1
|
Kwack KH, Jang EY, Kim C, Choi YS, Lee JH, Moon JH. Porphyromonas gulae and canine periodontal disease: Current understanding and future directions. Virulence 2025; 16:2449019. [PMID: 39834343 PMCID: PMC11756583 DOI: 10.1080/21505594.2024.2449019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/01/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025] Open
Abstract
Porphyromonas gulae has emerged as a notable pathogen in canine periodontal disease, akin to Porphyromonas gingivalis in human periodontitis. This review examines the initial isolation, phylogenetic analysis, habitat, host range, relationships with host health status and age, and key pathogenic determinants, including fimbriae, proteases, citrullinating enzyme, and lipopolysaccharide. Control strategies discussed include polyphosphate to disrupt haeme/iron utilization, clindamycin with interferon alpha to reduce bacterial load and enhance the immune response, and a protease inhibitor. Further research is needed to understand strain-level diversity of virulence factors and interactions between P. gulae and other oral bacteria, particularly Fusobacterium nucleatum, a common pathogen in both dogs and humans. The potential for interspecies transmission between dogs and humans warrants further research into these interactions. Extensive in vivo studies across various breeds are crucial to validate the effectiveness of proposed treatment strategies. This review emphasizes P. gulae's role in periodontal health and disease, setting the stage for future research and improved management of canine periodontal disease.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Young Jang
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Cheul Kim
- Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Young-Suk Choi
- Department of Dental Hygiene, Kyung-In Women’s University, Incheon, Republic of Korea
| | - Jae-Hyung Lee
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Hoi Moon
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Dai P, Yang M, Du J, Wang K, Chen R, Feng X, Chen C, Zhang X. Epidemiological investigation of feline chronic gingivostomatitis and its relationship with oral microbiota in Xi'an, China. Front Vet Sci 2024; 11:1418101. [PMID: 38948672 PMCID: PMC11211630 DOI: 10.3389/fvets.2024.1418101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024] Open
Abstract
Feline chronic gingivostomatitis (FCGS) is an ulcerative and/or proliferative disease that typically affects the palatoglossal folds. Because of its unknown pathogenesis and long disease course, it is difficult to treat and has a high recurrence rate. Most of the bacteria in the oral microbiota exist in the mouth symbiotically and maintain a dynamic balance, and when the balance is disrupted, they may cause disease. Disturbance of the oral microbiota may play an important role in the development of FCGS. In this study, the medical records of 3109 cats in three general pet hospitals in Xi 'an were collected. Sixty-one cats with FCGS were investigated via questionnaires, routine oral examinations and laboratory examinations. Oral microbiota samples were collected from 16 FCGS-affected cats, and microbial species were identified by 16S rDNA sequencing. The results showed that the incidence of FCGS had no significant correlation with age, sex or breed. However, the incidence of FCGS was associated with immunization, a history of homelessness and multicat rearing environments. The number of neutrophils and the serum amyloid A concentration were increased, and the percentage of cells positive for calicivirus antigen was high in all cases. All the cats had different degrees of dental calculus, and there were problems such as loss of alveolar bone or tooth resorption. Compared with those in healthy cats, the bacterial diversity and the abundance of anaerobic bacteria were significantly increased in cats with FCGS. Porphyromonas, Treponemas and Fusobacterium were abundant in the mouths of the affected cats and may be potential pathogens of FCGS. After tooth extraction, a shift could be seen in the composition of the oral microbiota in cats with FCGS. An isolated bacteria obtained from the mouths of the affected cats was homologous to P. gulae. Both the identified oral microbiota and the isolated strain of the cats with FCGS had high sensitivity to enrofloxacin and low sensitivity to metronidazole. This study provides support to current clinical criteria in diagnosing FCGS and proposes a more suitable antibiotic therapy.
