1
|
Benetel G, Fagundes GM, de Méo-Filho P, Silva TDS, Welter KC, Melo FA, Lobo AAG, Frighetto RTS, Berndt A, Muir JP, Bueno ICDS. Essential Oils in Nellore Beef Cattle: In Vivo Impact on Rumen Emissions. Animals (Basel) 2024; 14:1664. [PMID: 38891711 PMCID: PMC11171147 DOI: 10.3390/ani14111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Essential oils (EOs), as rumen additives, decreased CH4 emissions in in vitro trials but results from in vivo studies are still limited. We investigated the effects of Origanum vulgare (OEO) and Thymus vulgaris (TEO) EOs on in vivo methane emissions from Nellore beef cattle. Six adult rumen-cannulated Nellore cattle were used in a double 3 × 3 Latin square design. Treatments consisted of three diets containing either 3 mL OEO per kg of concentrate, 3 mL TEO/kg of concentrate, or no EO addition. The experimental period consisted of three 21 d feeding periods and methane production was measured using the sulfur hexafluoride (SF6) technique from Day 16 to Day 21 of each feeding period. Intake, total apparent digestibility (dry matter as well as neutral and acid detergent fiber), and rumen parameters (pH, ammoniacal nitrogen concentration, and short-chain fatty acids) were also evaluated. The EOs did not decrease CH4 emissions and had no effect on rumen parameters.
Collapse
Affiliation(s)
- Gabriela Benetel
- Department of Animal Science, Universidade de São Paulo-USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| | - Gisele Maria Fagundes
- Department of Animal Science, Universidade Federal de Roraima-UFRR, BR 174, Km 12, Boa Vista 69300-000, RR, Brazil
| | - Paulo de Méo-Filho
- Department of Animal Science, University of California-UC Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Thaysa Dos Santos Silva
- Department of Animal Science, Universidade de São Paulo-USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| | - Katiéli Caroline Welter
- Department of Animal Science, Universidade de São Paulo-USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| | - Flávia Alves Melo
- Department of Animal Science, Universidade de São Paulo-USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| | - Annelise Aila Gomes Lobo
- Department of Animal Science, Universidade de São Paulo-USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| | | | - Alexandre Berndt
- Research and Development, Embrapa Pecuária Sudeste, Rod Washington Luiz, Km 23, São Carlos 13560-970, SP, Brazil
| | - James Pierre Muir
- Texas A&M AgriLife Research, 1229 North U.S. Hwy 281, Stephenville, TX 76401, USA
| | - Ives Cláudio da Silva Bueno
- Department of Animal Science, Universidade de São Paulo-USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| |
Collapse
|
2
|
van Gastelen S, Yáñez-Ruiz D, Khelil-Arfa H, Blanchard A, Bannink A. Effect of a blend of cinnamaldehyde, eugenol, and Capsicum oleoresin on methane emission and lactation performance of Holstein-Friesian dairy cows. J Dairy Sci 2024; 107:857-869. [PMID: 37709037 DOI: 10.3168/jds.2023-23406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
This study aimed to investigate the effect of administering a standardized blend of cinnamaldehyde, eugenol, and Capsicum oleoresin (CEC) to lactating dairy cattle for 84 d (i.e., 12 wk) on enteric CH4 emission, feed intake, milk yield and composition, and body weight. The experiment involved 56 Holstein-Friesian dairy cows (145 ± 31.1 d in milk at the start of the trial; mean ± standard deviation) in a randomized complete block design. Cows were blocked in pairs according to parity, lactation stage, and current milk yield, and randomly allocated to 1 of the 2 dietary treatments: a diet including 54.5 mg of CEC/kg of DM or a control diet without CEC. Diets were provided as partial mixed rations in feed bins, which automatically recorded individual feed intake. Additional concentrate was fed in the GreenFeed system that was used to measure emissions of CO2, CH4, and H2. Feeding CEC decreased CH4 yield (g/kg DMI) by on average 3.4% over the complete 12-wk period and by on average 3.9% from 6 wk after the start of supplementation onward. Feeding CEC simultaneously increased feed intake and body weight, and tended to increase milk protein content, whereas no negative responses were observed. These results must be further investigated and confirmed in longer-term in vivo experiments.
