1
|
Tan J, Yang B, Qiu L, He R, Wu Z, Ye M, Zan L, Yang W. Bta-miR-200a Regulates Milk Fat Biosynthesis by Targeting IRS2 to Inhibit the PI3K/Akt Signal Pathway in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16449-16460. [PMID: 38996051 DOI: 10.1021/acs.jafc.4c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Milk fat synthesis has garnered significant attention due to its influence on the quality of milk. Recently, an increasing amount of proofs have elucidated that microRNAs (miRNAs) are important post-transcriptional factor involved in regulating gene expression and play a significant role in milk fat synthesis. MiR-200a was differentially expressed in the mammary gland tissue of dairy cows during different lactation periods, which indicated that miR-200a was a candidate miRNA involved in regulating milk fat synthesis. In our research, we investigated the potential function of miR-200a in regulating milk fat biosynthesis in bovine mammary epithelial cells (BMECs). We discovered that miR-200a inhibited cellular triacylglycerol (TAG) synthesis and suppressed lipid droplet formation; at the same time, miR-200a overexpression suppressed the mRNA and protein expression of milk fat metabolism-related genes, such as fatty acid synthase (FASN), peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), CCAAT enhancer binding protein alpha (CEBPα), etc. However, knocking down miR-200a displayed the opposite results. We uncovered that insulin receptor substrate 2 (IRS2) was a candidate target gene of miR-200a through the bioinformatics online program TargetScan. Subsequently, it was confirmed that miR-200a directly targeted the 3'-untranslated region (3'-UTR) of IRS2 via real-time fluorescence quantitative PCR (RT-qPCR), western blot analysis, and dual-luciferase reporter gene assay. Additionally, IRS2 knockdown in BMECs has similar effects to miR-200a overexpression. Our research set up the mechanism by which miR-200a interacted with IRS2 and discovered that miR-200a targeted IRS2 and modulated the activity of the PI3K/Akt signaling pathway, thereby taking part in regulating milk fat synthesis in BMECs. Our research results provided valuable information on the molecular mechanisms for enhancing milk quality from the view of miRNA-mRNA regulatory networks.
Collapse
Affiliation(s)
- Jianbing Tan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Benshun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Liang Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ruiying He
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhangqing Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Miaomiao Ye
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
2
|
Qi H, Yu M, Fan X, Zhou Y, Zhang M, Gao X. Methionine and Leucine Promote mTOR Gene Transcription and Milk Synthesis in Mammary Epithelial Cells through the eEF1Bα-UBR5-ARID1A Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11733-11745. [PMID: 38725145 DOI: 10.1021/acs.jafc.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Amino acids are essential for the activation of the mechanistic target of rapamycin (mTOR), but the corresponding molecular mechanism is not yet fully understood. We previously found that Met stimulated eukaryotic elongation factor α (eEF1Bα) nuclear localization in bovine mammary epithelial cells (MECs). Herein, we explored the role and molecular mechanism of eEF1Bα in methionine (Met)- and leucine (Leu)-stimulated mTOR gene transcription and milk synthesis in MECs. eEF1Bα knockdown decreased milk protein and fat synthesis, cell proliferation, and mTOR mRNA expression and phosphorylation, whereas eEF1Bα overexpression had the opposite effects. QE-MS analysis detected that eEF1Bα was phosphorylated at Ser106 in the nucleus and Met and Leu stimulated p-eEF1Bα nuclear localization. eEF1Bα knockdown abrogated the stimulation of Met and Leu by mTOR mRNA expression and phosphorylation, and this regulatory role was dependent on its phosphorylation. Akt knockdown blocked the stimulation of Met and Leu by eEF1Bα and p-eEF1Bα expression. ChIP-PCR detected that p-eEF1Bα bound only to the -548 to -793 nt site in the mTOR promoter, and ChIP-qPCR further detected that Met and Leu stimulated this binding. eEF1Bα mediated Met and Leu' stimulation on mTOR mRNA expression and phosphorylation through inducing AT-rich interaction domain 1A (ARID1A) ubiquitination degradation, and this process depended on eEF1Bα phosphorylation. p-eEF1Bα interacted with ARID1A and ubiquitin protein ligase E3 module N-recognition 5 (UBR5), and UBR5 knockdown rescued the decrease of the ARID1A protein level by eEF1Bα overexpression. Both eEF1Bα and p-eEF1Bα were highly expressed in mouse mammary gland tissues during the lactating period. In summary, we reveal that Met and Leu stimulate mTOR transcriptional activation and milk protein and fat synthesis in MECs through eEF1Bα-UBR5-ARID1A signaling.
Collapse
Affiliation(s)
- Hao Qi
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Mengmemg Yu
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Xiuqiang Fan
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Yuwen Zhou
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Minghui Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Xuejun Gao
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
3
|
Sattari Z, Kjaerup RB, Rasmussen MK, Yue Y, Poulsen NA, Larsen LB, Purup S. Bovine mammary epithelial cells can grow and express milk protein synthesis genes at reduced fetal bovine serum concentration. Cell Biol Int 2024; 48:473-482. [PMID: 38173144 DOI: 10.1002/cbin.12116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/10/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Milk proteins produced by lactating cells isolated from bovine mammary tissue can offer a sustainable solution to the high protein demand of a global growing population. Serum is commonly added to culture systems to provide compounds necessary for optimal growth and function of the cells. However, in a cellular agricultural context, its usage is desired to be decreased. This study aims at examining the minimum level of fetal bovine serum (FBS) required for the growth and functionality of bovine mammary epithelial cells (MECs). The cells were isolated from dairy cows in early and mid-lactation and cultured in reduced concentrations of FBS (10%, 5%, 1.25%, and 0%). Real-time cell analysis showed a significant effect of lactation stage on growth rate and 5% FBS resulted in similar growth rate as 10% while 0% resulted in the lowest. The effect of reducing FBS on cell functionality was examined by studying the expressions of selected marker genes involved in milk protein and fat synthesis, following differentiation. The gene expressions were not affected by the level of FBS. A reduction of FBS in the culture system of MEC, at least down to 5%, does not assert any negative effect on the growth and expression levels of studied genes. As the first attempt in developing an in-vitro model for milk component production using MEC, our results demonstrate the potential of MEC to endure FBS-reduced conditions.