Collapse
Affiliation(s)
- Pengxiu Dai
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingxia Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Juanjuan Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Keyi Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruiqi Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiancheng Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chen Chen
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinke Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
PDGF and VEGF-releasing bi-layer wound dressing made of sodium tripolyphosphate crosslinked gelatin-sponge layer and a carrageenan nanofiber layer. Int J Biol Macromol 2023; 233:123491. [PMID: 36736985 DOI: 10.1016/j.ijbiomac.2023.123491] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The use of dressings is one of the most common methods for wound treatment. Since most single-layer dressings cannot mimic the hierarchical structure of the skin well, multi-layer dressings have been considered. In this study, a bilayer dressing was fabricated using a gelatin sponge layer cross-linked with sodium tripolyphosphate (Gel-STPP) and a layer of carrageenan nanofibers containing platelet-rich fibrin (Carr-PRF). Chemical interactions between the two layers were characterized by FTIR, and the microstructure was visualized by SEM. It was found that the presence of Carr-PRF nanofiber layer increased tensile strength by 12.96 % (from 0.216 ± 0.015 to 0.268 ± 0.036 MPa) and elastic modulus by 56.70 % (from 0.388 ± 0.072 to 0.608 ± 0.029 MPa) compared to Gel-STPP sponge. Gel-STPP/Carr-PRF wound dressing had a 45.76 ± 4.18 % degradability after 7 days of immersion in phosphate buffered saline (PBS). PRF-containing bilayer wound dressing was able to sustainably release growth factors over 7 days. The Carr-PRF nanofiber layer coated on Gel-STPP sponge was an ideal environment for adhesion and proliferation of L929 cells. Gel-STPP/Carr-PRF bilayer dressing outperformed the other tested samples in terms of angiogenic potential. Average wound closure was 94.21 ± 2.06 % in Gel-STPP/Carr-PRF dressing treated rats after 14 days, and based on the histopathological and immunohistochemical examinations, the Gel-STPP/Carr-PRF dressing group augmented full-thickness wound healing, keratin layer and skin appendages formation after 14 days.
Collapse
|
4
|
Croft JM, Patel KV, Inui T, Ruparell A, Staunton R, Holcombe LJ. Effectiveness of oral care interventions on malodour in dogs. BMC Vet Res 2022; 18:164. [PMID: 35513817 PMCID: PMC9074277 DOI: 10.1186/s12917-022-03267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oral malodour is identified by pet owners as an unpleasant inconvenience, but they may not recognise this likely indicates underlying disease. The primary cause of oral malodour relates to the presence of bacteria in the oral cavity often associated with gingivitis and periodontitis. The purpose of this study was to determine the effect of feeding two oral care chews with different textural properties on oral malodour and the proportion of bacterial species involved in the production of volatile sulphur compounds (VSCs). METHODS Fourteen dogs (9 Petit Basset Griffon Vendéen (PBGV) and 5 Beagle dogs) participated in the randomised cross-over study for a total of 14 weeks. The cohort was divided into four groups with each exposed to a different intervention per week: chew A, chew B, tooth brushing control or a no intervention control. An induced malodour method was used to assess VSCs in breath samples using a portable gas chromatograph (OralChroma™). Microbiological samples (supragingival plaque and tongue coating scrapes) were analysed for VSC-producing bacteria using Oral Hydrogen Sulfide agar with lead acetate. RESULTS VSCs were detected in the dogs' breath samples and levels of hydrogen sulphide and methyl mercaptan were found to be reduced following an intervention. Chew B significantly reduced the levels of both hydrogen sulphide (p < 0.001) and methyl mercaptan (p < 0.05) compared to no intervention. Reductions in methyl mercaptan were also observed for chew A and tooth brushing but these were not statistically significant. When compared to no intervention, all interventions significantly reduced the total bacterial load and VSC producing bacterial load in plaque (p < 0.001). For tongue samples, only chew B significantly reduced the total bacterial load and VSC-producing bacterial load (p < 0.001) compared to no intervention. CONCLUSIONS By inducing oral malodour and subsequently applying the one-time interventions, significant reductions in the levels of VSCs were observed. The use of oral care chews texturally designed to deliver a deep, all-round cleaning action can be particularly effective at managing oral malodour in dogs, likely through an enhanced ability to remove bacteria.
Collapse
Affiliation(s)
- Julie M Croft
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, LE14 4RT, UK.