Collapse
Affiliation(s)
- Sanne van Gastelen
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH Wageningen, the Netherlands.
| | | | | | | | - André Bannink
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
3
|
Sheoran S, Dey A, Sindhu S. Reduction of methane and nitrogen emission and improvement of feed efficiency, rumen fermentation, and milk production through strategic supplementation of eucalyptus (Eucalyptus citriodora) leaf meal in the diet of lactating buffalo (Bubalus bubalis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125510-125525. [PMID: 37999845 DOI: 10.1007/s11356-023-31089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Buffalo plays a compelling role in reducing malnutrition and ensuring food to the people of Asian countries by its major contribution to milk and meat pool of the livestock agriculture farming system in the region. As Asia is the home for more than 90% of world buffalo population, they are also one of the largest emitters of greenhouse gasses. Eucalyptus (Eucalyptus sp.) leaves are rich sources of naturally occurring essential oils and phenolic compounds, which could modulate rumen fermentation through mitigation of methanogenesis and nitrogen excretion along with stimulation of immune system and production performances of animals. Therefore, the present study investigated the impact of dietary inclusion of eucalyptus (Eucalyptus citriodora) leaf meal (ELM) on voluntary feed intake, rumen functions, methane emission, nutrient utilization, milk yield and fatty acids profile, and immune response in lactating buffalo (Bubalus bubalis). An in vitro experiment conducted with graded dose (10-40 g/kg) inclusion of ELM into the total mixed ration to select ideal level for feeding to lactating buffaloes, an improvement (P < 0.05) in feed degradability (IVDMD), microbial biomass and ruminal volatile fatty acids concentration with reduced (P < 0.05) methane and ammonia-N production were evidenced when ELM was added at 10-20 g/kg DM, beyond which negative effects on rumen fermentation were pronounced. An in vivo experimentation was conducted with sixteen Murrah (Bubalus bubalis) buffaloes of mean live weight, 544.23 ± 10.02 kg; parity, 2-4 at initial stage (~60 days) of lactation with average milk yield of 11.43 ± 1.32 kg and were divided into two groups (CON, ELM) of eight each in a completely randomized design. All the animals were kept individually on wheat straw-based diet with required quantity of concentrate mixture and green fodder. The control group buffaloes were fed a total mixed ration; however, the treatment group (ELM) was supplemented with 10 g/kg DM diet of dry grounded eucalyptus (Eucalyptus citriodora) leaves by mixing with the concentrate mixture. The feeding experiment was conducted for 120 days, including 15 days for adaptation to the experimental diets and 105 days for data recording. The nutrient digestibility (DM, OM, CP, and EE) was improved (P < 0.05) without affecting feed intake (P > 0.05) and fiber digestibility (NDF and ADF) in ELM supplemented buffaloes. Increased (P < 0.05) milk production and rumenic acid concentration (cis 9 trans 11 C18:2 CLA) were demonstrated with comparable (P > 0.05) milk composition and major fatty acids profile of milk in the supplemented buffaloes. Dietary inclusion of ELM reduced (P < 0.05) enteric methane production and fecal excretion of nitrogen. The health status of buffaloes fed ELM improved throughout the experimental period was improved by enhancing cell mediated (P = 0.09) and humoral (P < 0.01) immune responses without affecting (P > 0.05) major blood metabolites. The study described feeding ELM at 10 g/kg diet to lactating Murrah buffaloes as a natural source of phenols and essential oils to increase milk production and CLA content, reduce methane and nitrogen emissions, and improve health status. Thus, feeding of ELM could be beneficial for climate smart buffalo production system for enhancing milk production with lesser impact on environment.
