1
|
Gonzalez-Gutierrez L, Motiño O, Barriuso D, de la Puente-Aldea J, Alvarez-Frutos L, Kroemer G, Palacios-Ramirez R, Senovilla L. Obesity-Associated Colorectal Cancer. Int J Mol Sci 2024; 25:8836. [PMID: 39201522 PMCID: PMC11354800 DOI: 10.3390/ijms25168836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Colorectal cancer (CRC) affects approximately 2 million people worldwide. Obesity is the major risk factor for CRC. In addition, obesity contributes to a chronic inflammatory stage that enhances tumor progression through the secretion of proinflammatory cytokines. In addition to an increased inflammatory response, obesity-associated cancer presents accrued molecular factors related to cancer characteristics, such as genome instability, sustained cell proliferation, telomere dysfunctions, angiogenesis, and microbial alteration, among others. Despite the evidence accumulated over the last few years, the treatments for obesity-associated CRC do not differ from the CRC treatments in normal-weight individuals. In this review, we summarize the current knowledge on obesity-associated cancer, including its epidemiology, risk factors, molecular factors, and current treatments. Finally, we enumerate possible new therapeutic targets that may improve the conditions of obese CRC patients. Obesity is key for the development of CRC, and treatments resulting in the reversal of obesity should be considered as a strategy for improving antineoplastic CRC therapies.
Collapse
Affiliation(s)
- Lucia Gonzalez-Gutierrez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Omar Motiño
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Daniel Barriuso
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Juan de la Puente-Aldea
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Lucia Alvarez-Frutos
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Roberto Palacios-Ramirez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Laura Senovilla
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| |
Collapse
|
2
|
Li L, Wang H, Zhang S, Gao S, Lu X, Pan Y, Tang W, Huang R, Qiao K, Ning S. Statins inhibit paclitaxel-induced PD-L1 expression and increase CD8+ T cytotoxicity for better prognosis in breast cancer. Int J Surg 2024; 110:4716-4726. [PMID: 39143707 PMCID: PMC11325938 DOI: 10.1097/js9.0000000000001582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/25/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND In recent years, the widespread use of lipid-lowering drugs, especially statins, has attracted people's attention. Statin use may be potentially associated with a reduced risk of breast cancer. OBJECTIVE To explore the relationship between statin use and cancer risk. And further explore the potential role of statins in the adjuvant treatment of breast cancer. METHODS Data for the Mendelian randomization portion of the study were obtained from genome-wide association studies of common cancers in the UK Biobank and FinnGen studies and from the Global Lipid Genetics Consortium's low density lipoprotein (LDL). In addition, the impacts of statins and chemotherapy drugs on breast cancer were examined using both in vitro and in vivo models, with particular attention to the expression levels of the immune checkpoint protein PD-L1 and its potential to suppress tumor growth. RESULTS Data from about 3.8 million cancer patients and ~1.3 million LDL-measuring individuals were analyzed. Genetically proxied HMGCR inhibition (statins) was associated with breast cancer risk reduction (P=0.0005). In vitro experiments showed that lovastatin significantly inhibited paclitaxel-induced PD-L1 expression and assisted paclitaxel in suppressing tumor cell growth. Furthermore, the combination therapy involving lovastatin and paclitaxel amplified CD8+ T-cell infiltration, bolstering their tumor-killing capacity and enhancing in vivo efficacy. CONCLUSION The utilization of statins is correlated with improved prognoses for breast cancer patients and may play a role in facilitating the transition from cold to hot tumors. Combination therapy with lovastatin and paclitaxel enhances CD8+ T-cell activity and leads to better prognostic characteristics.
Collapse
Affiliation(s)
- Lei Li
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Hongbin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Shiyuan Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Song Gao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Xiuxin Lu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - You Pan
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning
| | - Wei Tang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning
| | - Rong Huang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning
| | - Kun Qiao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning
| |
Collapse
|
3
|
Khan F, Elsori D, Verma M, Pandey S, Obaidur Rab S, Siddiqui S, Alabdallah NM, Saeed M, Pandey P. Unraveling the intricate relationship between lipid metabolism and oncogenic signaling pathways. Front Cell Dev Biol 2024; 12:1399065. [PMID: 38933330 PMCID: PMC11199418 DOI: 10.3389/fcell.2024.1399065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Lipids, the primary constituents of the cell membrane, play essential roles in nearly all cellular functions, such as cell-cell recognition, signaling transduction, and energy provision. Lipid metabolism is necessary for the maintenance of life since it regulates the balance between the processes of synthesis and breakdown. Increasing evidence suggests that cancer cells exhibit abnormal lipid metabolism, significantly affecting their malignant characteristics, including self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. Prominent oncogenic signaling pathways that modulate metabolic gene expression and elevate metabolic enzyme activity include phosphoinositide 3-kinase (PI3K)/AKT, MAPK, NF-kB, Wnt, Notch, and Hippo pathway. Conversely, when metabolic processes are not regulated, they can lead to malfunctions in cellular signal transduction pathways. This, in turn, enables uncontrolled cancer cell growth by providing the necessary energy, building blocks, and redox potentials. Therefore, targeting lipid metabolism-associated oncogenic signaling pathways could be an effective therapeutic approach to decrease cancer incidence and promote survival. This review sheds light on the interactions between lipid reprogramming and signaling pathways in cancer. Exploring lipid metabolism as a target could provide a promising approach for creating anticancer treatments by identifying metabolic inhibitors. Additionally, we have also provided an overview of the drugs targeting lipid metabolism in cancer in this review.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Samra Siddiqui