Collapse
Affiliation(s)
- Zahra Sattari
- Department of Food Science, Aarhus University, Aarhus N, Denmark
| | | | | | - Yuan Yue
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | | | | | - Stig Purup
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| |
Collapse
|
4
|
Jia H, Wu Z, Tan J, Wu S, Yang C, Raza SHA, Wang M, Song G, Shi Y, Zan L, Yang W. Lnc-TRTMFS promotes milk fat synthesis via the miR-132x/RAI14/mTOR pathway in BMECs. J Anim Sci 2023; 101:skad218. [PMID: 37367933 PMCID: PMC10414145 DOI: 10.1093/jas/skad218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023] Open
Abstract
As an important index to evaluate the quality of milk, milk fat content directly determines the nutrition and flavor of milk. Recently, growing evidence has suggested that long noncoding RNAs (lncRNAs) play important roles in bovine lactation, but little is known about the roles of lncRNAs in milk fat synthesis, particularly the underlying molecular processes. Therefore, the purpose of this study was to explore the regulatory mechanism of lncRNAs in milk fat synthesis. Based on our previous lncRNA-seq data and bioinformatics analysis, we found that Lnc-TRTMFS (transcripts related to milk fat synthesis) was upregulated in the lactation period compared to the dry period. In this study, we found that knockdown of Lnc-TRTMFS significantly inhibited milk fat synthesis, resulting in a smaller amount of lipid droplets and lower cellular triacylglycerol levels, and significantly decreased the expression of genes related to adipogenesis. In contrast, overexpression of Lnc-TRTMFS significantly promoted milk fat synthesis in bovine mammary epithelial cells (BMECs). In addition, Bibiserv2 analysis showed that Lnc-TRTMFS could act as a molecular sponge for miR-132x, and retinoic acid induced protein 14 (RAI14) was a potential target of miR-132x, which was further confirmed by dual-luciferase reporter assays, quantitative reverse transcription PCR, and western blots. We also found that miR-132x significantly inhibited milk fat synthesis. Finally, rescue experiments showed that Lnc-TRTMFS could weaken the inhibitory effect of miR-132x on milk fat synthesis and rescue the expression of RAI14. Taken together, these results revealed that Lnc-TRTMFS regulated milk fat synthesis in BMECs via the miR-132x/RAI14/mTOR pathway.
Collapse
Affiliation(s)
- Hongru Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhangqing Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianbing Tan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Silin Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chaoqun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guibing Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yujie Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Critical Review on Physiological and Molecular Features during Bovine Mammary Gland Development: Recent Advances. Cells 2022; 11:cells11203325. [PMID: 36291191 PMCID: PMC9600653 DOI: 10.3390/cells11203325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The mammary gland is a unique organ with the ability to undergo repeated cyclic changes throughout the life of mammals. Among domesticated livestock species, ruminants (cattle and buffalo) constitute a distinct class of livestock species that are known milk producers. Cattle and buffalo contribute to 51 and 13% of the total milk supply in the world, respectively. They also play an essential role in the development of the economy for farming communities by providing milk, meat, and draft power. The development of the ruminant mammary gland is highly dynamic and multiphase in nature. There are six developmental stages: embryonic, prepubertal, pubertal, pregnancy, lactation, and involution. There has been substantial advancement in our understanding of the development of the mammary gland in both mouse and human models. Until now, there has not been a thorough investigation into the molecular processes that underlie the various stages of cow udder development. The current review sheds light on the morphological and molecular changes that occur during various developmental phases in diverse species, with a particular focus on the cow udder. It aims to explain the physiological differences between cattle and non-ruminant mammalian species such as humans, mice, and monkeys. Understanding the developmental biology of the mammary gland in molecular detail, as well as species-specific variations, will facilitate the researchers working in this area in further studies on cellular proliferation, differentiation, apoptosis, organogenesis, and carcinogenesis. Additionally, in-depth knowledge of the mammary gland will promote its use as a model organ for research work and promote enhanced milk yield in livestock animals without affecting their health and welfare.
Collapse
|
6
|
Jeon SW, Conejos JRV, Lee JS, Keum SH, Lee HG. D-Methionine and 2-hydroxy-4-methylthiobutanoic acid i alter
beta-casein, proteins and metabolites linked in milk protein synthesis in bovine
mammary epithelial cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:481-499. [PMID: 35709129 PMCID: PMC9184702 DOI: 10.5187/jast.2022.e37] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022]
Affiliation(s)
- Seung-Woo Jeon
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
| | - Jay Ronel V. Conejos
- Institute of Animal Science, College of
Agriculture and Food Sciences, University of the Philippines Los
Baños, College Batong Malake, Los Baños, Laguna
4031, Philippines
| | - Jae-Sung Lee
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
| | - Sang-Hoon Keum
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
| | - Hong-Gu Lee
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
- Corresponding author: Hong-Gu Lee, Department of
Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea. Tel: +82-2-450-0410, E-mail:
| |
Collapse
|
7
|
Wang Y, Wang X, Wang M, Zhang L, Zan L, Yang W. Bta-miR-34b controls milk fat biosynthesis via the Akt/mTOR signaling pathway by targeting RAI14 in bovine mammary epithelial cells. J Anim Sci Biotechnol 2021; 12:83. [PMID: 34275467 PMCID: PMC8287749 DOI: 10.1186/s40104-021-00598-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/07/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The biosynthesis of milk fat affects both the technological properties and organoleptic quality of milk and dairy products. MicroRNAs (miRNAs) are endogenous small non-coding RNAs that inhibit the expression of their mRNA targets and are involved in downstream signaling pathways that control several biological processes, including milk fat synthesis. miR-34b is a member of the miR-34 miRNA cluster, which is differentially expressed in the mammary gland tissue of dairy cows during lactation and dry periods. Previous studies have indicated miR-34b is a potential candidate gene that plays a decisive role in regulating milk fat synthesis; therefore, it is important to focus on miR-34b and investigate its regulatory effect on the biosynthesis of milk fat in bovine mammary epithelial cells (BMECs). RESULTS In this study, elevated miR-34b levels reduced milk fat synthesis, upregulated 1,999 genes, and downregulated 2,009 genes in BMECs. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes suggested that miR-34b may play an inhibitory role in milk fat synthesis via the protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway by reducing phosphorylation levels. Notably, the mTOR activator MHY1485 rescued the inhibitory effect of miR-34b. Furthermore, we demonstrated that retinoic acid-induced protein 14 (RAI14) is a target of miR-34b via TargetScan and immunofluorescence assays. RAI14 mRNA and protein levels were significantly decreased by the miR-34b mimic and increased by the miR-34b inhibitor. Moreover, the reduction in RAI14 levels led to the inhibition of the Akt/mTOR signaling pathway. CONCLUSIONS Overall, our results identified a miR-34b-RAI14-Akt/mTOR regulatory network, while also providing a theoretical basis for the molecular breeding of dairy cows.