Collapse
Affiliation(s)
- Sandeep Sheoran
- Division of Animal Nutrition and Feed Technology, ICAR-Central Institute for Research on Buffaloes, Sirsa Road, Hisar, Haryana, 125001, India
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Avijit Dey
- Division of Animal Nutrition and Feed Technology, ICAR-Central Institute for Research on Buffaloes, Sirsa Road, Hisar, Haryana, 125001, India.
| | - Sonia Sindhu
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| |
Collapse
|
4
|
Silvestre T, Räisänen S, Cueva S, Wasson D, Lage C, Martins L, Wall E, Hristov A. Effects of a combination of Capsicum oleoresin and clove essential oil on metabolic status, lactational performance, and enteric methane emissions in dairy cows. J Dairy Sci 2022; 105:9610-9622. [DOI: 10.3168/jds.2022-22203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
|
5
|
Dose-response effects of the Savory (Satureja khuzistanica) essential oil and extract on rumen fermentation characteristics, microbial protein synthesis and methane production in vitro. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The objective of the present study was to investigate dose-response effects of the essential oil (EO) and dry extract (EX) of Satureja khuzistanica (SK) on in vitro gas production kinetics, rumen fermentation, ruminal methanogenesis and microbial protein synthesis. So, EO and EX were tested at 0 (as control); 150 (low dose); 300, 450 (intermediate doses) and 600 mg/L (high dose). The gas produced over 24 h of incubation (GP24) decreased linearly with both EO and EX dosages (P<0.01). In vitro methane production was reduced by both EO (14–69%, depending on the included dose) and EX (7–58%). Microbial protein (MP) as well as the efficiency of microbial protein synthesis (EMPS) were improved by EO (18.8–49.8% and 20.4–61.5% for MP and EMPS, respectively) and to a lesser extent by EX (8.3–25.7% and 4.6–24.2% for MP and EMPS, respectively). Ammonia concentration was dropped in linear and quadratic manners with EO (P<0.05), and linearly with EX dosages (P<0.01). EO and EX exhibited depressive effects (in linear and quadratic (P<0.05), and linear manners (P<0.01), respectively) on total protozoa count. A mixed linear and quadratic effect was observed from both EO and EX on total VFA concentration (P<0.01). Total VFA concentration increased at 300 mg/L of EX, but decreased at high dose of both EO and EX. The acetate proportion increased with EO intermediate and high dosages, but it decreased at the expense of propionate at low and intermediate doses of EX. In total, these findings confirmed previous research on the great capacity of plant-based feed additives in positively modulating rumen fermentation that their effects may vary depending on the used doses. Specifically, these results suggest that EO and EX have high potentials to improve rumen functions at intermediate doses, which needs to be confirmed by in vivo experiments.
Collapse
|
6
|
Matsuda S, Yamato T, Mochizuki Y, Sekiguchi Y, Ohtsuki T. Batch-Mode Analysis of Thermophilic Methanogenic Microbial Community Changes in the Overacidification Stage in Beverage Waste Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7514. [PMID: 33076472 PMCID: PMC7602568 DOI: 10.3390/ijerph17207514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/30/2022]
Abstract
Biogasification by methane fermentation is an important and effective way to utilize beverage wastes. Beverage wastes are good feedstocks for methane fermentation because of their richness in sugars and proteins, although overacidification and inhibition of methane production caused by high substrate loading often become problematic. This study investigated changes in microbial communities in the overacidification state of the thermophilic methane fermentation process with beverage waste by establishing a simulated batch culture. We assessed 20 mL-scale batch cultures using a simulant beverage waste mixture (SBWM) with different amounts of addition; high cumulative methane production was achieved by adding 5 mL of SBWM (11358 mg-chemical oxygen demand-COD/L of organic loading), and overacidification was observed by adding 10 mL of SBWM (22715 mg-COD/L of organic loading). The results of 16S rRNA amplicon sequence analysis using nanopore sequencer suggested that Coprothermobacter proteolyticus, Defluviitoga tunisiensis, Acetomicrobium mobile, and Thermosediminibacter oceani were predominantly involved in hydrolysis/acidogenesis/acetogenesis processes, whereas Methanothrix soehngenii was the major acetotrophic methane producer. A comparison of microbial population between the methane-producing cultures and overacidification cultures revealed characteristic population changes especially in some minor species under 0.2% of population. We concluded that careful monitoring of population changes of the minor species is a potential indicator for prediction of overacidification.