- Department of Health Service Management, College of Public Health and Health Informatics, University of Hail, Haʼil, Saudi Arabia
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Haʼil, Saudi Arabia
| | - Pratibha Pandey
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
4
|
Filaferro L, Zaccarelli F, Niccolini GF, Colizza A, Zoccali F, Grasso M, Fusconi M. Are statins onco- suppressive agents for every type of tumor? A systematic review of literature. Expert Rev Anticancer Ther 2024; 24:435-445. [PMID: 38609343 DOI: 10.1080/14737140.2024.2343338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/11/2024] [Indexed: 04/14/2024]
Abstract
INTRODUCTION Statins, in the role of anti-cancer agents, have been used in many types of cancers with results in some cases promising while, in others, disappointing. AREAS COVERED The purpose of this review is to identify and highlight data from literature on the successes or failure of using statins as anti-cancer agents. We asked ourselves the following two questions:1. Could statins, which are taken mostly to reduce cardiovascular risk, guarantee a lower incidence or a better cancer disease prognosis, concerning local recurrence, metastasis or mortality?2. Does statins intake (before and/or after cancer diagnosis) improve the prognosis or increase the chemotherapeutic action when combined with other anticancer therapies? For the first question twenty-seven manuscripts have been selected, for the second one, twenty-eight. EXPERT OPINION There are data which correlate statins with a possible tumor suppressive action among the following cancers: breast, lung, prostate and head and neck. Lastly, for gastric cancer and colorectal there is no evidence of a correlation. The onco-suppressive efficacy of statins is mainly related to the histopathological and/or molecular characteristics of the tumor cells, which have different characteristics.
Collapse
Affiliation(s)
- Luca Filaferro
- Department of Sense Organs, Sapienza University, Rome, Italy
| | | | | | - Andrea Colizza
- Department of Sense Organs, Sapienza University, Rome, Italy
| | | | | | - Massimo Fusconi
- Department of Sense Organs, Sapienza University, Rome, Italy
| |
Collapse
|
5
|
Giorello MB, Marks MP, Osinalde TM, Padin MDR, Wernicke A, Calvo JC, Chasseing NA, Vellón L. Post-surgery statin use contributes to favorable outcomes in patients with early breast cancer. Cancer Epidemiol 2024; 90:102573. [PMID: 38692143 DOI: 10.1016/j.canep.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Statins are a group of lipid-lowering drugs with pleiotropic effects that include, but are not limited to the inhibition of cholesterol synthesis resulting in a wide range of anti-inflammatory, anti-tumor, immunomodulatory, and anti-thrombotic properties. This study aimed to determine the impact of the prior to- or after- breast surgery usage of statins on the tumor prognosis in breast cancer (BC) patients. METHODS A cohort of patients diagnosed with early invasive ductal BC (n=301) at the Hospital Italiano de Buenos Aires, Argentina, with a minimum follow-up period of 10 years after the surgical procedure were included and stratified according to the time of use of statins and type of statin used. Then, local relapse-free survival (RFS), metastasis-free survival (MFS), bone metastasis-free survival (BMFS), visceral metastasis-free (VMFS), mixed metastasis (bone and visceral)-free survival (mix-MFS) and overall survival (OS) were analyzed. RESULTS Statins usage after breast surgery was related with lesser metastatic occurrence (p=0.017), lower number of metastatic foci (p=0.034) and fewer dead events (p=0.041), as well as longer MFS (p=0.013) and OS (p=0.027). When stratified by the nature of statins (hydrophilic or lipophilic), only the relatively hydrophilic statin rosuvastatin (ROSU) had an impact on the increase of MFS and OS (p=0.018 and p=0.030, respectively). CONCLUSION Post-surgery statins usage was associated with increased MFS and OS, with increased benefits of ROSU over simvastatin (SIM) or atorvastatin (ATOR). These results set the rationale for additional studies addressing the use of statins, and particularly, rosuvastatin, to improve the outcome of BC patients.
Collapse
Affiliation(s)
- María Belén Giorello
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental, Laboratorio de Células Madre (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Paula Marks
- Laboratorio de Células Madre, Instituto de Biología y Medicina Experimental, Laboratorio de Células Madre (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Tiago Martín Osinalde
- Laboratorio de Células Madre, Instituto de Biología y Medicina Experimental, Laboratorio de Células Madre (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Alejandra Wernicke
- Departamento de Anatomía Patológica, Hospital Italiano, Buenos Aires, Argentina
| | - Juan Carlos Calvo
- Laboratorio de Células Madre, Instituto de Biología y Medicina Experimental, Laboratorio de Células Madre (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Química de Proteoglicanos y Matriz Extracelular, Instituto de Biología y Medicina Experimental, Laboratorio de Células Madre (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental, Laboratorio de Células Madre (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Células Madre, Instituto de Biología y Medicina Experimental, Laboratorio de Células Madre (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Luciano Vellón
- Laboratorio de Células Madre, Instituto de Biología y Medicina Experimental, Laboratorio de Células Madre (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Zheng C, Yao H, Lu L, Li H, Zhou L, He X, Xu X, Xia H, Ding S, Yang Y, Wang X, Wu M, Xue L, Chen S, Peng X, Cheng Z, Wang Y, He G, Fu S, Keller ET, Liu S, Jiang YZ, Deng X. Dysregulated Ribosome Biogenesis Is a Targetable Vulnerability in Triple-Negative Breast Cancer: MRPS27 as a Key Mediator of the Stemness-inhibitory Effect of Lovastatin. Int J Biol Sci 2024; 20:2130-2148. [PMID: 38617541 PMCID: PMC11008279 DOI: 10.7150/ijbs.94058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/16/2024] [Indexed: 04/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.
