1
|
Folding Mechanism and Aggregation Propensity of the KH0 Domain of FMRP and Its R138Q Pathological Variant. Int J Mol Sci 2022; 23:ijms232012178. [PMID: 36293035 PMCID: PMC9603430 DOI: 10.3390/ijms232012178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
The K-homology (KH) domains are small, structurally conserved domains found in proteins of different origins characterized by a central conserved βααβ “core” and a GxxG motif in the loop between the two helices of the KH core. In the eukaryotic KHI type, additional αβ elements decorate the “core” at the C-terminus. Proteins containing KH domains perform different functions and several diseases have been associated with mutations in these domains, including those in the fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein crucial for the control of RNA metabolism whose lack or mutations lead to fragile X syndrome (FXS). Among missense mutations, the R138Q substitution is in the KH0 degenerated domain lacking the classical GxxG motif. By combining equilibrium and kinetic experiments, we present a characterization of the folding mechanism of the KH0 domain from the FMRP wild-type and of the R138Q variant showing that in both cases the folding mechanism implies the accumulation of an on-pathway transient intermediate. Moreover, by exploiting a battery of biophysical techniques, we show that the KH0 domain has the propensity to form amyloid-like aggregates in mild conditions in vitro and that the R138Q mutation leads to a general destabilization of the protein and to an increased fibrillogenesis propensity.
Collapse
|
2
|
Starke EL, Zius K, Barbee SA. FXS causing missense mutations disrupt FMRP granule formation, dynamics, and function. PLoS Genet 2022; 18:e1010084. [PMID: 35202393 PMCID: PMC8903291 DOI: 10.1371/journal.pgen.1010084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/08/2022] [Accepted: 02/08/2022] [Indexed: 01/01/2023] Open
Abstract
Fragile X Syndrome (FXS) is the most prevalent cause of inherited mental deficiency and is the most common monogenetic cause of autism spectral disorder (ASD). Here, we demonstrate that disease-causing missense mutations in the conserved K homology (KH) RNA binding domains (RBDs) of FMRP cause defects in its ability to form RNA transport granules in neurons. Using molecular, genetic, and imaging approaches in the Drosophila FXS model system, we show that the KH1 and KH2 domains of FMRP regulate distinct aspects of neuronal FMRP granule formation, dynamics, and transport. Furthermore, mutations in the KH domains disrupt translational repression in cells and the localization of known FMRP target mRNAs in neurons. These results suggest that the KH domains play an essential role in neuronal FMRP granule formation and function which may be linked to the molecular pathogenesis of FXS. Fragile X Syndrome (FXS) is the most common inherited neurodevelopmental disorder in humans and single gene cause of autism. Most cases of FXS are caused by the complete loss of a single protein (called FMRP). This has made it particularly difficult to understand which of the normal functions of FMRP are disrupted in cases of FXS. Recently, advances in high-throughput sequencing technologies have led to the discovery of patients with severe FXS caused by single mutations in important regions of the FMRP protein. Using a well-characterized FXS model system, we have found that two disease-causing mutations in FMRP disrupt the formation, dynamics, and function of RNA- and protein-containing granules in neurons. These granules have been shown to be involved in the transport of mRNA cargos in axons and dendrites. Disruption of these granules is linked to defects in synaptic development and plasticity. Our results show that two regions of the FMRP protein play a critical role in the control of FMRP granules. These findings suggest the disruption of these processes may be linked to FXS pathogenesis.