Collapse
Affiliation(s)
- Yujuan Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, 712100 Shaanxi China
| | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, 712100 Shaanxi China
| | - Meng Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, 712100 Shaanxi China
| | - Li Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, 712100 Shaanxi China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Xianyang, 712100 Shaanxi China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, 712100 Shaanxi China
| |
Collapse
|
8
|
Supplementing conjugated and non-conjugated L-methionine and acetate alters expression patterns of CSN2, proteins and metabolites related to protein synthesis in bovine mammary cells. J DAIRY RES 2021; 87:70-77. [PMID: 32114997 DOI: 10.1017/s0022029919000979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The experiments reported in this research paper aimed to determine the effect of supplementing different forms of L-methionine (L-Met) and acetate on protein synthesis in immortalized bovine mammary epithelial cell line (MAC-T cells). Treatments were Control, L-Met, conjugated L-Met and acetate (CMA), and non-conjugated L-Met and Acetate (NMA). Protein synthesis mechanism was determined by omics method. NMA group had the highest protein content in the media and CSN2 mRNA expression levels (P < 0.05). The number of upregulated and downregulated proteins observed were 39 and 77 in L-Met group, 62 and 80 in CMA group and 50 and 81 in NMA group from 448 proteins, respectively (P < 0.05). L-Met, NMA and CMA treatments stimulated pathways related to protein and energy metabolism (P < 0.05). Metabolomic analysis also revealed that L-Met, CMA and NMA treatments resulted in increases of several metabolites (P < 0.05). In conclusion, NMA treatment increased protein concentration and expression level of CSN2 mRNA in MAC-T cells compared to control as well as L-Met and CMA treatments through increased expression of milk protein synthesis-related genes and production of the proteins and metabolites involved in energy and protein synthesis pathways.
Collapse
|
9
|
Otto PI, Guimarães SEF, Calus MPL, Vandenplas J, Machado MA, Panetto JCC, da Silva MVGB. Single-step genome-wide association studies (GWAS) and post-GWAS analyses to identify genomic regions and candidate genes for milk yield in Brazilian Girolando cattle. J Dairy Sci 2020; 103:10347-10360. [PMID: 32896396 DOI: 10.3168/jds.2019-17890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Milk production is economically important to the Brazilian agribusiness, and the majority of the country's milk production derives from Girolando (Gir × Holstein) cows. This study aimed to identify quantitative trait loci (QTL) and candidate genes associated with 305-d milk yield (305MY) in Girolando cattle. In addition, we investigated the SNP-specific variances for Holstein and Gir breeds of origin within the sequence of candidate genes. A single-step genomic BLUP procedure was used to identify QTL associated with 305MY, and the most likely candidate genes were identified through follow-up analyses. Genomic breeding values specific for Holstein and Gir were estimated in the Girolando animals using a model that uses breed-specific partial relationship matrices, which were converted to breed of origin SNP effects. Differences between breed of origin were evaluated by comparing estimated SNP variances between breeds. From 10 genome regions explaining most additive genetic variance for 305MY in Girolando cattle, 7 candidate genes were identified on chromosomes 1, 4, 6, and 26. Within the sequence of these 7 candidate genes, Gir breed of origin SNP alleles showed the highest genetic variance. These results indicated QTL regions that could be further explored in genomic selection panels and which may also help in understanding the gene mechanisms involved in milk production in the Girolando breed.
Collapse
Affiliation(s)
- Pamela I Otto
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Simone E F Guimarães
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Mario P L Calus
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Jeremie Vandenplas
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Marco A Machado
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - João Cláudio C Panetto
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | | |
Collapse
|
10
|
Yu Y, Yuan X, Li P, Wang Y, Yu M, Gao X. Vaccarin promotes proliferation of and milk synthesis in bovine mammary epithelial cells through the Prl receptor-PI3K signaling pathway. Eur J Pharmacol 2020; 880:173190. [DOI: 10.1016/j.ejphar.2020.173190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/23/2022]
|
11
|
High levels of fatty acids inhibit β-casein synthesis through suppression of the JAK2/STAT5 and mTOR signaling pathways in mammary epithelial cells of cows with clinical ketosis. J DAIRY RES 2020; 87:212-219. [PMID: 32308163 DOI: 10.1017/s0022029920000175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ketosis is a metabolic disease of dairy cows often characterized by high concentrations of ketone bodies and fatty acids, but low milk protein and milk production. The Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) and the mechanistic target of rapamycin (mTOR) signaling pathways are central for the regulation of milk protein synthesis. The effect of high levels of fatty acids on these pathways and β-casein synthesis are unknown in dairy cows with clinical ketosis. Mammary gland tissue and blood samples were collected from healthy (n = 15) and clinically-ketotic (n = 15) cows. In addition, bovine mammary epithelial cells (BMEC) were treated with fatty acids, methionine (Met) or prolactin (PRL), respectively. In vivo, the serum concentration of fatty acids was greater (P > 0.05) and the percentage of milk protein (P > 0.05) was lower in cows with clinical ketosis. The JAK2-STAT5 and mTOR signaling pathways were inhibited and the abundance of β-casein was lower in mammary tissue of cows with clinical ketosis (P > 0.05). In vitro, high levels of fatty acids inhibited the JAK2-STAT5 and mTOR signaling pathways (P > 0.05) and further decreased the β-casein synthesis (P > 0.05) in BMEC. Methionine or PRL treatment, as positive regulators, activated the JAK2-STAT5 and mTOR signaling pathways to increase the β-casein synthesis. Importantly, the high concentration of fatty acids attenuated the positive effect of Met or PRL on mTOR, JAK2-STAT5 pathways and the abundance of β-casein (P > 0.05). Overall, these data indicate that the high concentrations of fatty acids that reach the mammary cells during clinical ketosis inhibit mTOR and JAK2-STAT5 signaling pathways, and further suppress β-casein synthesis.
