1
|
Zhang F, Lin J, Zhu D, Tang Y, Lu Y, Liu Z, Wang X. Identification of an amino acid metabolism-associated gene signature predicting the prognosis and immune therapy response of clear cell renal cell carcinoma. Front Oncol 2022; 12:970208. [PMID: 36158645 PMCID: PMC9493051 DOI: 10.3389/fonc.2022.970208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background The upregulation of amino acid metabolism is an essential form of metabolic reprogramming in cancer. Here, we developed an amino acid metabolism signature to predict prognosis and anti-PD-1 therapy response in clear cell renal cell carcinoma (ccRCC). Methods According to the amino acid metabolism-associated gene sets contained in the Molecular Signature Database, consensus clustering was performed to divide patients into two clusters. An amino acid metabolism-associated signature was identified and verified. Immune cell infiltrates and their corresponding signature risk scores were investigated. Two independent cohorts of clinical trials were analyzed to explore the correspondence between the signature risk score and the immune therapy response. Results Two clusters with different amino acid metabolic levels were identified by consensus clustering. The patients in the two clusters differed in overall survival, progression-free survival, amino acid metabolic status, and tumor microenvironment. We identified a signature containing eight amino acid metabolism-associated genes that could accurately predict the prognosis of patients with ccRCC. The signature risk score was positively correlated with infiltration of M1 macrophages, CD8+ T cells, and regulatory T cells, whereas it was negatively correlated with infiltration of neutrophils, NK cells, and CD4+ T cells. Patients with lower risk scores had better overall survival but worse responses to nivolumab. Conclusion Amino acid metabolic status is closely correlated with tumor microenvironment, response to checkpoint blockade therapy, and prognosis in patients with ccRCC. The established amino acid metabolism-associated gene signature can predict both survival and anti-PD-1 therapy response in patients with ccRCC.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Junyu Lin
- West China Clinical Medical College, West China Hospital, Sichuan University, Chengdu, China
| | - Daiwen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongquan Tang
- Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiping Lu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xianding Wang, ; Zhihong Liu,
| | - Xianding Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xianding Wang, ; Zhihong Liu,
| |
Collapse
|
2
|
Liu Q, Lin F. Lentivirus-induced knockdown of IARS2 expression inhibits the proliferation and promotes the apoptosis of human osteosarcoma cells. Oncol Lett 2022; 24:262. [PMID: 35765273 PMCID: PMC9219035 DOI: 10.3892/ol.2022.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
Isoleucyl-tRNA synthetase 2 (IARS2), distributed in mitochondria, is an IARS involved in protein synthesis. Notably, IARS2 has been reported to be associated with tumor progression; however, the relationship between osteosarcoma (OS) and IARS2 remains unclear. To investigate the role of IARS2 in human OS, the expression and relationship of IARS2 with survival were firstly analyzed using the Gene Expression Profiling Interactive Analysis 2 database. Subsequently, an IARS2-short hairpin RNA lentiviral vector was established and used to infect the MNNG/HOS and U2OS cell lines. Reverse transcription-quantitative PCR (RT-qPCR) and western blotting were applied to determine the efficiency of IARS2 knockdown. The effects of IARS2 knockdown on cell proliferation, colony formation and apoptosis were evaluated by Celigo, MTT assays, colony formation assays and flow cytomeric analysis. In the present study, IARS2 tends to be high expressed in OS tissue and was associated with survival but this was not significant. The results of RT-qPCR and western blotting showed that the expression of IARS2 was effectively knocked down in the MNNG/HOS and U2OS cell lines. Celigo, MTT and colony formation assays showed that IARS2 knockdown in MNNG/HOS and U2OS cell lines inhibited cell proliferation and colony formation compared with in the control group. Flow cytometric analysis revealed that IARS2 knockdown increased apoptosis. These results suggested that IARS2 may be critical for the proliferation and apoptosis of OS cells.