| | - Krusha V Patel
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - Taichi Inui
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - Avika Ruparell
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - Ruth Staunton
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - Lucy J Holcombe
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, LE14 4RT, UK
| |
Collapse
|
5
|
McDew-White M, Lee E, Alvarez X, Sestak K, Ling BJ, Byrareddy SN, Okeoma CM, Mohan M. Cannabinoid control of gingival immune activation in chronically SIV-infected rhesus macaques involves modulation of the indoleamine-2,3-dioxygenase-1 pathway and salivary microbiome. EBioMedicine 2022; 75:103769. [PMID: 34954656 PMCID: PMC8715300 DOI: 10.1016/j.ebiom.2021.103769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND HIV/SIV-associated periodontal disease (gingivitis/periodontitis) (PD) represents a major comorbidity affecting people living with HIV (PLWH) on combination anti-retroviral therapy (cART). PD is characterized by chronic inflammation and dysbiosis. Nevertheless, the molecular mechanisms and use of feasible therapeutic strategies to reduce/reverse inflammation and dysbiosis remain understudied and unaddressed. METHODS Employing a systems biology approach, we report molecular, metabolome and microbiome changes underlying PD and its modulation by phytocannabinoids [delta-9-tetrahydrocannabinol (Δ9-THC)] in uninfected and SIV-infected rhesus macaques (RMs) untreated (VEH-untreated/SIV) or treated with vehicle (VEH/SIV) or Δ9-THC (THC/SIV). FINDINGS VEH- untreated/SIV but not THC/SIV RMs showed significant enrichment of genes linked to anti-viral defense, interferon-β, NFκB, RIG-1, and JAK-STAT signaling. We focused on the anti-microbial DUOX1 and immune activation marker IDO1 that were reciprocally regulated in the gingiva of VEH-untreated/SIV RMs. Both proteins localized to the gingival epithelium and CD163+ macrophages, and showed differential expression in the gingiva of THC/SIV and VEH/SIV RMs. Additionally, inflammation-associated miR-21, miR-142-3p, miR-223, and miR-125a-5p showed significantly higher expression in the gingiva of VEH/SIV RMs. In human primary gingival epithelial cells, miR-125a-5p post-transcriptionally downregulated DUOX1 and THC inhibited IDO1 protein expression through a cannabinoid receptor-2 mediated mechanism. Interestingly, THC/SIV RMs showed relatively reduced plasma levels of kynurenine, kynurenate, and the neurotoxic quinolinate compared to VEH/SIV RMs at 5 months post SIV infection (MPI). Most importantly, THC blocked HIV/SIV-induced depletion of Firmicutes and Bacteroidetes, and reduced Gammaproteobacteria abundance in saliva. Reduced IDO1 protein expression was associated with significantly (p<0.05) higher abundance of Prevotella, Lactobacillus (L. salivarius, L. buchneri, L. fermentum, L. paracasei, L. rhamnosus, L. johnsonii) and Bifidobacteria and reduced abundance of the pathogenic Porphyromonas cangingivalis and Porphyromonas macacae at 5MPI. INTERPRETATION The data provides deeper insights into the molecular mechanisms underlying HIV/SIV-induced PD and more importantly, the anti-inflammatory and anti-dysbiotic properties of THC in the oral cavity. Overall, these translational findings suggest that phytocannabinoids may help reduce gingival/systemic inflammation, salivary dysbiosis and potentially metabolic disease/syndrome in PLWH on cART and those with no access to cART or do not suppress the virus under cART. FUNDING Research reported in this publication was supported by the National Institutes of Health Award Numbers R01DA052845 (MM and SNB), R01DA050169 (MM and CO), R01DA042524 and R56DE026930 (MM), and P51OD011104 and P51OD011133. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Collapse
Affiliation(s)
- Marina McDew-White
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Eunhee Lee
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Xavier Alvarez
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Karol Sestak
- PreCliniTria, LLC., Mandeville, LA 70471, United States; Tulane National Primate Research Center, Covington LA 70433, United States
| | - Binhua J Ling
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Chioma M Okeoma
- Department of Pharmacology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, United States
| | - Mahesh Mohan
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States.