Collapse
|
12
|
Amino acid transportation, sensing and signal transduction in the mammary gland: key molecular signalling pathways in the regulation of milk synthesis. Nutr Res Rev 2020; 33:287-297. [DOI: 10.1017/s0954422420000074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe mammary gland, a unique exocrine organ, is responsible for milk synthesis in mammals. Neonatal growth and health are predominantly determined by quality and quantity of milk production. Amino acids are crucial maternal nutrients that are the building blocks for milk protein and are potential energy sources for neonates. Recent advances made regarding the mammary gland further demonstrate that some functional amino acids also regulate milk protein and fat synthesis through distinct intracellular and extracellular pathways. In the present study, we discuss recent advances in the role of amino acids (especially branched-chain amino acids, methionine, arginine and lysine) in the regulation of milk synthesis. The present review also addresses the crucial questions of how amino acids are transported, sensed and transduced in the mammary gland.
Collapse
|
13
|
Wang Y, Guo W, Xu H, Tang K, Zan L, Yang W. Melatonin suppresses milk fat synthesis by inhibiting the mTOR signaling pathway via the MT1 receptor in bovine mammary epithelial cells. J Pineal Res 2019; 67:e12593. [PMID: 31278759 DOI: 10.1111/jpi.12593] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 01/13/2023]
Abstract
Milk fat content is an important criterion for assessing milk quality and is one of the main target traits of dairy cattle breeding. Recent studies have shown the importance of melatonin in regulating lipid metabolism, but the potential effects of melatonin on milk fat synthesis in bovine mammary epithelial cells (BMECs) remain unclear. Here, we showed that melatonin supplementation at 10 μmol/L significantly downregulated the mRNA expression of lipid metabolism-related genes and resulted in lower lipid droplet formation and triglyceride accumulation. Moreover, melatonin significantly upregulated melatonin receptor subtype melatonin receptor 1a (MT1) gene expression, and the negative effects of melatonin on milk fat synthesis were reversed by treatment with the nonselective MT1/melatonin receptor subtype melatonin receptor 1b (MT2) antagonist. However, a selective MT2 antagonist did not modify the negative effects of melatonin on milk fat synthesis. In addition, KEGG analysis revealed that melatonin inhibition of milk fat synthesis may occur via the mTOR signaling pathway. Further analysis revealed that melatonin significantly suppressed the activation of the mTOR pathway by restricting the phosphorylation of mTOR, 4E-BP1, and p70S6K, and the inhibition of melatonin on milk fat synthesis was reversed by mTOR activator MHY1485 in BMECs. Furthermore, in vivo experiments in Holstein dairy cows showed that exogenous melatonin significantly decreased milk fat concentration. Our data from in vitro and in vivo studies revealed that melatonin suppresses milk fat synthesis by inhibiting the mTOR signaling pathway via the MT1 receptor in BMECs. These findings lay a foundation to identify a new potential means for melatonin to modulate the fat content of raw milk in Holstein dairy cows.
Collapse
Affiliation(s)
- Yujuan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- The Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenli Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haichao Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Keqiong Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- The Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- The Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Septin6 regulates cell growth and casein synthesis in dairy cow mammary epithelial cells via mTORC1 pathway. J DAIRY RES 2019; 86:181-187. [PMID: 31122298 DOI: 10.1017/s0022029919000268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This research paper addresses the hypothesis that Septin6 is a key regulatory factor influencing amino acid (AA)-mediated cell growth and casein synthesis in dairy cow mammary epithelial cells (DCMECs). DCMECs were treated with absence of AA (AA-), restricted concentrations of AA (AAr) or normal concentrations of AA (AA+) for 24 h. Cell growth, expression of CSN2 and Septin6 were increased in response to AA supply. Overexpressing or inhibiting Septin6 demonstrated that cell growth, expression of CSN2, mTOR, p-mTOR, S6K1 and p-S6K1 were up-regulated by Septin6. Furthermore, overexpressing or inhibiting mTOR demonstrated that the increase in cell growth and expression of CSN2 in response to Septin6 overexpression were inhibited by mTOR inhibition, and vice versa. Our hypothesis was supported; we were able to show that Septin6 is an important positive factor for cell growth and casein synthesis, it up-regulates AA-mediated cell growth and casein synthesis through activating mTORC1 pathway in DCMECs.