Collapse
Affiliation(s)
- Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Hui Yao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Lu Lu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Hongqi Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Lei Zhou
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Xi Xu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Hongzhuo Xia
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Siyu Ding
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Yiyuan Yang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Xinyu Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Muyao Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Lian Xue
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Sisi Chen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Xiaojun Peng
- Jingjie PTM BioLab Co. Ltd., Hangzhou Economic and Technological Development Area, Hangzhou, China
| | - Zhongyi Cheng
- Jingjie PTM BioLab Co. Ltd., Hangzhou Economic and Technological Development Area, Hangzhou, China
| | - Yian Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Guangchun He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Evan T. Keller
- Department of Urology and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yi-zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
7
|
Jiang W, Jin WL, Xu AM. Cholesterol metabolism in tumor microenvironment: cancer hallmarks and therapeutic opportunities. Int J Biol Sci 2024; 20:2044-2071. [PMID: 38617549 PMCID: PMC11008265 DOI: 10.7150/ijbs.92274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 04/16/2024] Open
Abstract
Cholesterol is crucial for cell survival and growth, and dysregulation of cholesterol homeostasis has been linked to the development of cancer. The tumor microenvironment (TME) facilitates tumor cell survival and growth, and crosstalk between cholesterol metabolism and the TME contributes to tumorigenesis and tumor progression. Targeting cholesterol metabolism has demonstrated significant antitumor effects in preclinical and clinical studies. In this review, we discuss the regulatory mechanisms of cholesterol homeostasis and the impact of its dysregulation on the hallmarks of cancer. We also describe how cholesterol metabolism reprograms the TME across seven specialized microenvironments. Furthermore, we discuss the potential of targeting cholesterol metabolism as a therapeutic strategy for tumors. This approach not only exerts antitumor effects in monotherapy and combination therapy but also mitigates the adverse effects associated with conventional tumor therapy. Finally, we outline the unresolved questions and suggest potential avenues for future investigations on cholesterol metabolism in relation to cancer.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - A-Man Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
- Anhui Public Health Clinical Center, Hefei 230022, P. R. China
| |
Collapse
|
8
|
Benjamin DJ, Haslam A, Prasad V. Cardiovascular/anti-inflammatory drugs repurposed for treating or preventing cancer: A systematic review and meta-analysis of randomized trials. Cancer Med 2024; 13:e7049. [PMID: 38491813 PMCID: PMC10943275 DOI: 10.1002/cam4.7049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Due to encouraging pre-clinical data and supportive observational studies, there has been growing interest in applying cardiovascular drugs (including aspirin, angiotensin-converting enzyme [ACE] inhibitors, statins, and metformin) approved to treat diseases such as hypertension, hyperlipidemia, and diabetes mellitus to the field of oncology. Moreover, given growing costs with cancer care, these medications have offered a potentially more affordable avenue to treat or prevent recurrence of cancer. We sought to investigate the anti-cancer effects of drugs repurposed from cardiology or anti-inflammatories to treat cancer. We specifically evaluated the following drug classes: HMG-CoA reductase inhibitors (statins), cyclo-oxygenase inhibitors, aspirin, metformin, and both angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors. We also included non-steroidal anti-inflammatory drugs (NSAIDs) because they exert a similar mechanism to aspirin by blocking prostaglandins and reducing inflammation that is thought to promote the development of cancer. METHODS We performed a systematic literature review using PubMed and Web of Science with search terms including "aspirin," "NSAID," "statin" (including specific statin drug names), "metformin," "ACE inhibitors," and "ARBs" (including specific anti-hypertensive drug names) in combination with "cancer." Searches were limited to human studies published between 2000 and 2023. MAIN OUTCOMES AND MEASURES The number and percentage of studies reported positive results and pooled estimates of overall survival, progression-free survival, response, and disease-free survival. RESULTS We reviewed 3094 titles and included 67 randomized clinical trials. The most common drugs that were tested were metformin (n = 21; 30.9%), celecoxib (n = 20; 29.4%), and simvastatin (n = 8; 11.8%). There was only one study that tested cardiac glycosides and none that studied ACE inhibitors. The most common tumor types were non-small-cell lung cancer (n = 19; 27.9%); breast (n = 8; 20.6%), colorectal (n = 7; 10.3%), and hepatocellular (n = 6; 8.8%). Most studies were conducted in a phase II trial (n = 38; 55.9%). Most studies were tested in metastatic cancers (n = 49; 72.1%) and in the first-line setting (n = 36; 521.9%). Four studies (5.9%) were stopped early because of difficulty with accrual. The majority of studies did not demonstrate an improvement in either progression-free survival (86.1% of studies testing progression-free survival) or in overall survival (94.3% of studies testing overall survival). Progression-free survival was improved in five studies (7.4%), and overall survival was improved in three studies (4.4%). Overall survival was significantly worse in two studies (3.8% of studies testing overall survival), and progression-free survival was worse in one study (2.8% of studies testing progression-free survival). CONCLUSIONS AND RELEVANCE Despite promising pre-clinical and population-based data, cardiovascular drugs and anti-inflammatory medications have overall not demonstrated benefit in the treatment or preventing recurrence of cancer. These findings may help guide future potential clinical trials involving these medications when applied in oncology.