| |
Collapse
|
6
|
Moon SG, Kothari D, Kim WL, Lee WD, Kim KI, Kim JI, Kim EJ, Kim SK. Feasibility of sodium long chain polyphosphate as a potential growth promoter in broilers. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:1286-1300. [PMID: 34957444 PMCID: PMC8672262 DOI: 10.5187/jast.2021.e110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/27/2021] [Accepted: 10/05/2021] [Indexed: 11/20/2022]
Abstract
The objective of this study was to evaluate in vitro antimicrobial and anti-biofilm activity of sodium long chain polyphosphate (SLCPP) and effect of dietary supplementation of SLCPP on growth performance, organ characteristics, blood metabolites, and intestinal microflora of broilers. Antimicrobial activities of SLCPP were observed against Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica ser. Pullorum, Shigella sonnei, Klebsiella pneumonia, Pseudomonas aeruginosa in agar well diffusion assay. In addition, SLCPP demonstrated good anti-biofilm activity against K. pneumonia and P. aeruginosa. Furthermore, to investigate the dietary effect of SLCPP, a total of 480 1-day-old male Ross 308 broiler chicks were randomly allotted to three dietary treatment groups (4 replicates per group, 40 birds in each replicate): an antibiotic-free corn-soybean meal basal diet (NC); basal diet + enramycin 0.01% (PC); and basal diet + 0.1% SLCPP (SPP). The experiment lasted for 35 days. Results showed that birds fed with SLCPP had higher body weight (BW) and average daily gain (ADG), and lower feed conversion ratio (FCR) during the grower phase (days 7 to 21) (p < 0.05). Except for blood urea nitrogen, all other blood biochemical parameters remained unaffected by the dietary supplementation of SLCPP. Compared to the control group, lengths of the duodenum and ileum in the SPP group were significantly shorter (p < 0.05). Moreover, counts of lactic acid bacteria (LAB), total aerobes, and Streptococcus spp. in jejunum as well as LAB in cecum were increased in the SPP group than in the PC group (p < 0.05). These results suggest that dietary supplementation of SLCPP might promote the growth of broilers in their early growth phase.
Collapse
Affiliation(s)
- Seung-Gyu Moon
- Department of Animal Science and
Technology, Konkuk University, Seoul 05029, Korea
| | - Damini Kothari
- Department of Animal Science and
Technology, Konkuk University, Seoul 05029, Korea
| | - Woong-Lae Kim
- Department of Animal Science and
Technology, Konkuk University, Seoul 05029, Korea
| | - Woo-Do Lee
- Department of Animal Science and
Technology, Konkuk University, Seoul 05029, Korea
| | - Kyung-Il Kim
- Department of Animal Science and
Technology, Konkuk University, Seoul 05029, Korea
| | - Jong-Il Kim
- Department of Animal Science and
Technology, Konkuk University, Seoul 05029, Korea
| | - Eun-Jip Kim
- Division of Animal Husbandry, Yonam
College, Cheonan 31005, Korea
| | - Soo-Ki Kim
- Department of Animal Science and
Technology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
7
|
Sun X, Zhao B, Qu H, Chen S, Hao X, Chen S, Qin Z, Chen G, Fan Y. Sera and lungs metabonomics reveals key metabolites of resveratrol protecting against PAH in rats. Biomed Pharmacother 2021; 133:110910. [PMID: 33378990 DOI: 10.1016/j.biopha.2020.110910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 01/13/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a type of high morbidity and mortality disease. Currently, the intrinsic metabolic alteration and potential mechanism of PAH are still not fully uncovered. Previously, we have found that polyphenol resveratrol (Rev) reversed the remodeling of the pulmonary vasculature and decreased the number of mitochondria in pulmonary arterial smooth muscle cells (PASMCs) (Lei Yu et al. (2017)). However, potential effects of Rev on the changed metabolic molecules derived from lung tissue and serum have no fully elucidated. Thus, we conducted a systematic elaboration through the metabonomics method. Various of metabolites in different pathways including amino acid metabolism, tricarboxylic acid cycle (TCA), acetylcholine metabolism, fatty acid metabolism and biosynthesis in male Wistar rats' sera and lung tissues were explored in three groups (normal group, PAH group, PAH and Rev treatment group). We found that leucine and isoleucine degradation, valine, leucine and isoleucine biosynthesis, tryptophan metabolism and aminoacyl-tRNA biosynthesis were involved in the development of PAH. Hydroxyphenyllactic, isopalmitic acid and cytosine might be significant key metabolites. Further work in this area may inform personalized treatment approaches in clinical practice of PAH through elucidating pathophysiology mechanisms of experimental verification.
Collapse
Affiliation(s)
- Xiangju Sun
- Department of Pharmacy, Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Baoshan Zhao
- College of Basic Medical Sciences, Harbin Medical University, Daqing, 163319, China
| | - Huichong Qu
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China
| | - Shuo Chen
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China
| | - Xuewei Hao
- Inspection Institute, Harbin Medical University, Daqing, Heilongjiang Province, 163319, China
| | - Siyue Chen
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China
| | - Zhuwen Qin
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China
| | - Guoyou Chen
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China.
| | - Yuhua Fan
- College of Basic Medical Sciences, Harbin Medical University, Daqing, 163319, China.
| |
Collapse
|