Collapse
|
15
|
Yu M, Luo C, Huang X, Chen D, Li S, Qi H, Gao X. Amino acids stimulate glycyl‐tRNA synthetase nuclear localization for mammalian target of rapamycin expression in bovine mammary epithelial cells. J Cell Physiol 2018; 234:7608-7621. [DOI: 10.1002/jcp.27523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Mengmeng Yu
- The Key Laboratory of Dairy Science of Education Ministry, Life College, Northeast Agricultural University Harbin China
| | - Chaochao Luo
- The Key Laboratory of Dairy Science of Education Ministry, Life College, Northeast Agricultural University Harbin China
| | - Xin Huang
- The Key Laboratory of Dairy Science of Education Ministry, Life College, Northeast Agricultural University Harbin China
| | - Dongying Chen
- The Key Laboratory of Dairy Science of Education Ministry, Life College, Northeast Agricultural University Harbin China
| | - Shanshan Li
- The Key Laboratory of Dairy Science of Education Ministry, Life College, Northeast Agricultural University Harbin China
| | - Hao Qi
- The Key Laboratory of Dairy Science of Education Ministry, Life College, Northeast Agricultural University Harbin China
| | - Xuejun Gao
- The Key Laboratory of Dairy Science of Education Ministry, Life College, Northeast Agricultural University Harbin China
| |
Collapse
|
16
|
Luo C, Qi H, Huang X, Li M, Zhang L, Lin Y, Gao X. GlyRS is a new mediator of amino acid‐induced milk synthesis in bovine mammary epithelial cells. J Cell Physiol 2018; 234:2973-2983. [DOI: 10.1002/jcp.27115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/02/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Chaochao Luo
- The Key Laboratory of Dairy Science of Education MinistryNortheast Agricultural UniversityHarbin China
| | - Hao Qi
- The Key Laboratory of Dairy Science of Education MinistryNortheast Agricultural UniversityHarbin China
| | - Xin Huang
- The Key Laboratory of Dairy Science of Education MinistryNortheast Agricultural UniversityHarbin China
| | - Meng Li
- The Key Laboratory of Dairy Science of Education MinistryNortheast Agricultural UniversityHarbin China
| | - Li Zhang
- The Key Laboratory of Dairy Science of Education MinistryNortheast Agricultural UniversityHarbin China
| | - Ye Lin
- The Key Laboratory of Dairy Science of Education MinistryNortheast Agricultural UniversityHarbin China
| | - Xuejun Gao
- The Key Laboratory of Dairy Science of Education MinistryNortheast Agricultural UniversityHarbin China
| |
Collapse
|
17
|
RagD regulates amino acid mediated-casein synthesis and cell proliferation via mTOR signalling in cow mammary epithelial cells. J DAIRY RES 2018; 85:204-211. [DOI: 10.1017/s0022029918000146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This research paper addresses the hypothesis that RagD is a key signalling factor that regulates amino acid (AA) mediated-casein synthesis and cell proliferation in cow mammary epithelial cells (CMECs). The expression of RagD was analysed at different times during pregnancy and lactation in bovine mammary tissue from dairy cows. We showed that expression of RagD at lactation period was higher (P < 0·05) than that at pregnancy period. When CMECs were treated with methionine (Met) or lysine (Lys), expression of RagD, β-casein (CSN2), mTOR and p-mTOR, and cell proliferation were increased. Further, when CMECs were treated to overexpress RagD, expression of CSN2, mTOR and p-mTOR, and cell proliferation were up-regulated. Furthermore, the increase in expression of CSN2, mTOR and p-mTOR, and cell proliferation in response to Met or Lys supply was inhibited by inhibiting RagD, and those effects were reversed in the overexpression model. When CMECs were treated with RagD overexpression together with mTOR inhibition or conversely with RagD inhibition together with mTOR overexpression, results showed that the increase in expression of CSN2 and cell proliferation in response to RagD overexpression was prevented by inhibiting mTOR, and those effects were reversed by overexpressing mTOR. The interaction of RagD with subunit proteins of mTORC1 was analysed, and the result showed that RagD interacted with Raptor. CMECs were treated with Raptor inhibition, and the result showed that the increase in expression of mTOR and p-mTOR in response to RagD overexpression was inhibited by inhibiting Raptor.In conclusion, our study showed that RagD is an important activation factor of mTORC1 in CMECs, activating AA-mediated casein synthesis and cell proliferation, potentially acting via Raptor.
Collapse
|
18
|
SESN2 negatively regulates cell proliferation and casein synthesis by inhibition the amino acid-mediated mTORC1 pathway in cow mammary epithelial cells. Sci Rep 2018; 8:3912. [PMID: 29500367 PMCID: PMC5834632 DOI: 10.1038/s41598-018-22208-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/09/2018] [Indexed: 01/01/2023] Open
Abstract
Amino acids (AA) are one of the key nutrients that regulate cell proliferation and casein synthesis in cow mammary epithelial cells (CMEC), but the mechanism of this regulation is not yet clear. In this study, the effect of SESN2 on AA-mediated cell proliferation and casein synthesis in CMEC was assessed. After 12 h of AA starvation, CMECs were cultured in the absence of all AA (AA-), in the presences of only essential AA (EAA+), or of all AA (AA+). Cell proliferation, casein expression, and activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway were increased; but SESN2 expression was decreased in response to increased EAA or AA supply. Overexpressing or inhibiting SESN2 demonstrated that cell proliferation, casein expression, and activation of the mTORC1 pathway were all controlled by SESN2 expression. Furthermore, the increase in cell proliferation, casein expression, and activation of the mTORC1 pathway in response to AA supply was inhibited by overexpressing SESN2, and those effects were reversed by inhibiting SESN2. These results indicate that SESN2 is an important inhibitor of mTORC1 in CMEC blocking AA-mediated cell proliferation and casein synthesis.
Collapse
|
19
|
Yang WC, Guo WL, Zan LS, Wang YN, Tang KQ. Bta-miR-130a regulates the biosynthesis of bovine milk fat by targeting peroxisome proliferator-activated receptor gamma. J Anim Sci 2017; 95:2898-2906. [PMID: 28727095 DOI: 10.2527/jas.2017.1504] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Milk fat determines the quality of milk and is also a main targeted trait in dairy cow breeding. Recent studies have revealed important regulatory roles of microRNAs (miRNA) in milk fat synthesis in the mammary gland. However, the role of miRNA in bovine mammary epithelial cells (BMEC) remains largely unknown. In this study, we found that the overexpression of miR-130a significantly decreased cellular triacylglycerol (TAG) levels and suppressed lipid droplet formation, whereas the inhibition of miR-130a resulted in greater lipid droplet formation and TAG accumulation in BMEC. MiR-130a also significantly affected mRNA expression related to milk fat metabolism. Specifically, the overexpression of miR-130a reduced the mRNA expression of , , , and , whereas the downregulation of miR-130a increased the mRNA expression of , , , , , and . Furthermore, western blot analysis revealed the protein level of PPARG in miR-130a mimic and inhibitor transfection groups to be consistent with the mRNA expression response. Finally, luciferase reporter assays verified that PPARG was the direct target of miR-130a. This study provides the first experimental evidence that miR-130a directly affects TAG synthesis in BMEC by targeting PPARG, suggesting that miR-130a potentially could be used to improve beneficial milk components in dairy cows.