Collapse
Affiliation(s)
- Emily L. Starke
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| | - Keelan Zius
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| | - Scott A. Barbee
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
- Molecular and Cellular Biophysics Program, University of Denver, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
3
|
Liu X, Kumar V, Tsai NP, Auerbach BD. Hyperexcitability and Homeostasis in Fragile X Syndrome. Front Mol Neurosci 2022; 14:805929. [PMID: 35069112 PMCID: PMC8770333 DOI: 10.3389/fnmol.2021.805929] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Fragile X Syndrome (FXS) is a leading inherited cause of autism and intellectual disability, resulting from a mutation in the FMR1 gene and subsequent loss of its protein product FMRP. Despite this simple genetic origin, FXS is a phenotypically complex disorder with a range of physical and neurocognitive disruptions. While numerous molecular and cellular pathways are affected by FMRP loss, there is growing evidence that circuit hyperexcitability may be a common convergence point that can account for many of the wide-ranging phenotypes seen in FXS. The mechanisms for hyperexcitability in FXS include alterations to excitatory synaptic function and connectivity, reduced inhibitory neuron activity, as well as changes to ion channel expression and conductance. However, understanding the impact of FMR1 mutation on circuit function is complicated by the inherent plasticity in neural circuits, which display an array of homeostatic mechanisms to maintain activity near set levels. FMRP is also an important regulator of activity-dependent plasticity in the brain, meaning that dysregulated plasticity can be both a cause and consequence of hyperexcitable networks in FXS. This makes it difficult to separate the direct effects of FMR1 mutation from the myriad and pleiotropic compensatory changes associated with it, both of which are likely to contribute to FXS pathophysiology. Here we will: (1) review evidence for hyperexcitability and homeostatic plasticity phenotypes in FXS models, focusing on similarities/differences across brain regions, cell-types, and developmental time points; (2) examine how excitability and plasticity disruptions interact with each other to ultimately contribute to circuit dysfunction in FXS; and (3) discuss how these synaptic and circuit deficits contribute to disease-relevant behavioral phenotypes like epilepsy and sensory hypersensitivity. Through this discussion of where the current field stands, we aim to introduce perspectives moving forward in FXS research.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vipendra Kumar
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nien-Pei Tsai
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Benjamin D. Auerbach
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach
| |
Collapse
|
4
|
Bleuzé L, Triaca V, Borreca A. FMRP-Driven Neuropathology in Autistic Spectrum Disorder and Alzheimer's disease: A Losing Game. Front Mol Biosci 2021; 8:699613. [PMID: 34760921 PMCID: PMC8573832 DOI: 10.3389/fmolb.2021.699613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) is an RNA binding protein (RBP) whose absence is essentially associated to Fragile X Syndrome (FXS). As an RNA Binding Protein (RBP), FMRP is able to bind and recognize different RNA structures and the control of specific mRNAs is important for neuronal synaptic plasticity. Perturbations of this pathway have been associated with the autistic spectrum. One of the FMRP partners is the APP mRNA, the main protagonist of Alzheimer’s disease (AD), thereby regulating its protein level and metabolism. Therefore FMRP is associated to two neurodevelopmental and age-related degenerative conditions, respectively FXS and AD. Although these pathologies are characterized by different features, they have been reported to share a number of common molecular and cellular players. The aim of this review is to describe the double-edged sword of FMRP in autism and AD, possibly allowing the elucidation of key shared underlying mechanisms and neuronal circuits. As an RBP, FMRP is able to regulate APP expression promoting the production of amyloid β fragments. Indeed, FXS patients show an increase of amyloid β load, typical of other neurological disorders, such as AD, Down syndrome, Parkinson’s Disease, etc. Beyond APP dysmetabolism, the two neurodegenerative conditions share molecular targets, brain circuits and related cognitive deficits. In this review, we will point out the potential common neuropathological pattern which needs to be addressed and we will hopefully contribute to clarifying the complex phenotype of these two neurorological disorders, in order to pave the way for a novel, common disease-modifying therapy.
Collapse
Affiliation(s)
- Louis Bleuzé
- University de Rennes 1, Rennes, France.,Humanitas Clinical and Research Center-IRCCS, Rozzano (Mi), Italy
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), International Campus A. Buzzati Traverso, Monterotondo, Italy
| | - Antonella Borreca
- Humanitas Clinical and Research Center-IRCCS, Rozzano (Mi), Italy.,Institute of Neuroscience-National Research Council (CNR-IN), Milan, Italy
| |
Collapse
|
5
|
Park E, Lau AG, Arendt KL, Chen L. FMRP Interacts with RARα in Synaptic Retinoic Acid Signaling and Homeostatic Synaptic Plasticity. Int J Mol Sci 2021; 22:ijms22126579. [PMID: 34205274 PMCID: PMC8235556 DOI: 10.3390/ijms22126579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
The fragile X syndrome (FXS) is an X-chromosome-linked neurodevelopmental disorder with severe intellectual disability caused by inactivation of the fragile X mental retardation 1 (FMR1) gene and subsequent loss of the fragile X mental retardation protein (FMRP). Among the various types of abnormal synaptic function and synaptic plasticity phenotypes reported in FXS animal models, defective synaptic retinoic acid (RA) signaling and subsequent defective homeostatic plasticity have emerged as a major synaptic dysfunction. However, the mechanism underlying the defective synaptic RA signaling in the absence of FMRP is unknown. Here, we show that RARα, the RA receptor critically involved in synaptic RA signaling, directly interacts with FMRP. This interaction is enhanced in the presence of RA. Blocking the interaction between FMRP and RARα with a small peptide corresponding to the critical binding site in RARα abolishes RA-induced increases in excitatory synaptic transmission, recapitulating the phenotype seen in the Fmr1 knockout mouse. Taken together, these data suggest that not only are functional FMRP and RARα necessary for RA-dependent homeostatic synaptic plasticity, but that the interaction between these two proteins is essential for proper transcription-independent RA signaling. Our results may provide further mechanistic understanding into FXS synaptic pathophysiology.