Collapse
Affiliation(s)
| | - Alyson Haslam
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUnited States
| | - Vinay Prasad
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUnited States
| |
Collapse
|
9
|
Marks MP, Giménez CA, Isaja L, Vera MB, Borzone FR, Pereyra-Bonnet F, Romorini L, Videla-Richardson GA, Chasseing NA, Calvo JC, Vellón L. Role of hydroxymethylglutharyl-coenzyme A reductase in the induction of stem-like states in breast cancer. J Cancer Res Clin Oncol 2024; 150:106. [PMID: 38418798 PMCID: PMC10902018 DOI: 10.1007/s00432-024-05607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE De novo synthesis of cholesterol and its rate-limiting enzyme, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMGCR), is deregulated in tumors and critical for tumor cell survival and proliferation. However, the role of HMGCR in the induction and maintenance of stem-like states in tumors remains unclear. METHODS A compiled public database from breast cancer (BC) patients was analyzed with the web application SurvExpress. Cell Miner was used for the analysis of HMGCR expression and statin sensitivity of the NCI-60 cell lines panel. A CRISPRon system was used to induce HMGCR overexpression in the luminal BC cell line MCF-7 and a lentiviral pLM-OSKM system for the reprogramming of MCF-7 cells. Comparisons were performed by two-tailed unpaired t-test for two groups and one- or two-way ANOVA. RESULTS Data from BC patients showed that high expression of several members of the cholesterol synthesis pathway were associated with lower recurrence-free survival, particularly in hormone-receptor-positive BC. In silico and in vitro analysis showed that HMGCR is expressed in several BC cancer cell lines, which exhibit a subtype-dependent response to statins in silico and in vitro. A stem-like phenotype was demonstrated upon HMGCR expression in MCF-7 cells, characterized by expression of the pluripotency markers NANOG, SOX2, increased CD44 +/CD24low/ -, CD133 + populations, and increased mammosphere formation ability. Pluripotent and cancer stem cell lines showed high expression of HMGCR, whereas cell reprogramming of MCF-7 cells did not increase HMGCR expression. CONCLUSION HMGCR induces a stem-like phenotype in BC cells of epithelial nature, thus affecting tumor initiation, progression and statin sensitivity.
Collapse
Affiliation(s)
- María Paula Marks
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carla Alejandra Giménez
- Instituto de Ciencias Básicas y Medicina Experimental, Instituto Universitario del Hospital Italiano, Potosí 4265, C1199ACL, Buenos Aires, Argentina
- CASPR Biotech, Buenos Aires, Argentina
- CASPR Biotech, San Francisco, USA
| | - Luciana Isaja
- Laboratorio de Investigación Aplicada a Las Neurociencias (LIAN), Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Ruta 9, Km 53, B1625, Buenos Aires, Escobar, Argentina
| | - Mariana Belén Vera
- Laboratorio de Investigación Aplicada a Las Neurociencias (LIAN), Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Ruta 9, Km 53, B1625, Buenos Aires, Escobar, Argentina
| | - Francisco Raúl Borzone
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico Pereyra-Bonnet
- Instituto de Ciencias Básicas y Medicina Experimental, Instituto Universitario del Hospital Italiano, Potosí 4265, C1199ACL, Buenos Aires, Argentina
- CASPR Biotech, Buenos Aires, Argentina
- CASPR Biotech, San Francisco, USA
| | - Leonardo Romorini
- Laboratorio de Investigación Aplicada a Las Neurociencias (LIAN), Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Ruta 9, Km 53, B1625, Buenos Aires, Escobar, Argentina
| | - Guillermo Agustín Videla-Richardson
- Laboratorio de Investigación Aplicada a Las Neurociencias (LIAN), Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Ruta 9, Km 53, B1625, Buenos Aires, Escobar, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Inmunohematología, (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Carlos Calvo
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Luciano Vellón
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
10
|
Alamoodi M. Factors Affecting Pathological Complete Response in Locally Advanced Breast Cancer Cases Receiving Neoadjuvant Therapy: A Comprehensive Literature Review. Eur J Breast Health 2024; 20:8-14. [PMID: 38187111 PMCID: PMC10765459 DOI: 10.4274/ejbh.galenos.2023.2023-11-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024]
Abstract
Determining pathological complete response (pCR) could be an important step in planning individual treatment, hence improving the prognosis in terms of survival. Achieving breast pCR not only improves survival but is also linked to a disease-free axilla, therefore increasing the likelihood of avoiding axillary surgery safely. The current trend in de-escalating axillary management surgically or in applying radiotherapy to the axilla is dependent primarily on breast cancer (BC) patients achieving pCR. Studies have demonstrated that certain characteristics can predict pCR, even though it is still difficult to identify these elements. A review of the literature was carried out to determine these factors and their clinical applications. A search was carried out in the MEDLINE database using PubMed, Google Scholar, and EMBASE. This yielded 1368 studies, of which 60 satisfied the criteria. The studies were categorized according to the subject they dealt with. These parameters included age, race, subtypes, clinicopathological, immunological, imaging, obesity, Ki-67 status, vitamin D, and genetics. These factors, in combination, can be used for specific subtypes to individualize treatment and monitor response to therapy. The predictors of pCR are diverse and should be utilized to personalize patient treatment, ultimately inducing the best outcomes. These determinants can also be employed for monitoring responses to neoadjuvant therapy, thereby adjusting treatment. The development of standardized markers for the diversity of BC subtypes still needs additional future research. These factors must be applied in concert in order to provide optimal results.