Collapse
|
20
|
DEAD-box helicase 6 (DDX6) is a new negative regulator for milk synthesis and proliferation of bovine mammary epithelial cells. In Vitro Cell Dev Biol Anim 2017; 54:52-60. [DOI: 10.1007/s11626-017-0195-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022]
|
21
|
Li SS, Loor JJ, Liu HY, Liu L, Hosseini A, Zhao WS, Liu JX. Optimal ratios of essential amino acids stimulate β-casein synthesis via activation of the mammalian target of rapamycin signaling pathway in MAC-T cells and bovine mammary tissue explants. J Dairy Sci 2017; 100:6676-6688. [PMID: 28571990 DOI: 10.3168/jds.2017-12681] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/17/2017] [Indexed: 12/26/2022]
Abstract
Amino acids are the building blocks of proteins and serve as key molecular components upstream of the signaling pathways that regulate protein synthesis. The objective of this study was to systematically investigate the effect of essential AA ratios on milk protein synthesis in vitro and to elucidate some of the underlying mechanisms. Triplicate cultures of MAC-T cells and bovine mammary tissue explants (MTE) were incubated with the optimal AA ratio (OPAA; Lys:Met, 2.9:1; Thr:Phe, 1.05:1; Lys:Thr, 1.8:1; Lys:His, 2.38:1; and Lys:Val, 1.23:1) in the presence of rapamycin (control), OPAA, a Lys:Thr ratio of 2.1:1, a Lys:Thr ratio of 1.3:1, a Lys:His ratio of 3.05:1, or a Lys:Val ratio of 1.62:1 for 12 h; the other AA concentrations were equal to OPAA. In some experiments, the cells were cultured with OPAA with or without rapamycin (100 ng/mL) or with mammalian target of rapamycin (mTOR) small interference RNA, and the MTE were exposed to OPAA with rapamycin for β-casein expression. Among the treatments, the expression of β-casein was greatest in the MTE cultured with OPAA. In MAC-T cells, the OPAA upregulated the mRNA expression of SLC1A5 and SLC7A5 but downregulated the expression of IRS1, AKT3, EEF1A1, and EEF2 compared with the control. The OPAA had no effect on the mTOR phosphorylation status but increased the phosphorylation of S6K1 and RPS6. When the MTE were treated with rapamycin in the presence of OPAA, the expression of β-casein was markedly decreased. The phosphorylation of RPS6 and 4EBP1 also was reduced in MAC-T cells. A similar negative effect on the expression of RPS6KB1 and EIF4EBP1 was detected when the cells were cultured with either rapamycin or mTOR small interference RNA. The optimal AA ratio stimulated β-casein expression partly by enhancing the transport of AA into the cells, cross-talk with insulin signaling and a subsequent enhancement of mTOR signaling, or translation elongation in both MAC-T cells and bovine MTE.
Collapse
Affiliation(s)
- S S Li
- Institute of Dairy Science, College of Animal Sciences, MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, P. R. China
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| | - H Y Liu
- Institute of Dairy Science, College of Animal Sciences, MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, P. R. China
| | - L Liu
- Institute of Dairy Science, College of Animal Sciences, MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, P. R. China
| | - A Hosseini
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - W S Zhao
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - J X Liu
- Institute of Dairy Science, College of Animal Sciences, MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, P. R. China.
| |
Collapse
|
22
|
Li S, Wang Q, Lin X, Jin X, Liu L, Wang C, Chen Q, Liu J, Liu H. The Use of "Omics" in Lactation Research in Dairy Cows. Int J Mol Sci 2017; 18:ijms18050983. [PMID: 28475129 PMCID: PMC5454896 DOI: 10.3390/ijms18050983] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/17/2017] [Accepted: 04/25/2017] [Indexed: 02/07/2023] Open
Abstract
“Omics” is the application of genomics, transcriptomics, proteomics, and metabolomics in biological research. Over the years, tremendous amounts of biological information has been gathered regarding the changes in gene, mRNA and protein expressions as well as metabolites in different physiological conditions and regulations, which has greatly advanced our understanding of the regulation of many physiological and pathophysiological processes. The aim of this review is to comprehensively describe the advances in our knowledge regarding lactation mainly in dairy cows that were obtained from the “omics” studies. The “omics” technologies have continuously been preferred as the technical tools in lactation research aiming to develop new nutritional, genetic, and management strategies to improve milk production and milk quality in dairy cows.
Collapse
Affiliation(s)
- Shanshan Li
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Quanjuan Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiujuan Lin
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiaolu Jin
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lan Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Caihong Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qiong Chen
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hongyun Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Tang KQ, Wang YN, Zan LS, Yang WC. miR-27a controls triacylglycerol synthesis in bovine mammary epithelial cells by targeting peroxisome proliferator-activated receptor gamma. J Dairy Sci 2017; 100:4102-4112. [PMID: 28284697 DOI: 10.3168/jds.2016-12264] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022]
Abstract
Growing evidence has revealed that microRNA are central elements in milk fat synthesis in mammary epithelial cells. A negative regulator of adipocyte fat synthesis, miR-27a has been reported to be involved in the regulation of milk fat synthesis in goat mammary epithelial cells; however, the regulatory role of miR-27a in bovine milk fat synthesis remains unclear. In the present study, primary bovine mammary epithelial cells (BMEC) were harvested from mid-lactation cows and cultured in Dulbecco's modified Eagle's medium/F-12 medium with 10% fetal bovine serum, 5 μg/mL of insulin, 1 μg/mL of hydrocortisone, 2 μg/mL of prolactin, 1 μg/mL of progesterone, 100 U/mL of penicillin, and 100 μg/mL of streptomycin. We found that the overexpression of miR-27a significantly suppressed lipid droplet formation and decreased the cellular triacylglycerol (TAG) levels, whereas inhibition of miR-27a resulted in a greater lipid droplet formation and TAG accumulation in BMEC. Meanwhile, overexpression of miR-27a inhibited mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG), CCAAT/enhancer-binding protein beta (C/EBPβ), perilipin 2 (PLIN2), and fatty acid binding protein 3 (FABP3), whereas miR-27a downregulation increased PPARG, C/EBPβ, FABP3, and CCAAT enhancer binding protein alpha (C/EBPα) mRNA expression. Furthermore, Western blot analysis revealed the protein level of PPARG in miR-27a mimic and inhibitor transfection groups to be consistent with the mRNA expression response. Moreover, luciferase reporter assays verified that PPARG was the direct target of miR-27a. In summary, these results indicate that miR-27a has the ability to control TAG synthesis in BMEC via targeting PPARG, suggesting that miR-27a could potentially be used to improve beneficial milk components in dairy cows.