Collapse
|
6
|
Okazaki T, Adachi K, Matsuura K, Oyama Y, Nose M, Shirahata E, Abe T, Hasegawa T, Maihara T, Maegaki Y, Nanba E. Clinical Characteristics of Fragile X Syndrome Patients in Japan. Yonago Acta Med 2021; 64:30-33. [PMID: 33642901 DOI: 10.33160/yam.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/07/2020] [Indexed: 11/05/2022]
Abstract
Background Fragile X syndrome (FXS) is a well-known X-linked disorder clinically characterized by intellectual disability and autistic features. However, diagnosed Japanese FXS cases have been fewer than expected, and clinical features of Japanese FXS patients remain unknown. Methods We evaluated the clinical features of Japanese FXS patients using the results of a questionnaire-based survey. Results We presented the characteristics of seven patients aged 6 to 20 years. Long face and large ears were observed in five of seven patients. Macrocephaly was observed in four of five patients. The meaningful word was first seen at a certain time point between 18 and 72 months (median = 60 months). Developmental quotient or intellectual quotient ranged between 20 and 48 (median = 29). Behavioral disorders were seen in all patients (autistic spectrum disorder in six patients, hyperactivity in five patients). Five patients were diagnosed by polymerase chain reaction analysis, and two patients were diagnosed by the cytogenetic study. All physicians ordered FXS genetic testing for suspicious cases because of clinical manifestations. Conclusion In the present study, a long face, large ears, macrocephaly, autistic spectrum disorder, and hyperactivity were observed in almost cases, and these characteristics might be common features in Japanese FXS patients. Our finding indicated the importance of clinical manifestations to diagnosis FXS. However, the sample size of the present study is small, and these features are also seen to patients with other disorders. We consider that genetic testing for FXS should be performed on a wider range of intellectually disabled cases.
Collapse
Affiliation(s)
- Tetsuya Okazaki
- Division of Clinical Genetics, Tottori University Hospital, Yonago 680-8504, Japan
| | - Kaori Adachi
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, Yonago 680-8503, Japan
| | - Kaori Matsuura
- Division of Clinical Genetics, Tottori University Hospital, Yonago 680-8504, Japan
| | - Yoshitaka Oyama
- Department of Pediatrics, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Madoka Nose
- Department of Pediatrics, Nose Pediatric Clinic, Kobe 653-0004, Japan
| | - Emi Shirahata
- Department of Pediatrics, Yamagata Prefectural Rehabilitation Center for Children with Disabilities, Kaminoyama 990-8570, Japan
| | - Toshiaki Abe
- Department of Pediatrics, Ashikaganomori Hospital, Ashikaga 326-0011, Japan
| | - Takeshi Hasegawa
- Department of Pediatrics, Soka Municipal Hospital, Soka 340-0043, Japan
| | - Toshiro Maihara
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki 660-8550, Japan
| | - Yoshihiro Maegaki
- Division of Clinical Genetics, Tottori University Hospital, Yonago 680-8504, Japan.,Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago 680-8504, Japan
| | - Eiji Nanba
- Division of Clinical Genetics, Tottori University Hospital, Yonago 680-8504, Japan.,Research Strategy Division, Organization for Research Initiative and Promotion, Tottori University, Yonago 680-8503, Japan
| |
Collapse
|
7
|
Lewis EM, Stein-O'Brien GL, Patino AV, Nardou R, Grossman CD, Brown M, Bangamwabo B, Ndiaye N, Giovinazzo D, Dardani I, Jiang C, Goff LA, Dölen G. Parallel Social Information Processing Circuits Are Differentially Impacted in Autism. Neuron 2020; 108:659-675.e6. [PMID: 33113347 PMCID: PMC8033501 DOI: 10.1016/j.neuron.2020.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/21/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023]
Abstract
Parallel processing circuits are thought to dramatically expand the network capabilities of the nervous system. Magnocellular and parvocellular oxytocin neurons have been proposed to subserve two parallel streams of social information processing, which allow a single molecule to encode a diverse array of ethologically distinct behaviors. Here we provide the first comprehensive characterization of magnocellular and parvocellular oxytocin neurons in male mice, validated across anatomical, projection target, electrophysiological, and transcriptional criteria. We next use novel multiple feature selection tools in Fmr1-KO mice to provide direct evidence that normal functioning of the parvocellular but not magnocellular oxytocin pathway is required for autism-relevant social reward behavior. Finally, we demonstrate that autism risk genes are enriched in parvocellular compared with magnocellular oxytocin neurons. Taken together, these results provide the first evidence that oxytocin-pathway-specific pathogenic mechanisms account for social impairments across a broad range of autism etiologies.
