyperplasia and, more rarely, other disorders (also referred to as differences) of sex development (DSD). The purpose of this article is to describe the clinical approach to the girl with virilization at puberty, focusing on diagnostic challenges. The review is written from the perspective of the case of an 11.5-year-old girl who was referred to our clinic for progressive, rapid onset clitoromegaly, and was then diagnosed with a complex genetic form of DSD that led to abnormal testosterone production from a dysgenetic gonad at onset of puberty. Her genetic workup revealed a unique translocation of an abnormal duplicated Y-chromosome to a deleted chromosome 9, including the Doublesex and Mab-3 Related Transcription factor 1 (DMRT1) gene. LEARNING OBJECTIVES Identify the precise pathophysiologic mechanisms leading to virilization in girls at puberty considering that virilization at puberty may be the first manifestation of an endocrine active tumor or a disorder/difference of sex development (DSD) that remained undiagnosed before and may be life-threatening. Of the DSDs, nonclassical congenital adrenal hyperplasia occurs most often.Provide a step-by-step diagnostic workup plan including repeated and expanded biochemical and genetic tests to solve complex cases.Manage clinical care of a girl virilizing at puberty using an interdisciplinary team approach.Care for complex cases of DSD manifesting at puberty, such as the presented girl with a Turner syndrome-like phenotype and virilization resulting from a complex genetic variation.
Collapse
Affiliation(s)
- Maristella Santi
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stefanie Graf
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mazen Zeino
- Department of Pediatric Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martine Cools
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | | | - Mafalda Trippel
- Institute of Pathology, Inselspital, University of Bern, Bern, Switzerland
| | - Nijas Aliu
- University Clinic for Pediatrics, Human Genetics, Inselspital, University of Bern, Bern, Switzerland
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Correspondence: Christa E. Flück, Pediatric Endocrinology and Diabetology, University Children’s Hospital, Freiburgstrasse 15 / C845, 3010 Bern, Switzerland. E-mail:
| |
Collapse
|
8
|
Shioda K, Odajima J, Kobayashi M, Kobayashi M, Cordazzo B, Isselbacher KJ, Shioda T. Transcriptomic and Epigenetic Preservation of Genetic Sex Identity in Estrogen-feminized Male Chicken Embryonic Gonads. Endocrinology 2021; 162:5973467. [PMID: 33170207 PMCID: PMC7745639 DOI: 10.1210/endocr/bqaa208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 12/18/2022]
Abstract
Whereas in ovo exposure of genetically male (ZZ) chicken embryos to exogenous estrogens temporarily feminizes gonads at the time of hatching, the morphologically ovarian ZZ-gonads (FemZZs for feminized ZZ gonads) are masculinized back to testes within 1 year. To identify the feminization-resistant "memory" of genetic male sex, FemZZs showing varying degrees of feminization were subjected to transcriptomic, DNA methylome, and immunofluorescence analyses. Protein-coding genes were classified based on their relative mRNA expression across normal ZZ-testes, genetically female (ZW) ovaries, and FemZZs. We identified a group of 25 genes that were strongly expressed in both ZZ-testes and FemZZs but dramatically suppressed in ZW-ovaries. Interestingly, 84% (21/25) of these feminization-resistant testicular marker genes, including the DMRT1 master masculinizing gene, were located in chromosome Z. Expression of representative marker genes of germline cells (eg, DAZL or DDX4/VASA) was stronger in FemZZs than normal ZZ-testes or ZW-ovaries. We also identified 231 repetitive sequences (RSs) that were strongly expressed in both ZZ-testes and FemZZs, but these RSs were not enriched in chromosome Z. Although 94% (165/176) of RSs exclusively expressed in ZW-ovaries were located in chromosome W, no feminization-inducible RS was detected in FemZZs. DNA methylome analysis distinguished FemZZs from normal ZZ- and ZW-gonads. Immunofluorescence analysis of FemZZ gonads revealed expression of DMRT1 protein in medullary SOX9+ somatic cells and apparent germline cell populations in both medulla and cortex. Taken together, our study provides evidence that both somatic and germline cell populations in morphologically feminized FemZZs maintain significant transcriptomic and epigenetic memories of genetic sex.
Collapse
Affiliation(s)
- Keiko Shioda
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Junko Odajima
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Misato Kobayashi
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Mutsumi Kobayashi
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Bianca Cordazzo
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Kurt J Isselbacher
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Toshi Shioda
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Correspondence: Toshi Shioda, Massachusetts General Hospital Center for Cancer Research, Building 149 – 7th Floor, 13th Street, Charlestown, Massachusetts 02129, USA. E-mail:
| |
Collapse
|
9
|
Two Doublesex1 mutants revealed a tunable gene network underlying intersexuality in Daphnia magna. PLoS One 2020; 15:e0238256. [PMID: 32866176 PMCID: PMC7458346 DOI: 10.1371/journal.pone.0238256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/12/2020] [Indexed: 11/19/2022] Open
Abstract
In recent years, the binary definition of sex is being challenged by repetitive reports about individuals with ambiguous sexual identity from various animal groups. This has created an urge to decode the molecular mechanism underlying sexual development. However, sexual ambiguities are extremely uncommon in nature, limiting their experimental value. Here, we report the establishment of a genetically modified clone of Daphnia magna from which intersex daphniids can be readily generated. By mutating the conserved central sex determining factor Doublesex1, body-wide feminization of male daphniid could be achieved. Comparative transcriptomic analysis also revealed a genetic network correlated with Doublesex1 activity which may account for the establishment of sexual identity in D. magna. We found that Dsx1 repressed genes related to growth and promoted genes related to signaling. We infer that different intersex phenotypes are the results of fluctuation in activity of these Dsx1 downstream factors. Our results demonstrated that the D. magna genome is capable of expressing sex in a continuous array, supporting the idea that sex is actually a spectrum.
Collapse
|
10
|
Santoro A, Chianese R, Troisi J, Richards S, Nori SL, Fasano S, Guida M, Plunk E, Viggiano A, Pierantoni R, Meccariello R. Neuro-toxic and Reproductive Effects of BPA. Curr Neuropharmacol 2020; 17:1109-1132. [PMID: 31362658 PMCID: PMC7057208 DOI: 10.2174/1570159x17666190726112101] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. It has recognized activity as an endocrine-disrupting chemical and has suspected roles as a neurological and reproductive toxicant. It interferes in steroid signaling, induces oxidative stress, and affects gene expression epigenetically. Gestational, perinatal and neonatal exposures to BPA affect developmental processes, including brain development and gametogenesis, with consequences on brain functions, behavior, and fertility. Methods: This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA (and its ana-logues), with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction. Results: BPA has potential human health hazard associated with gestational, peri- and neonatal exposure. Beginning with BPA’s disposition, this review summarizes recent findings on the neurotoxicity of BPA and its analogues, on neuronal dif-ferentiation, synaptic plasticity, neuro-inflammation, neuro-degeneration, and impairment of cognitive abilities. Furthermore, it reports the recent findings on the activity of BPA along the HPG axis, effects on the hypothalamic Gonadotropin Releas-ing Hormone (GnRH), and the associated effects on reproduction in both sexes and successful pregnancy. Conclusion: BPA and its analogues impair neuronal activity, HPG axis function, reproduction, and fertility. Contrasting re-sults have emerged in animal models and human. Thus, further studies are needed to better define their safety levels. This re-view offers new insights on these issues with the aim to find the “fil rouge”, if any, that characterize BPA’s mechanism of action with outcomes on neuronal function and reproduction.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Sean Richards
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States.,Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maurizio Guida
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Elizabeth Plunk
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| |
Collapse
|