Collapse
Affiliation(s)
- K Q Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Y N Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - L S Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - W C Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
24
|
Ao J, Wei C, Si Y, Luo C, Lv W, Lin Y, Cui Y, Gao X. Tudor-SN Regulates Milk Synthesis and Proliferation of Bovine Mammary Epithelial Cells. Int J Mol Sci 2015; 16:29936-47. [PMID: 26694361 PMCID: PMC4691155 DOI: 10.3390/ijms161226212] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 12/24/2022] Open
Abstract
Tudor staphylococcal nuclease (Tudor-SN) is a highly conserved and ubiquitously expressed multifunctional protein, related to multiple and diverse cell type- and species-specific cellular processes. Studies have shown that Tudor-SN is mainly expressed in secretory cells, however knowledge of its role is limited. In our previous work, we found that the protein level of Tudor-SN was upregulated in the nucleus of bovine mammary epithelial cells (BMEC). In this study, we assessed the role of Tudor-SN in milk synthesis and cell proliferation of BMEC. We exploited gene overexpression and silencing methods, and found that Tudor-SN positively regulates milk synthesis and proliferation via Stat5a activation. Both amino acids (methionine) and estrogen triggered NFκB1 to bind to the gene promoters of Tudor-SN and Stat5a, and this enhanced the protein level and nuclear localization of Tudor-SN and p-Stat5a. Taken together, these results suggest the key role of Tudor-SN in the transcriptional regulation of milk synthesis and proliferation of BMEC under the stimulation of amino acids and hormones.
Collapse
Affiliation(s)
- Jinxia Ao
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| | - Chengjie Wei
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| | - Yu Si
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| | - Chaochao Luo
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| | - Wei Lv
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| | - Ye Lin
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| | - Yingjun Cui
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| | - Xuejun Gao
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
25
|
Jiang N, Hu L, Liu C, Gao X, Zheng S. 60S ribosomal protein L35 regulates β-casein translational elongation and secretion in bovine mammary epithelial cells. Arch Biochem Biophys 2015; 583:130-9. [PMID: 26297660 DOI: 10.1016/j.abb.2015.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 08/13/2015] [Accepted: 08/16/2015] [Indexed: 11/18/2022]
Abstract
60S ribosomal protein L35 (RPL35) is an important component of the 60S ribosomal subunit and has a role in protein translation and endoplasmic reticulum (ER) docking. However, few studies have investigated RPL35 in eukaryotes and much remains to be learned. Here, we analyzed the function of RPL35 in β-casein (CSN2) synthesis and secretion in bovine mammary epithelial cells (BMECs). We found that methionine (Met) could promote the expressions of CSN2 and RPL35. Analysis of overexpression and inhibition of RPL35 confirmed that it could mediate the Met signal and regulate CSN2 expression. The mechanism of CSN2 regulation by RPL35 was analyzed by coimmunoprecipitation (Co-IP), colocalization, fluorescence resonance energy transfer (FRET) and gene mutation. We found that RPL35 could control ribosome translational elongation during synthesis of CSN2 by interacting with eukaryotic translational elongation factor 2 (eEF2), and that eEF2 was the signaling molecule downstream of RPL35 controlling this process. RPL35 could also control the secretion of CSN2 by locating it to the ER. Taken together, these results revealed that, RPL35 was an important positive regulatory factor involving in the Met-mediated regulation of CSN2 translational elongation and secretion.
Collapse
Affiliation(s)
- Nan Jiang
- College of Life Science and Technology, Dalian University, Dalian Economic Technological Development Zone, Liaoning, 116622, China; The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultura University, Xiangfang District, Harbin, 150030, China.
| | - Lijun Hu
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultura University, Xiangfang District, Harbin, 150030, China.
| | - Chaonan Liu
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultura University, Xiangfang District, Harbin, 150030, China.
| | - Xueli Gao
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultura University, Xiangfang District, Harbin, 150030, China.
| | - Shimin Zheng
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultura University, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
26
|
Jiang N, Wang Y, Yu Z, Hu L, Liu C, Gao X, Zheng S. WISP3 (CCN6) Regulates Milk Protein Synthesis and Cell Growth Through mTOR Signaling in Dairy Cow Mammary Epithelial Cells. DNA Cell Biol 2015; 34:524-33. [DOI: 10.1089/dna.2015.2829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Nan Jiang
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yu Wang
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhiqiang Yu
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Lijun Hu
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chaonan Liu
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xueli Gao
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shimin Zheng
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
27
|
Zhao F, Liu C, Hao YM, Qu B, Cui YJ, Zhang N, Gao XJ, Li QZ. Up-regulation of integrin α6β4 expression by mitogens involved in dairy cow mammary development. In Vitro Cell Dev Biol Anim 2014; 51:287-99. [PMID: 25319126 DOI: 10.1007/s11626-014-9827-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/16/2014] [Indexed: 11/26/2022]
Abstract
In dairy cows, the extracellular microenvironment varies significantly from the virgin state to lactation. The function of integrin α6β4 is dependent on cell type and extracellular microenvironment, and the precise expression profile of α6β4 and its effects on mammary development remain to be determined. In the present study, real-time PCR and immunohistochemistry were used to analyze the expression and localization of integrin α6β4 in Holstein dairy cow mammary glands. The effects of integrin α6β4 on the proliferation induced by mammogenic mitogens were identified by blocking integrin function in purified dairy cow mammary epithelial cells (DCMECs). The results showed that the localization of β4 subunit and its exclusive partner the α6 subunit were not consistent but were co-localized in basal luminal cells and myoepithelial cells, appearing to prefer the basal surface of the plasma membrane. Moreover, α6 and β4 subunit messenger RNA (mRNA) levels changed throughout the stages of dairy cow mammary development, reflected well by protein levels, and remained higher in the virgin and pregnancy states, with duct/alveolus morphogenesis and active cell proliferation, than during lactation, when growth arrest is essential for mammary epithelial cell differentiation. Finally, the upregulation of integrin expression by both mammogenic growth hormone and insulin-like growth factor-1 and the inhibited growth of DCMECs by function-blocking integrin antibodies confirmed that integrin α6β4 was indeed involved in dairy cow mammary development.