Collapse
Affiliation(s)
- Eastman M Lewis
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Genevieve L Stein-O'Brien
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Alejandra V Patino
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Romain Nardou
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Cooper D Grossman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Matthew Brown
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Bidii Bangamwabo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Ndeye Ndiaye
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Daniel Giovinazzo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Ian Dardani
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connie Jiang
- Cell and Molecular Biology Group, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Loyal A Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Gül Dölen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Li J, Jiang RY, Arendt KL, Hsu YT, Zhai SR, Chen L. Defective memory engram reactivation underlies impaired fear memory recall in Fragile X syndrome. eLife 2020; 9:61882. [PMID: 33215988 PMCID: PMC7679137 DOI: 10.7554/elife.61882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/13/2020] [Indexed: 11/25/2022] Open
Abstract
Fragile X syndrome (FXS) is an X chromosome-linked disease associated with severe intellectual disabilities. Previous studies using the Fmr1 knockout (KO) mouse, an FXS mouse model, have attributed behavioral deficits to synaptic dysfunctions. However, how functional deficits at neural network level lead to abnormal behavioral learning remains unexplored. Here, we show that the efficacy of hippocampal engram reactivation is reduced in Fmr1 KO mice performing contextual fear memory recall. Experiencing an enriched environment (EE) prior to learning improved the engram reactivation efficacy and rescued memory recall in the Fmr1 KO mice. In addition, chemogenetically inhibiting EE-engaged neurons in CA1 reverses the rescue effect of EE on memory recall. Thus, our results suggest that inappropriate engram reactivation underlies cognitive deficits in FXS, and enriched environment may rescue cognitive deficits by improving network activation accuracy.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Rena Y Jiang
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Kristin L Arendt
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Yu-Tien Hsu
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Sophia R Zhai
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Lu Chen
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
9
|
Clifton NE, Thomas KL, Wilkinson LS, Hall J, Trent S. FMRP and CYFIP1 at the Synapse and Their Role in Psychiatric Vulnerability. Complex Psychiatry 2020; 6:5-19. [PMID: 34883502 PMCID: PMC7673588 DOI: 10.1159/000506858] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022] Open
Abstract
There is increasing awareness of the role genetic risk variants have in mediating vulnerability to psychiatric disorders such as schizophrenia and autism. Many of these risk variants encode synaptic proteins, influencing biological pathways of the postsynaptic density and, ultimately, synaptic plasticity. Fragile-X mental retardation 1 (FMR1) and cytoplasmic fragile-X mental retardation protein (FMRP)-interacting protein 1 (CYFIP1) contain 2 such examples of highly penetrant risk variants and encode synaptic proteins with shared functional significance. In this review, we discuss the biological actions of FMRP and CYFIP1, including their regulation of (i) protein synthesis and specifically FMRP targets, (ii) dendritic and spine morphology, and (iii) forms of synaptic plasticity such as long-term depression. We draw upon a range of preclinical studies that have used genetic dosage models of FMR1 and CYFIP1 to determine their biological function. In parallel, we discuss how clinical studies of fragile X syndrome or 15q11.2 deletion patients have informed our understanding of FMRP and CYFIP1, and highlight the latest psychiatric genomic findings that continue to implicate FMRP and CYFIP1. Lastly, we assess the current limitations in our understanding of FMRP and CYFIP1 biology and how they must be addressed before mechanism-led therapeutic strategies can be developed for psychiatric disorders.
Collapse
Affiliation(s)
- Nicholas E. Clifton
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L. Thomas
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Simon Trent
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, United Kingdom
| |
Collapse
|
10
|
Huebschman JL, Corona KS, Guo Y, Smith LN. The Fragile X Mental Retardation Protein Regulates Striatal Medium Spiny Neuron Synapse Density and Dendritic Spine Morphology. Front Mol Neurosci 2020; 13:161. [PMID: 33013316 PMCID: PMC7511717 DOI: 10.3389/fnmol.2020.00161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/05/2020] [Indexed: 01/23/2023] Open
Abstract
The fragile X mental retardation protein (FMRP), an RNA-binding protein that mediates the transport, stability, and translation of hundreds of brain RNAs, is critically involved in regulating synaptic function. Loss of FMRP, as in fragile X syndrome (FXS), is a leading monogenic cause of autism and results in altered structural and functional synaptic plasticity, widely described in the hippocampus and cortex. Though FXS is associated with hyperactivity, impaired social interaction, and the development of repetitive or stereotyped behaviors, all of which are influenced by striatal activity, few studies have investigated the function of FMRP here. Utilizing a cortical-striatal co-culture model, we find that striatal medium spiny neurons (MSNs) lacking FMRP fail to make normal increases in PSD95 expression over a short time period and have significant deficits in dendritic spine density and colocalized synaptic puncta at the later measured time point compared to wildtype (WT) MSNs. Acute expression of wtFMRP plasmid in Fmr1 KO co-cultures results in contrasting outcomes for these measures on MSNs at the more mature time point, reducing spine density across multiple spine types but making no significant changes in colocalized puncta. FMRP’s KH2 and RGG RNA-binding domains are required for normal elimination of PSD95, and interruption of these domains slightly favors elimination of immature spine types. Further, KH2 is required for normal levels of colocalized puncta. Our data are largely consistent with a basal role for FMRP and its RNA-binding domains in striatal synapse stabilization on developing MSNs, and in light of previous findings, suggest distinct regional and/or cell type-specific roles for FMRP in regulating synapse structure.