Collapse
Affiliation(s)
- Qi Liu
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai 200235, P.R. China
| | - Feng Lin
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai 200235, P.R. China
| |
Collapse
|
3
|
Yu YM, Xu L, Li HR, Zhang TQ, Qian G, Li LF, Wang MH. IARS2 regulates proliferation, migration, and angiogenesis of human umbilical vein endothelial cells. ACTA ACUST UNITED AC 2021; 67:555-560. [PMID: 34495060 DOI: 10.1590/1806-9282.20201024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVE In this study, we aimed at investigating the role of isoleucyl-tRNA synthetase in the growth, migration, and angiogenesis of human umbilical vein endothelial cells and the underlying molecular mechanism. METHODS To assess the role of isoleucyl-tRNA synthetase, we silenced isoleucyl-tRNA synthetase in human umbilical vein endothelial cells using lentiviral 2 specific short hairpin RNAs (short hairpin RNAs 1 and 2) and examined silencing efficiency using real time quantitative polymerase chain reaction and western blot analyses. Short hairpin RNAs 1-isoleucyl-tRNA synthetase had greater knockdown efficiency, it was used in the entire downstream analysis. Short hairpin RNAs 1- isoleucyl-tRNA synthetase silencing effects on cell proliferation, cell colony generation, cell migration, as well as angiogenesis were assessed using cell counting kit-8, colony development, cell migration, and angiogenesis tube formation assays, respectively. RESULTS Compared to the control group, anti-isoleucyl-tRNA synthetase short hairpin RNAs significantly silenced isoleucyl-tRNA synthetase expression in human umbilical vein endothelial cells, and suppressed their proliferation, migration, and angiogenic capacity. To characterize the underlying mechanism, western blot analyses showed that isoleucyl-tRNA synthetase knockdown suppressed phosphorylation of extracellular-regulated kinase ½ and protein-serine- threonine kinase, as well as expression of vascular endothelial growth factor, GSK-3β, and β-catenin. CONCLUSIONS We have shown, for the first time, the critical role of isoleucyl-tRNA synthetase in human umbilical vein endothelial cells. Our data show that isoleucyl-tRNA synthetase knockdown suppresses human umbilical vein endothelial cell proliferation, migration, and angiogenesis. We have also shown that isoleucyl-tRNA synthetase knockdown suppresses phosphorylation of extracellular-regulated kinase ½ and protein-serine- threonine kinase, as well as expression of vascular endothelial growth factor, GSK-3β, and β-catenin. Together, these data highlight isoleucyl-tRNA synthetase as a potential antitumor anti-angiogenic target.
Collapse
Affiliation(s)
- Yue-Ming Yu
- Fudan University, The Fifth People's Hospital of Shanghai, Department of Orthopedics - Shanghai, China
| | - Liang Xu
- Fudan University, The Fifth People's Hospital of Shanghai, Department of Orthopedics - Shanghai, China
| | - Hao-Ran Li
- Fudan University, The Fifth People's Hospital of Shanghai, Department of Orthopedics - Shanghai, China
| | - Tie-Qi Zhang
- Fudan University, The Fifth People's Hospital of Shanghai, Department of Orthopedics - Shanghai, China
| | - Guang Qian
- Fudan University, The Fifth People's Hospital of Shanghai, Department of Orthopedics - Shanghai, China
| | - Ling-Feng Li
- Fudan University, The Fifth People's Hospital of Shanghai, Department of Orthopedics - Shanghai, China
| | - Ming-Hai Wang
- Fudan University, The Fifth People's Hospital of Shanghai, Department of Orthopedics - Shanghai, China
| |
Collapse
|
4
|
Zhou Z, Sun B, Nie A, Yu D, Bian M. Roles of Aminoacyl-tRNA Synthetases in Cancer. Front Cell Dev Biol 2020; 8:599765. [PMID: 33330488 PMCID: PMC7729087 DOI: 10.3389/fcell.2020.599765] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) catalyze the ligation of amino acids to their cognate transfer RNAs (tRNAs), thus playing an important role in protein synthesis. In eukaryotic cells, these enzymes exist in free form or in the form of multi-tRNA synthetase complex (MSC). The latter contains nine cytoplasmic ARSs and three ARS-interacting multifunctional proteins (AIMPs). Normally, ARSs and AIMPs are regarded as housekeeping molecules without additional functions. However, a growing number of studies indicate that ARSs are involved in a variety of physiological and pathological processes, especially tumorigenesis. Here, we introduce the roles of ARSs and AIMPs in certain cancers, such as colon cancer, lung cancer, breast cancer, gastric cancer and pancreatic cancer. Furthermore, we particularly focus on their potential clinical applications in cancer, aiming at providing new insights into the pathogenesis and treatment of cancer.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Anzheng Nie
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Ma D, Li S, Nie X, Chen L, Chen N, Hou D, Liu X, Gao B. RNAi-mediated IARS2 knockdown inhibits proliferation and promotes apoptosis in human melanoma A375 cells. Oncol Lett 2020; 20:1093-1100. [PMID: 32724348 PMCID: PMC7377047 DOI: 10.3892/ol.2020.11688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