Collapse
Affiliation(s)
- Munaser Alamoodi
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Centonze G, Natalini D, Grasso S, Morellato A, Salemme V, Piccolantonio A, D'Attanasio G, Savino A, Bianciotto OT, Fragomeni M, Scavuzzo A, Poncina M, Nigrelli F, De Gregorio M, Poli V, Arina P, Taverna D, Kopecka J, Dupont S, Turco E, Riganti C, Defilippi P. p140Cap modulates the mevalonate pathway decreasing cell migration and enhancing drug sensitivity in breast cancer cells. Cell Death Dis 2023; 14:849. [PMID: 38123597 PMCID: PMC10733353 DOI: 10.1038/s41419-023-06357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
p140Cap is an adaptor protein involved in assembling multi-protein complexes regulating several cellular processes. p140Cap acts as a tumor suppressor in breast cancer (BC) and neuroblastoma patients, where its expression correlates with a better prognosis. The role of p140Cap in tumor metabolism remains largely unknown. Here we study the role of p140Cap in the modulation of the mevalonate (MVA) pathway in BC cells. The MVA pathway is responsible for the biosynthesis of cholesterol and non-sterol isoprenoids and is often deregulated in cancer. We found that both in vitro and in vivo, p140Cap cells and tumors show an increased flux through the MVA pathway by positively regulating the pace-maker enzyme of the MVA pathway, the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), via transcriptional and post-translational mechanisms. The higher cholesterol synthesis is paralleled with enhanced cholesterol efflux. Moreover, p140Cap promotes increased cholesterol localization in the plasma membrane and reduces lipid rafts-associated Rac1 signalling, impairing cell membrane fluidity and cell migration in a cholesterol-dependent manner. Finally, p140Cap BC cells exhibit decreased cell viability upon treatments with statins, alone or in combination with chemotherapeutic at low concentrations in a synergistic manner. Overall, our data highlight a new perspective point on tumor suppression in BC by establishing a previously uncharacterized role of the MVA pathway in p140Cap expressing tumors, thus paving the way to the use of p140Cap as a potent biomarker to stratify patients for better tuning therapeutic options.
Collapse
Affiliation(s)
- Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Silvia Grasso
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessio Piccolantonio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giacomo D'Attanasio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Aurora Savino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Olga Teresa Bianciotto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Matteo Fragomeni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Andrea Scavuzzo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Matteo Poncina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Francesca Nigrelli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Mario De Gregorio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Pietro Arina
- UCL, Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, WC1E 6BT, London, UK
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Italy; Molecular Biotechnology Center, Piazza Nizza 44, 10126, Torino, Italy
| | - Sirio Dupont
- Department of Molecular Medicine (DMM), University of Padova, Padua, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Italy; Molecular Biotechnology Center, Piazza Nizza 44, 10126, Torino, Italy.
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
12
|
Liu X, Lv M, Zhang W, Zhan Q. Dysregulation of cholesterol metabolism in cancer progression. Oncogene 2023; 42:3289-3302. [PMID: 37773204 DOI: 10.1038/s41388-023-02836-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Cholesterol homeostasis has been implicated in the regulation of cellular and body metabolism. Hence, deregulated cholesterol homeostasis leads to the development of many diseases such as cardiovascular diseases, and neurodegenerative diseases, among others. Recent studies have unveiled the connection between abnormal cholesterol metabolism and cancer development. Cholesterol homeostasis at the cellular level dynamically circulates between synthesis, influx, efflux, and esterification. Any dysregulation of this dynamic process disrupts cholesterol homeostasis and its derivatives, which potentially contributes to tumor progression. There is also evidence that cancer-related signals, which promote malignant progression, also regulate cholesterol metabolism. Here, we described the relationship between cholesterol metabolism and cancer hallmarks, with particular focus on the molecular mechanisms, and the anticancer drugs that target cholesterol metabolism.
Collapse
Affiliation(s)
- Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
- Peking University International Cancer Institute, Beijing, 100191, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Soochow University Cancer Institute, Suzhou, 215127, China.
| |
Collapse
|
13
|
Schelz Z, Muddather HF, Zupkó I. Repositioning of HMG-CoA Reductase Inhibitors as Adjuvants in the Modulation of Efflux Pump-Mediated Bacterial and Tumor Resistance. Antibiotics (Basel) 2023; 12:1468. [PMID: 37760764 PMCID: PMC10525194 DOI: 10.3390/antibiotics12091468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Efflux pump (EP)-mediated multidrug resistance (MDR) seems ubiquitous in bacterial infections and neoplastic diseases. The diversity and lack of specificity of these efflux mechanisms raise a great obstacle in developing drugs that modulate efflux pumps. Since developing novel chemotherapeutic drugs requires large investments, drug repurposing offers a new approach that can provide alternatives as adjuvants in treating resistant microbial infections and progressive cancerous diseases. Hydroxy-methyl-glutaryl coenzyme-A (HMG-CoA) reductase inhibitors, also known as statins, are promising agents in this respect. Originally, statins were used in the therapy of dyslipidemia and for the prevention of cardiovascular diseases; however, extensive research has recently been performed to elucidate the functions of statins in bacterial infections and cancers. The mevalonate pathway is essential in the posttranslational modification of proteins related to vital eukaryotic cell functions. In this article, a comparative review is given about the possible role of HMG-CoA reductase inhibitors in managing diseases of bacterial and neoplastic origin. Molecular research and clinical studies have proven the justification of statins in this field. Further well-designed clinical trials are urged to clarify the significance of the contribution of statins to the lower risk of disease progression in bacterial infections and cancerous diseases.