Collapse
Affiliation(s)
- Jessica L Huebschman
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Kitzia S Corona
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Yuhong Guo
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
11
|
Majumder M, Johnson RH, Palanisamy V. Fragile X-related protein family: a double-edged sword in neurodevelopmental disorders and cancer. Crit Rev Biochem Mol Biol 2020; 55:409-424. [PMID: 32878499 DOI: 10.1080/10409238.2020.1810621] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fragile X-related (FXR) family proteins FMRP, FXR1, and FXR2 are RNA binding proteins that play a critical role in RNA metabolism, neuronal plasticity, and muscle development. These proteins share significant homology in their protein domains, which are functionally and structurally similar to each other. FXR family members are known to play an essential role in causing fragile X mental retardation syndrome (FXS), the most common genetic form of autism spectrum disorder. Recent advances in our understanding of this family of proteins have occurred in tandem with discoveries of great importance to neurological disorders and cancer biology via the identification of their novel RNA and protein targets. Herein, we review the FXR family of proteins as they pertain to FXS, other mental illnesses, and cancer. We emphasize recent findings and analyses that suggest contrasting functions of this protein family in FXS and tumorigenesis based on their expression patterns in human tissues. Finally, we discuss current gaps in our knowledge regarding the FXR protein family and their role in FXS and cancer and suggest future studies to facilitate bench to bedside translation of the findings.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, School of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Roger H Johnson
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Viswanathan Palanisamy
- Department of Biochemistry and Molecular Biology, School of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
12
|
Golden CEM, Breen MS, Koro L, Sonar S, Niblo K, Browne A, Burlant N, Di Marino D, De Rubeis S, Baxter MG, Buxbaum JD, Harony-Nicolas H. Deletion of the KH1 Domain of Fmr1 Leads to Transcriptional Alterations and Attentional Deficits in Rats. Cereb Cortex 2020; 29:2228-2244. [PMID: 30877790 PMCID: PMC6458915 DOI: 10.1093/cercor/bhz029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/11/2018] [Accepted: 02/06/2019] [Indexed: 12/27/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by mutations in the FMR1 gene. It is a leading monogenic cause of autism spectrum disorder and inherited intellectual disability and is often comorbid with attention deficits. Most FXS cases are due to an expansion of CGG repeats leading to suppressed expression of fragile X mental retardation protein (FMRP), an RNA-binding protein involved in mRNA metabolism. We found that the previously published Fmr1 knockout rat model of FXS expresses an Fmr1 transcript with an in-frame deletion of exon 8, which encodes for the K-homology (KH) RNA-binding domain, KH1. Notably, 3 pathogenic missense mutations associated with FXS lie in the KH domains. We observed that the deletion of exon 8 in rats leads to attention deficits and to alterations in transcriptional profiles within the medial prefrontal cortex (mPFC), which map to 2 weighted gene coexpression network modules. These modules are conserved in human frontal cortex and enriched for known FMRP targets. Hub genes in these modules represent potential therapeutic targets for FXS. Taken together, these findings indicate that attentional testing might be a reliable cross-species tool for investigating FXS and identify dysregulated conserved gene networks in a relevant brain region.