Collapse
Affiliation(s)
- Feng Zhao
- Key laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Function of SREBP1 in the milk fat synthesis of dairy cow mammary epithelial cells. Int J Mol Sci 2014; 15:16998-7013. [PMID: 25250914 PMCID: PMC4200870 DOI: 10.3390/ijms150916998] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/23/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) belong to a family of nuclear transcription factors. The question of which is the most important positive regulator in milk fat synthesis in dairy cow mammary epithelial cells (DCMECs) between SREBPs or other nuclear transcription factors, such as peroxisome proliferator-activated receptor γ (PPARγ), remains a controversial one. Recent studies have found that mTORC1 (the mammalian target of rapamycin C1) regulates SREBP1 to promote fat synthesis. Thus far, however, the interaction between the SREBP1 and mTOR (the mammalian target of rapamycin) pathways in the regulation of milk fat synthesis remains poorly understood. This study aimed to identify the function of SREBP1 in milk fat synthesis and to characterize the relationship between SREBP1 and mTOR in DCMECs. The effects of SREBP1 overexpression and gene silencing on milk fat synthesis and the effects of stearic acid and serum on SREBP1 expression in the upregulation of milk fat synthesis were investigated in DCMECs using immunostaining, Western blotting, real-time quantitative PCR, lipid droplet staining, and detection kits for triglyceride content. SREBP1 was found to be a positive regulator of milk fat synthesis and was shown to be regulated by stearic acid and serum. These findings indicate that SREBP1 is the key positive regulator in milk fat synthesis.
Collapse
|
29
|
Zhang X, Zhao F, Si Y, Huang Y, Yu C, Luo C, Zhang N, Li Q, Gao X. GSK3β regulates milk synthesis in and proliferation of dairy cow mammary epithelial cells via the mTOR/S6K1 signaling pathway. Molecules 2014; 19:9435-52. [PMID: 24995926 PMCID: PMC6271057 DOI: 10.3390/molecules19079435] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/22/2014] [Accepted: 06/27/2014] [Indexed: 01/01/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a serine/threonine kinase, whose activity is inhibited by AKT phosphorylation. This inhibitory phosphorylation of GSK3β can in turn play a regulatory role through phosphorylation of several proteins (such as mTOR, elF2B) to promote protein synthesis. mTOR is a key regulator in protein synthesis and cell proliferation, and recent studies have shown that both GSK3β and mTORC1 can regulate SREBP1 to promote fat synthesis. Thus far, however, the cross talk between GSK3β and the mTOR pathway in the regulation of milk synthesis and associated cell proliferation is not well understood. In this study the interrelationship between GSK3β and the mTOR/S6K1 signaling pathway leading to milk synthesis and proliferation of dairy cow mammary epithelial cells (DCMECs) was analyzed using techniques including GSK3β overexpression by transfection, GSK3β inhibition, mTOR inhibition and methionine stimulation. The analyses revealed that GSK3β represses the mTOR/S6K1 pathway leading to milk synthesis and cell proliferation of DCMECs, whereas GSK3β phosphorylation enhances this pathway. Conversely, the activated mTOR/S6K1 signaling pathway downregulates GSK3β expression but enhances GSK3β phosphorylation to increase milk synthesis and cell proliferation, whereas inhibition of mTOR leads to upregulation of GSK3β and repression of GSK3β phosphorylation, which in turn decreases milk synthesis, and cell proliferation. These findings indicate that GSK3β and phosphorylated GSK3β regulate milk synthesis and proliferation of DCMECs via the mTOR/S6K1 signaling pathway. These findings provide new insight into the mechanisms of milk synthesis.
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Feng Zhao
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Yu Si
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Yuling Huang
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Cuiping Yu
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Chaochao Luo
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Na Zhang
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Qingzhang Li
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Xuejun Gao
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
30
|
SOCS3-mediated blockade reveals major contribution of JAK2/STAT5 signaling pathway to lactation and proliferation of dairy cow mammary epithelial cells in vitro. Molecules 2013; 18:12987-3002. [PMID: 24141248 PMCID: PMC6270101 DOI: 10.3390/molecules181012987] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/21/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is a cytokine-induced negative feedback-loop regulator of cytokine signaling. More and more evidence has proved it to be an inhibitor of signal transducers and activators of transcription 5 (STAT5). Here, we used dairy cow mammary epithelial cells (DCMECs) to analyze the function of SOCS3 and the interaction between SOCS3 and STAT5a. The expression of SOCS3 was found in cytoplasm and nucleus of DCMECs by fluorescent immunostaining. Overexpression and inhibition of SOCS3 brought a remarkable milk protein synthesis change through the regulation of JAK2/STAT5a pathway activity, and SOCS3 expression also decreased SREBP-1c expression and fatty acid synthesis. Inhibited STAT5a activation correlated with reduced SOCS3 expression, which indicated that SOCS3 gene might be one of the targets of STAT5a activation, DCMECs treated with L-methionine (Met) resulted in a decrease of SOCS3 expression. SOCS3 could also decrease cell proliferation and viability by CASY-TT detection. Together, our findings indicate that SOCS3 acts as an inhibitor of JAK2/STAT5a pathway and disturbs fatty acid synthesis by decreasing SREBP-1c expression, which validates its involvement in both milk protein synthesis and fat synthesis. In aggregate, these results reveal that low SOCS3 expression is required for milk synthesis and proliferation of DCMECs in vitro.
Collapse
|