Collapse
Affiliation(s)
| | | | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.)
| |
Collapse
|
14
|
Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K, Yang JL. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J Hematol Oncol 2023; 16:103. [PMID: 37700339 PMCID: PMC10498649 DOI: 10.1186/s13045-023-01498-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Lipid metabolic reprogramming is an emerging hallmark of cancer. In order to sustain uncontrolled proliferation and survive in unfavorable environments that lack oxygen and nutrients, tumor cells undergo metabolic transformations to exploit various ways of acquiring lipid and increasing lipid oxidation. In addition, stromal cells and immune cells in the tumor microenvironment also undergo lipid metabolic reprogramming, which further affects tumor functional phenotypes and immune responses. Given that lipid metabolism plays a critical role in supporting cancer progression and remodeling the tumor microenvironment, targeting the lipid metabolism pathway could provide a novel approach to cancer treatment. This review seeks to: (1) clarify the overall landscape and mechanisms of lipid metabolic reprogramming in cancer, (2) summarize the lipid metabolic landscapes within stromal cells and immune cells in the tumor microenvironment, and clarify their roles in tumor progression, and (3) summarize potential therapeutic targets for lipid metabolism, and highlight the potential for combining such approaches with other anti-tumor therapies to provide new therapeutic opportunities for cancer patients.
Collapse
Affiliation(s)
- Hao-Ran Jin
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zi-Jing Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ming-Jia Xi
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bi-Han Xia
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Deng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China.
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Jin-Lin Yang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China.
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Cash T, Jonus HC, Tsvetkova M, Beumer JH, Sadanand A, Lee JY, Henry CJ, Aguilera D, Harvey RD, Goldsmith KC. A phase 1 study of simvastatin in combination with topotecan and cyclophosphamide in pediatric patients with relapsed and/or refractory solid and CNS tumors. Pediatr Blood Cancer 2023; 70:e30405. [PMID: 37158620 PMCID: PMC11225565 DOI: 10.1002/pbc.30405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) can inhibit tumor proliferation, angiogenesis, and restore apoptosis in preclinical pediatric solid tumor models. We conducted a phase 1 trial to determine the maximum tolerated dose (MTD) of simvastatin with topotecan and cyclophosphamide in children with relapsed/refractory solid and central nervous system (CNS) tumors. METHODS Simvastatin was administered orally twice daily on days 1-21, with topotecan and cyclophosphamide intravenously on days 1-5 of a 21-day cycle. Four simvastatin dose levels (DLs) were planned, 140 (DL1), 180 (DL2), 225 (DL3), 290 (DL4) mg/m2 /dose, with a de-escalation DL of 100 mg/m2 /dose (DL0) if needed. Pharmacokinetic and pharmacodynamic analyses were performed during cycle 1. RESULTS The median age of 14 eligible patients was 11.5 years (range: 1-23). The most common diagnoses were neuroblastoma (N = 4) and Ewing sarcoma (N = 3). Eleven dose-limiting toxicity (DLT)-evaluable patients received a median of four cycles (range: 1-6). There were three cycle 1 DLTs: one each grade 3 diarrhea and grade 4 creatine phosphokinase (CPK) elevations at DL1, and one grade 4 CPK elevation at DL0. All patients experienced at least one grade 3/4 hematologic toxicity. Best overall response was partial response in one patient with Ewing sarcoma (DL0) and stable disease for four or more cycles in four patients. Simvastatin exposure increased with higher doses and may have correlated with toxicity. Plasma interleukin 6 (IL-6) concentrations (N = 6) showed sustained IL-6 reductions with decrease to normal values by day 21 in all patients, indicating potential on-target effects. CONCLUSIONS The MTD of simvastatin with topotecan and cyclophosphamide was determined to be 100 mg/m2 /dose.
Collapse
Affiliation(s)
- Thomas Cash
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hunter C Jonus
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maya Tsvetkova
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jan H Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Arhanti Sadanand
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jasmine Y Lee
- Laney Graduate School Cancer Biology Program, Emory University, Atlanta, Georgia, USA
| | - Curtis J Henry
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, Georgia, USA
- Laney Graduate School Cancer Biology Program, Emory University, Atlanta, Georgia, USA
| | - Dolly Aguilera
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - R Donald Harvey
- Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Hematology/Medical Oncology and Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kelly C Goldsmith
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, Georgia, USA
- Laney Graduate School Cancer Biology Program, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Liu C, Chen H, Hu B, Shi J, Chen Y, Huang K. New insights into the therapeutic potentials of statins in cancer. Front Pharmacol 2023; 14:1188926. [PMID: 37484027 PMCID: PMC10359995 DOI: 10.3389/fphar.2023.1188926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
The widespread clinical use of statins has contributed to significant reductions of cardiovascular morbidity and mortality. Increasing preclinical and epidemiological evidences have revealed that dyslipidemia is an important risk factor for carcinogenesis, invasion and metastasis, and that statins as powerful inhibitor of HMG-CoA reductase can exert prevention and intervention effects on cancers, and promote sensitivity to anti-cancer drugs. The anti-cancer mechanisms of statins include not only inhibition of cholesterol biosynthesis, but also their pleiotropic effects in modulating angiogenesis, apoptosis, autophagy, tumor metastasis, and tumor microenvironment. Moreover, recent clinical studies have provided growing insights into the therapeutic potentials of statins and the feasibility of combining statins with other anti-cancer agents. Here, we provide an updated review on the application potential of statins in cancer prevention and treatment and summarize the underneath mechanisms, with focuses on data from clinical studies.