Collapse
Affiliation(s)
- Carla E M Golden
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael S Breen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lacin Koro
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sankalp Sonar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristi Niblo
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Browne
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalie Burlant
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniele Di Marino
- Faculty of Biomedical Sciences, Institute of Computational Science, Center for Computational Medicine in Cardiology, Università della Svizzera Italiana (USI), Lugano, Switzerland.,Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silvia De Rubeis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark G Baxter
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hala Harony-Nicolas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Kumari D, Usdin K. Molecular analysis of FMR1 alleles for fragile X syndrome diagnosis and patient stratification. Expert Rev Mol Diagn 2020; 20:363-365. [PMID: 32067539 DOI: 10.1080/14737159.2020.1729744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Daman Kumari
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| |
Collapse
|
14
|
Salimy Z, Akbari MT, Deilamani FK. Assessment of FMR1 triplet repeats in patients affected with mental retardation, fragile X syndrome and primary ovarian insufficiency. J Genet 2020; 99:6. [PMID: 32089525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The CGG repeats in the FMR1 gene expand in patients with fragile X syndrome, fragile X-associated tremour/ataxia syndrome and fragile X-associated primary ovarian failure. In this study, the CGG repeats in the FMR1 gene were studied in 449 males and 207 females using traditional polymerase chain reaction and triplet repeat primed PCR methods, also 18 CVS samples (six males and 12 females) were tested for prenatal diagnosis. Further, methylation sensitive multiplexed ligation dependent probe amplification was performed on some samples to confirm the results. Regarding the male patients, 1.1% and 9.7% had premutation (PM) and full mutation (FM) alleles, respectively. Also three (0.66%) male patients were mosaic for PM and FM alleles. Among females, 1.9% were GZ carriers and 5.8% were PM carriers. Prenatal diagnosis resulted in detection of two PM and one FM males as well as one FM carrier female. Our results were in concordance with the previously published results.
Collapse
Affiliation(s)
- Zeinab Salimy
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran.
| | | | | |
Collapse
|
15
|
Sawicka K, Hale CR, Park CY, Fak JJ, Gresack JE, Van Driesche SJ, Kang JJ, Darnell JC, Darnell RB. FMRP has a cell-type-specific role in CA1 pyramidal neurons to regulate autism-related transcripts and circadian memory. eLife 2019; 8:e46919. [PMID: 31860442 PMCID: PMC6924960 DOI: 10.7554/elife.46919] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Loss of the RNA binding protein FMRP causes Fragile X Syndrome (FXS), the most common cause of inherited intellectual disability, yet it is unknown how FMRP function varies across brain regions and cell types and how this contributes to disease pathophysiology. Here we use conditional tagging of FMRP and CLIP (FMRP cTag CLIP) to examine FMRP mRNA targets in hippocampal CA1 pyramidal neurons, a critical cell type for learning and memory relevant to FXS phenotypes. Integrating these data with analysis of ribosome-bound transcripts in these neurons revealed CA1-enriched binding of autism-relevant mRNAs, and CA1-specific regulation of transcripts encoding circadian proteins. This contrasted with different targets in cerebellar granule neurons, and was consistent with circadian defects in hippocampus-dependent memory in Fmr1 knockout mice. These findings demonstrate differential FMRP-dependent regulation of mRNAs across neuronal cell types that may contribute to phenotypes such as memory defects and sleep disturbance associated with FXS.
Collapse
Affiliation(s)
- Kirsty Sawicka
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Caryn R Hale
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Christopher Y Park
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - John J Fak
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Jodi E Gresack
- Laboratory of Molecular and Cellular NeuroscienceThe Rockefeller UniversityNew YorkUnited States
| | - Sarah J Van Driesche
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Jin Joo Kang
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Jennifer C Darnell
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Robert B Darnell
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
16
|
Hung CC, Lee CN, Wang YC, Chen CL, Lin TK, Su YN, Lin MW, Kang J, Tai YY, Hsu WW, Lin SY. Fragile X syndrome carrier screening in pregnant women in Chinese Han population. Sci Rep 2019; 9:15456. [PMID: 31664061 PMCID: PMC6820721 DOI: 10.1038/s41598-019-51726-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/01/2019] [Indexed: 11/09/2022] Open
Abstract
Fragile X syndrome (FXS) is the most frequent genetic cause of intellectual disability (ID). It was previously believed that the FXS prevalence was low in Chinese population, and the cost-efficiency of FXS carrier screening was questioned. This retrospective observational study was conducted between September 2014 and May 2017 to determine the prevalence of FXS carriers in a large Chinese cohort of pregnant women. The FMR1 CGG repeat status was determined in 20,188 pregnant Taiwanese women and we identified 26 women with premutation (PM). The PM allele was transmitted to the fetus in 17 pregnancies (56.6%), and six of 17 expanded to full mutation (FM). One asymptomatic woman had a FM allele with 280 CGG repeats. Prenatal genetic diagnosis of her first fetus revealed a male carrying a FMR1 gene deletion of 5′ UTR and exon 1. Her second fetus was a female carrying a FM allele as well. This is so far the largest study of the FXS carrier screening in Chinese women. The prevalence of premutation allele for FXS in normal asymptomatic Taiwanese women was found to be as high as 0.13% (1 in 777) in this study. The empirical evidence suggests that reproductive FXS carrier screening in Taiwan might be cost-effective.