Collapse
Affiliation(s)
- Shuhei Matsuda
- Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan; (S.M.); (T.Y.)
| | - Takahiro Yamato
- Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan; (S.M.); (T.Y.)
| | | | | | - Takashi Ohtsuki
- Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan; (S.M.); (T.Y.)
| |
Collapse
|
7
|
Olijhoek DW, Hellwing ALF, Grevsen K, Haveman LS, Chowdhury MR, Løvendahl P, Weisbjerg MR, Noel SJ, Højberg O, Wiking L, Lund P. Effect of dried oregano (Origanum vulgare L.) plant material in feed on methane production, rumen fermentation, nutrient digestibility, and milk fatty acid composition in dairy cows. J Dairy Sci 2019; 102:9902-9918. [PMID: 31495619 DOI: 10.3168/jds.2019-16329] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Abstract
Essential oils (EO) from oregano may have antimicrobial properties, potentially representing a methane mitigation strategy suitable for organic production. This study aimed to (1) examine the potential of oregano in lowering enteric methane production of dairy cows fed differing levels of dried oregano (Origanum vulgare ssp. hirtum) plant material containing high levels of EO; (2) determine whether differing levels of dried oregano plant material of another subspecies (Origanum vulgare ssp. vulgare) with naturally low levels of EO in feed affected enteric methane production; and (3) evaluate the effect of various levels of the 2 oregano subspecies (containing high or low levels of EO) in feed on rumen fermentation, nutrient digestibility, and milk fatty acids. Each experiment had a 4 × 4 Latin square design using 4 lactating Danish Holstein dairy cows that had rumen, duodenal, and ileal cannulas and were fed 4 different levels of oregano. Experiment 1 used low EO oregano [0.12% EO of oregano dry matter (DM)] and evaluated a control (C) diet with no oregano and 3 oregano diets with 18 (low; L), 36 (medium; M), and 53 g of oregano DM/kg of dietary DM (high; H). Experiment 2 used high EO oregano (4.21% EO of oregano DM) with 0, 7, 14, and 21 g of oregano DM/kg of dietary DM for C, L, M, and H, respectively. Oregano was added to the diets by substituting grass/clover silage on a DM basis. Low or high EO oregano in feed did not affect dry matter intake (DMI) or methane production (grams per day, grams per kilogram of DMI, grams per kilogram of energy-corrected milk, and percentage of gross energy intake). Rumen fermentation was slightly affected by diet in experiment 1, but was not affected by diet in experiment 2. In both experiments, the apparent total-tract digestibility of DM, organic matter, and neutral detergent fiber decreased linearly and cubically (a cubic response was not observed for neutral detergent fiber) with increasing dietary oregano content, while milk fatty acids were slightly affected. In conclusion, dried oregano plant material with either high or low levels of EO did not lower the methane production of dairy cows over 4 consecutive days, and no substantial effects were observed on rumen fermentation or nutrient digestibility. This conclusion regarding methane production is in contrast with literature and requires further study.
Collapse
Affiliation(s)
- D W Olijhoek
- Department of Animal Science, AU Foulum, Aarhus University, DK 8830 Tjele, Denmark; Department of Molecular Biology and Genetics, AU Foulum, Aarhus University, DK 8830 Tjele, Denmark.