Collapse
Affiliation(s)
- Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Bicheng Hu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajian Shi
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Tongji-RongCheng Biomedical Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Yulian ED, Siregar NC, Sudijono B, Hwei LRY. The role of HMGCR expression in combination therapy of simvastatin and FAC treated locally advanced breast cancer patients. Breast Dis 2023; 42:73-83. [PMID: 36938720 DOI: 10.3233/bd-220021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Several studies have shown the role of statin added to the patient's chemotherapy regimen and the role of Hydroxymethylglutaryl-CoA Reductase (HMGCR) expression in predicting breast cancer patient outcomes. In our previous study, adding statins improved clinical and pathological responses in LABC patients. Furthermore, we planned to study statin's role as a combination to neoadjuvant chemotherapy (NAC) in treating locally advanced breast cancers on the basis of HMGCR expression. Moreover, we aimed to study the association between the patients' clinicopathological characteristics and HMGCR expression. METHODS This study is a randomized, double-blinded, placebo-controlled trial in two health centers in Indonesia. Each patient enrolled with written informed consent and then randomized to receive either simvastatin 40 mg/day or a placebo, combined with the fluorouracil, adriamycin, and cyclophosphamide (FAC) NAC. RESULTS HMGCR was associated with low staging and normal serum cholesterol in the high Ki67 level group (p = 0.042 and p = 0.021, respectively). The pre-and post-chemotherapy tumor sizes are significantly correlated in two groups (HMGCR negative expression, p = 0.000 and HMGCR moderate expression, p = 0.001) with a more considerable average decrease in tumor size compared to HMGCR strong expression group. CONCLUSION Statin therapy might work better in HMGCR-negative or low-expression tumors, although HGMCR expression is associated with better clinical parameters in our study.
Collapse
Affiliation(s)
- Erwin Danil Yulian
- Division of Surgical Oncology, Department of Surgery, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nurjati Chairani Siregar
- Department of Pathology, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Lie Rebecca Yen Hwei
- Division of Surgical Oncology, Department of Surgery, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
18
|
Muehlebach ME, Holstein SA. Geranylgeranyl diphosphate synthase: Role in human health, disease and potential therapeutic target. Clin Transl Med 2023; 13:e1167. [PMID: 36650113 PMCID: PMC9845123 DOI: 10.1002/ctm2.1167] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid biosynthesis pathway, is responsible for the production of geranylgeranyl pyrophosphate (GGPP). GGPP serves as a substrate for the post-translational modification (geranylgeranylation) of proteins, including those belonging to the Ras superfamily of small GTPases. These proteins play key roles in signalling pathways, cytoskeletal regulation and intracellular transport, and in the absence of the prenylation modification, cannot properly localise and function. Aberrant expression of GGDPS has been implicated in various human pathologies, including liver disease, type 2 diabetes, pulmonary disease and malignancy. Thus, this enzyme is of particular interest from a therapeutic perspective. Here, we review the physiological function of GGDPS as well as its role in pathophysiological processes. We discuss the current GGDPS inhibitors under development and the therapeutic implications of targeting this enzyme.
Collapse
Affiliation(s)
- Molly E. Muehlebach
- Cancer Research Doctoral ProgramUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sarah A. Holstein
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
19
|
Simvastatin in the Treatment of Colorectal Cancer: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3827933. [PMID: 35873646 PMCID: PMC9303163 DOI: 10.1155/2022/3827933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 12/21/2022]
Abstract
Drug repositioning and drug reuse are the heated topics in the field of oncology in recent years. These two concepts refer to seeking effective drugs for cancer that are not originally intended to treat cancer. The survival benefits are then analyzed by combining the re-positioned drugs with conventional cancer treatment methods. Simvastatin is a clinically commonly used hyperlipidemia drug and exerts the effect of preventing cardiovascular diseases. Recent studies have found that simvastatin has great potential in the treatment of colorectal cancer, and a large number of clinical studies have used simvastatin as an adjuvant drug to help treat metastatic colorectal cancer.
Collapse
|
20
|
Mutant p53, the Mevalonate Pathway and the Tumor Microenvironment Regulate Tumor Response to Statin Therapy. Cancers (Basel) 2022; 14:cancers14143500. [PMID: 35884561 PMCID: PMC9323637 DOI: 10.3390/cancers14143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells have the ability to co-opt multiple metabolic pathways, enhance glucose uptake and utilize aerobic glycolysis to promote tumorigenesis, which are characteristics constituting an emerging hallmark of cancer. Mutated tumor suppressor and proto-oncogenes are frequently responsible for enhanced metabolic pathway signaling. The link between mutant p53 and the mevalonate (MVA) pathway has been implicated in the advancement of various malignancies, with tumor cells relying heavily on increased MVA signaling to fuel their rapid growth, metastatic spread and development of therapy resistance. Statin drugs inhibit HMG-CoA reductase, the pathway’s rate-limiting enzyme, and as such, have long been studied as a potential anti-cancer therapy. However, whether statins provide additional anti-cancer properties is worthy of debate. Here, we examine retrospective, prospective and pre-clinical studies involving the use of statins in various cancer types, as well as potential issues with statins’ lack of efficacy observed in clinical trials and future considerations for upcoming clinical trials.