Collapse
Affiliation(s)
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Obstetrics and Gynecology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chu Wang
- Sofiva Genomics Co., Ltd., Taipei, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Ling Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tze-Kang Lin
- Sofiva Genomics Co., Ltd., Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ning Su
- Sofiva Genomics Co., Ltd., Taipei, Taiwan.,Dianthus Maternal Fetal Medicine Clinic, Taipei, Taiwan
| | - Ming-Wei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jessica Kang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Yun Tai
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Wei Hsu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Obstetrics and Gynecology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
17
|
Specchia V, Puricella A, D'Attis S, Massari S, Giangrande A, Bozzetti MP. Drosophila melanogaster as a Model to Study the Multiple Phenotypes, Related to Genome Stability of the Fragile-X Syndrome. Front Genet 2019; 10:10. [PMID: 30815010 PMCID: PMC6381874 DOI: 10.3389/fgene.2019.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
Fragile-X syndrome is one of the most common forms of inherited mental retardation and autistic behaviors. The reduction/absence of the functional FMRP protein, coded by the X-linked Fmr1 gene in humans, is responsible for the syndrome. Patients exhibit a variety of symptoms predominantly linked to the function of FMRP protein in the nervous system like autistic behavior and mild-to-severe intellectual disability. Fragile-X (FraX) individuals also display cellular and morphological traits including branched dendritic spines, large ears, and macroorchidism. The dFmr1 gene is the Drosophila ortholog of the human Fmr1 gene. dFmr1 mutant flies exhibit synaptic abnormalities, behavioral defects as well as an altered germline development, resembling the phenotypes observed in FraX patients. Therefore, Drosophila melanogaster is considered a good model to study the physiopathological mechanisms underlying the Fragile-X syndrome. In this review, we explore how the multifaceted roles of the FMRP protein have been addressed in the Drosophila model and how the gained knowledge may open novel perspectives for understanding the molecular defects causing the disease and for identifying novel therapeutical targets.
Collapse
Affiliation(s)
- Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Antonietta Puricella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Simona D'Attis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Serafina Massari
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| |
Collapse
|
18
|
Kumari D, Gazy I, Usdin K. Pharmacological Reactivation of the Silenced FMR1 Gene as a Targeted Therapeutic Approach for Fragile X Syndrome. Brain Sci 2019; 9:brainsci9020039. [PMID: 30759772 PMCID: PMC6406686 DOI: 10.3390/brainsci9020039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
More than ~200 CGG repeats in the 5′ untranslated region of the FMR1 gene results in transcriptional silencing and the absence of the FMR1 encoded protein, FMRP. FMRP is an RNA-binding protein that regulates the transport and translation of a variety of brain mRNAs in an activity-dependent manner. The loss of FMRP causes dysregulation of many neuronal pathways and results in an intellectual disability disorder, fragile X syndrome (FXS). Currently, there is no effective treatment for FXS. In this review, we discuss reactivation of the FMR1 gene as a potential approach for FXS treatment with an emphasis on the use of small molecules to inhibit the pathways important for gene silencing.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Inbal Gazy
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Zhang Z, Marro SG, Zhang Y, Arendt KL, Patzke C, Zhou B, Fair T, Yang N, Südhof TC, Wernig M, Chen L. The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling. Sci Transl Med 2018; 10:eaar4338. [PMID: 30068571 PMCID: PMC6317709 DOI: 10.1126/scitranslmed.aar4338] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/12/2018] [Indexed: 11/02/2022]
Abstract
Fragile X syndrome (FXS) is an X chromosome-linked disease leading to severe intellectual disabilities. FXS is caused by inactivation of the fragile X mental retardation 1 (FMR1) gene, but how FMR1 inactivation induces FXS remains unclear. Using human neurons generated from control and FXS patient-derived induced pluripotent stem (iPS) cells or from embryonic stem cells carrying conditional FMR1 mutations, we show here that loss of FMR1 function specifically abolished homeostatic synaptic plasticity without affecting basal synaptic transmission. We demonstrated that, in human neurons, homeostatic plasticity induced by synaptic silencing was mediated by retinoic acid, which regulated both excitatory and inhibitory synaptic strength. FMR1 inactivation impaired homeostatic plasticity by blocking retinoic acid-mediated regulation of synaptic strength. Repairing the genetic mutation in the FMR1 gene in an FXS patient cell line restored fragile X mental retardation protein (FMRP) expression and fully rescued synaptic retinoic acid signaling. Thus, our study reveals a robust functional impairment caused by FMR1 mutations that might contribute to neuronal dysfunction in FXS. In addition, our results suggest that FXS patient iPS cell-derived neurons might be useful for studying the mechanisms mediating functional abnormalities in FXS.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Departments of Neurosurgery, and Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Samuele G Marro
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5453, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305-5453, USA
| | - Yingsha Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5453, USA
| | - Kristin L Arendt
- Departments of Neurosurgery, and Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Christopher Patzke
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5453, USA
| | - Bo Zhou
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5453, USA
| | - Tyler Fair
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5453, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305-5453, USA
| | - Nan Yang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5453, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305-5453, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5453, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305-5453, USA
| | - Marius Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5453, USA.