| | - A L F Hellwing
- Department of Animal Science, AU Foulum, Aarhus University, DK 8830 Tjele, Denmark
| | - K Grevsen
- Department of Food Science, AU Aarslev, Aarhus University, DK 5792 Aarslev, Denmark
| | - L S Haveman
- Department of Animal Science, AU Foulum, Aarhus University, DK 8830 Tjele, Denmark
| | - M R Chowdhury
- Department of Animal Science, AU Foulum, Aarhus University, DK 8830 Tjele, Denmark
| | - P Løvendahl
- Department of Molecular Biology and Genetics, AU Foulum, Aarhus University, DK 8830 Tjele, Denmark
| | - M R Weisbjerg
- Department of Animal Science, AU Foulum, Aarhus University, DK 8830 Tjele, Denmark
| | - S J Noel
- Department of Animal Science, AU Foulum, Aarhus University, DK 8830 Tjele, Denmark
| | - O Højberg
- Department of Animal Science, AU Foulum, Aarhus University, DK 8830 Tjele, Denmark
| | - L Wiking
- Department of Food Science, AU Foulum, Aarhus University, DK 8830 Tjele, Denmark
| | - P Lund
- Department of Animal Science, AU Foulum, Aarhus University, DK 8830 Tjele, Denmark
| |
Collapse
|
8
|
Manipulation of Rumen Fermentation and Methane Gas Production by Plant Secondary Metabolites (Saponin, Tannin and Essential Oil) – A Review of Ten-Year Studies. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2018-0037] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
A wide range of plant secondary metabolites (PSM) have been shown to have the potential to modulate the fermentation process in the rumen. The use of plants and plant extracts as natural feed additives has become an interesting topic not only among nutritionists but also other scientists. Although a large number of phytochemicals (e.g. saponins, tannins and essential oils) have recently been investigated for their methane (CH4) reduction potential, there have not yet been major breakthroughs that could be applied in practice. However, the effectiveness of these PSM depends on the source, type and the level of their presence in plant products. The aim of the present review was to assess ruminal CH4 emission through a comparison of integrating related studies from published papers, which described various levels of different PSM sources being added to ruminant feed. Apart from CH4, other related rumen fermentation parameters were also included in this review.
Collapse
|
9
|
Günal M, Pinski B, AbuGhazaleh AA. Evaluating the effects of essential oils on methane production and fermentation under in vitro conditions. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1291283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mevlüt Günal
- Department of Animal Science, Süleyman Demirel University, Isparta, Turkey
| | - Brittany Pinski
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
| | - Amer A. AbuGhazaleh
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
10
|
Hristov AN, Lee C, Cassidy T, Heyler K, Tekippe JA, Varga GA, Corl B, Brandt RC. Effect of Origanum vulgare L. leaves on rumen fermentation, production, and milk fatty acid composition in lactating dairy cows. J Dairy Sci 2012; 96:1189-202. [PMID: 23245964 DOI: 10.3168/jds.2012-5975] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/04/2012] [Indexed: 01/07/2023]
Abstract
This experiment investigated the effects of dietary supplementation of Origanum vulgare L. leaf material (OR) on rumen fermentation, production, and milk fatty acid composition in dairy cows. The experimental design was a replicated 4 × 4 Latin square with 8 rumen-cannulated Holstein cows and 20-d experimental periods. Treatments were control (no OR supplementation), 250 g/cow per day OR (LOR), 500 g/d OR (MOR), and 750 g/d OR (HOR). Oregano supplementation had no effect on rumen pH, volatile fatty acid concentrations, and estimated microbial protein synthesis, but decreased ammonia concentration and linearly decreased methane production per unit of dry matter intake (DMI) compared with the unsupplemented control: 18.2, 16.5, 11.7, and 13.6g of methane/kg of DMI, respectively. Proportions of rumen bacterial, methanogen, and fungal populations were not affected by treatment. Treatment had no effect on total-tract apparent digestibility of dietary nutrients, except neutral detergent fiber digestibility was slightly decreased by all OR treatments compared with the control. Urinary N losses and manure odor were not affected by OR, except the proportion of urinary urea N in the total excreted urine N tended to be decreased compared with the control. Oregano linearly decreased DMI (28.3, 28.3, 27.5, and 26.7 kg/d for control, LOR, MOR, and HOR, respectively). Milk yield was not affected by treatment: 43.4, 45.2, 44.1, and 43.4 kg/d, respectively. Feed efficiency was linearly increased with OR supplementation and was greater than the control (1.46, 1.59, 1.60, and 1.63 kg/kg, respectively). Milk composition was unaffected by OR, except milk urea-N concentration was decreased. Milk fatty acid composition was not affected by treatment. In this short-term study, OR fed at 250 to 750 g/d decreased rumen methane production in dairy cows within 8h after feeding, but the effect over a 24-h feeding cycle has not been determined. Supplementation of the diet with OR linearly decreased DMI and increased feed efficiency. Oregano had no effects on milk fatty acid composition.
Collapse
Affiliation(s)
- A N Hristov
- Department of Dairy and Animal Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | |
Collapse
|