Collapse
|
21
|
Sayed A, Abdelfattah OM, Munir M, Shazly O, Awad AK, Ghaith HS, Moustafa K, Gerew M, Guha A, Barac A, Fradley MG, Abela GS, Addison D. Long-term effectiveness of empiric cardio-protection in patients receiving cardiotoxic chemotherapies: A systematic review & bayesian network meta-analysis. Eur J Cancer 2022; 169:82-92. [PMID: 35524992 DOI: 10.1016/j.ejca.2022.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/11/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cardioprotective therapies represent an important avenue to reduce treatment-limiting cardiotoxicities in patients receiving chemotherapy. However, the optimal duration, strategy and long-term efficacy of empiric cardio-protection remains unknown. METHODS Leveraging the MEDLINE/Pubmed, CENTRAL and clinicaltrials.gov databases, we identified all randomised controlled trials investigating cardioprotective therapies from inception to November 2021 (PROSPERO-ID:CRD42021265006). Cardioprotective classes included ACEIs, ARBs, Beta-blockers, dexrazoxane (DEX), statins and mineralocorticoid receptor antagonists. The primary end-point was new-onset heart failure (HF). Secondary outcomes were the mean difference in left ventricular ejection fraction (LVEF) change, hypotension and all-cause mortality. Network meta-analyses were used to assess the cardioprotective effects of each therapy to deduce the most effective therapies. Both analyses were performed using a Bayesian random effects model to estimate risk ratios (RR) and 95% credible intervals (95% CrI). RESULTS Overall, from 726 articles, 39 trials evaluating 5931 participants (38.0 ± 19.1 years, 72.0% females) were identified. The use of any cardioprotective strategy associated with reduction in new-onset HF (RR:0.32; 95% CrI:0.19-0.55), improved LVEF (mean difference: 3.92%; 95% CrI:2.81-5.07), increased hypotension (RR:3.27; 95% CrI:1.38-9.87) and no difference in mortality. Based on control arms, the number-needed-to-treat for 'any' cardioprotective therapy to prevent one incident HF event was 45, including a number-needed-to-treat of 21 with ≥1 year of therapy. Dexrazoxane was most effective at HF prevention (Surface Under the Cumulative Ranking curve: 81.47%), and mineralocorticoid receptor antagonists were most effective at preserving LVEF (Surface Under the Cumulative Ranking curve: 99.22%). CONCLUSION Cardiotoxicity remains a challenge for patients requiring anticancer therapies. The initiation of extended duration cardioprotection reduces incident HF. Additional head-to-head trials are needed.
Collapse
Affiliation(s)
- Ahmed Sayed
- Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Omar M Abdelfattah
- Department of Medicine, Morristown Medical Center, Atlantic Health System, Morristown, NJ, USA.
| | - Malak Munir
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Omar Shazly
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed K Awad
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Khaled Moustafa
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maria Gerew
- Department of Medicine, Morristown Medical Center, Atlantic Health System, Morristown, NJ, USA
| | - Avirup Guha
- Cardio-Oncology Program, Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, USA; Cardio-Oncology Program, Division of Cardiology, Ohio State University, Columbus, OH, USA
| | - Ana Barac
- Cardio-Oncology Program, Medstar Heart and Vascular Institute, Georgetown University, Washington, DC, USA
| | - Michael G Fradley
- Cardio-Oncology Center of Excellence, Division of Cardiology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - George S Abela
- Department of Cardiovascular Medicine, Michigan State University, East Lansing, MI, USA
| | - Daniel Addison
- Cardio-Oncology Program, Division of Cardiology, Ohio State University, Columbus, OH, USA; Division of Cancer Control and Prevention, James Cancer Hospital and Solove Research Institute at the Ohio State University, Columbus, OH, USA.
| |
Collapse
|
22
|
Beyond Lipid-Lowering: Effects of Statins on Cardiovascular and Cerebrovascular Diseases and Cancer. Pharmaceuticals (Basel) 2022; 15:ph15020151. [PMID: 35215263 PMCID: PMC8877351 DOI: 10.3390/ph15020151] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, also known as statins, are administered as first-line therapy for hypercholesterolemia, both as primary and secondary prevention. Besides the lipid-lowering effect, statins have been suggested to inhibit the development of cardiovascular disease through anti-inflammatory, antioxidant, vascular endothelial function-improving, plaque-stabilizing, and platelet aggregation-inhibiting effects. The preventive effect of statins on atherothrombotic stroke has been well established, but statins can influence other cerebrovascular diseases. This suggests that statins have many neuroprotective effects in addition to lowering cholesterol. Furthermore, research suggests that statins cause pro-apoptotic, growth-inhibitory, and pro-differentiation effects in various malignancies. Preclinical and clinical evidence suggests that statins inhibit tumor growth and induce apoptosis in specific cancer cell types. The pleiotropic effects of statins on cardiovascular and cerebrovascular diseases have been well established; however, the effects of statins on cancer patients have not been fully elucidated and are still controversial. This review discusses the recent evidence on the effects of statins on cardiovascular and cerebrovascular diseases and cancer. Additionally, this study describes the pharmacological action of statins, focusing on the aspect of ‘beyond lipid-lowering’.
Collapse
|
23
|
Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res 2021; 40:241. [PMID: 34303383 PMCID: PMC8306262 DOI: 10.1186/s13046-021-02041-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Jin-Wei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Xu-Ran He
- Department of Finance, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China.
| |
Collapse
|