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305-5453, USA
| | - Lu Chen
- Departments of Neurosurgery, and Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA.
| |
Collapse
|
20
|
Sitzmann AF, Hagelstrom RT, Tassone F, Hagerman RJ, Butler MG. Rare FMR1 gene mutations causing fragile X syndrome: A review. Am J Med Genet A 2017; 176:11-18. [PMID: 29178241 DOI: 10.1002/ajmg.a.38504] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 12/16/2022]
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability, typically due to CGG-repeat expansions in the FMR1 gene leading to lack of expression. We identified a rare FMR1 gene mutation (c.413G>A), previously reported in a single patient and reviewed the literature for other rare FMR1 mutations. Our patient at 10 years of age presented with the classical findings of FXS including intellectual disability, autism, craniofacial findings, hyperextensibility, fleshy hands, flat feet, unsteady gait, and seizures but without the typical CGG-repeat expansion. He had more features of FXS than the previously reported patient with the same mutation. Twenty individuals reported previously with rare missense or nonsense mutations or other coding disturbances of the FMR1 gene ranged in age from infancy to 50 years; most were verbal with limited speech, had autism and hyperactivity, and all had intellectual disability. Four of the 20 individuals had a mutation within exon 15, three within exon 5, and two within exon 2. The FMR1 missense mutation (c.413G>A) is the same as in a previously reported male where it was shown that there was preservation of the post-synaptic function of the fragile X mental retardation protein (FMRP), the encoded protein of the FMR1 gene was preserved. Both patients with this missense mutation had physical, cognitive, and behavioral features similarly seen in FXS.
Collapse
Affiliation(s)
- Adam F Sitzmann
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - Robert T Hagelstrom
- Human Genetics Laboratory, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California-Davis Medical Center, Sacramento, California.,MIND Institute, University of California-Davis Medical Center, Sacramento, California
| | - Randi J Hagerman
- MIND Institute, University of California-Davis Medical Center, Sacramento, California.,Department of Pediatrics, University of California-Davis Medical Center, Sacramento, California
| | - Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
21
|
Stem Cell Technology for (Epi)genetic Brain Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:443-475. [PMID: 28523560 DOI: 10.1007/978-3-319-53889-1_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson's disease (PD), Alzheimer's disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).
Collapse
|
22
|
Ciaccio C, Fontana L, Milani D, Tabano S, Miozzo M, Esposito S. Fragile X syndrome: a review of clinical and molecular diagnoses. Ital J Pediatr 2017; 43:39. [PMID: 28420439 PMCID: PMC5395755 DOI: 10.1186/s13052-017-0355-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 04/07/2017] [Indexed: 12/24/2022] Open
Abstract
Background Fragile X Syndrome (FXS) is the second cause of intellectual disability after Down syndrome and the most prevalent cause of intellectual disability in males, affecting 1:5000–7000 men and 1:4000–6000 women. It is caused by an alteration of the FMR1 gene, which maps at the Xq27.3 band: more than 99% of individuals have a CGG expansion (>200 triplets) in the 5′ UTR of the gene, and FMR1 mutations and duplication/deletion are responsible for the remaining (<1%) molecular diagnoses of FXS. The aim of this review was to gather the current clinical and molecular knowledge about FXS to provide clinicians with a tool to guide the initial assessment and follow-up of FXS and to offer to laboratory workers and researchers an update about the current diagnostic procedures. Discussion FXS is a well-known condition; however, most of the studies thus far have focused on neuropsychiatric features. Unfortunately, some of the available studies have limitations, such as the paucity of patients enrolled or bias due to the collection of the data in a single-country population, which may be not representative of the average global FXS population. In recent years, insight into the adult presentation of the disease has progressively increased. Pharmacological treatment of FXS is essentially symptom based, but the growing understanding of the molecular and biological mechanisms of the disease are paving the way to targeted therapy, which may reverse the effects of FMRP deficiency and be a real cure for the disease itself, not just its symptoms. Conclusions The clinical spectrum of FXS is wide, presenting not only as an isolated intellectual disability but as a multi-systemic condition, involving predominantly the central nervous system but potentially affecting any apparatus. Given the relative high frequency of the condition and its complex clinical management, FXS appears to have an important economic and social burden.
Collapse
Affiliation(s)
- Claudia Ciaccio
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Laura Fontana
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Donatella Milani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Silvia Tabano
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monica Miozzo
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Lucio Severi 1, Loc. S. Andrea delle Fratte, 06132, Perugia, Italy.
| |
Collapse
|