IARS2, which encodes the mitochondrial form of isoleucyl-tRNA synthetase, has been found to play an important role in a range of diseases, including cancer. However, the relationship between IARS2 and melanoma is still unclear. To evaluate the role of IARS2 in melanoma, we constructed a stable A375 cell line with IARS2 knockdown via lentivirus-mediated small interfering RNAs. The expression of IARS2 was measured by real time-quantitative Polymerase Chain Reaction and western blot analysis. Cell counting, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and colony formation assay were conducted to assess the effect of IARS2 on melanoma cell proliferation. Flow cytometry assay was used to determine cell apoptosis and cell cycle distribution in melanoma A375 cells. Finally, immunohistochemistry was employed to validate the expression of IARS2 protein in melanoma tissues. In this study it was found that IARS2 was highly expressed in melanoma cell lines. Furthermore, IARS2 protein also exhibited elevated expression in the tumour tissues obtained from melanoma patients. After suppression of the mRNA expression of IARS2, the proliferation and colony formation ability of the A375 cells were significantly inhibited, while the proportion of apoptotic A375 cells increased significantly, as indicated by an enhanced phosphatidylserine externalization and caspase 3/7 activity after IARS2 knockdown. Further investigations found that knockdown of IARS2 arrested cells in the G1 phase. The results suggested that IARS2 is critical for proliferation and apoptosis of melanoma cells.
Collapse
Affiliation(s)
- Dongmei Ma
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Song Li
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiaojuan Nie
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lamei Chen
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Nan Chen
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Dongsheng Hou
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiuhong Liu
- Department of Dermatology, The Sixth Affiliated Hospital of Kun Ming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Binbin Gao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
6
|
Li H, Tian Y, Li X, Wang B, Zhai D, Bai Y, Dong C, Chao X. Knockdown of IARS2 Inhibited Proliferation of Acute Myeloid Leukemia Cells by Regulating p53/p21/PCNA/eIF4E Pathway. Oncol Res 2019; 27:673-680. [PMID: 30832756 PMCID: PMC7848268 DOI: 10.3727/096504018x15426261956343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IARS2 encodes mitochondrial isoleucine-tRNA synthetase, which mutation may cause multiple diseases. However, the biological function of IARS2 on acute myeloid leukemia (AML) has not yet been identified. In the present study, qRT-PCR was used to determine the expression of IARS2 in K562, THP1, and HL-60 leukemia cells. Additionally the mRNA levels of IARS2 in CD34 cells and AML cells obtained from patients were detected by qRT-PCR. IARS2-shRNA lentiviral vector was established and used to infect acute myeloid leukemia HL-60 cells. qRT-PCR and Western blot analysis were employed to assess the knockdown effect of IARS2. The proliferation rate and cell cycle phase of HL-60 cells after IARS2 knockdown were evaluated by CCK-8 assay and flow cytometry. The PathScan Antibody Array was used to determine the expression of cell cycle-related proteins in HL-60 cells after IARS2 knockdown. The expression of proliferation-related proteins in HL-60 cells after IARS2 knockdown was determined by Western blot analysis. Results showed that IARS2 expression was stable and much higher in HL-60, THP-1, and K562 leukemia cells and AML cells obtained from patients than that of human CD34 cells. Compared with cells of the shCtrl group, IARS2 was markedly knocked down in cells that were transfected with lentivirus encoding shRNA of IARS2 in HL-60 cells (p < 0.05). IARS2 knockdown significantly inhibited the proliferation and induced cycle arrest at the G1 phase in HL-60 cells. Additionally IARS2 knockdown significantly increased the expression of p53 and p21, and decreased the expression of PCNA and eIF4E in HL-60 cells. In conclusion, IARS2 knockdown can inhibit acute myeloid leukemia HL-60 cell proliferation and cause cell cycle arrest at the G1 phase by regulating the p53/p21/PCNA/eIF4E pathways.
Collapse
Affiliation(s)
- Hong Li
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Yaning Tian
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Xiang Li
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Bin Wang
- The College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Dongzhi Zhai
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Yingying Bai
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Changhu Dong
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Xu Chao
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| |
Collapse
|
7
|
Fang Z, Wang X, Yan Q, Zhang S, Li Y. Knockdown of IARS2 suppressed growth of gastric cancer cells by regulating the phosphorylation of cell cycle-related proteins. Mol Cell Biochem 2017; 443:93-100. [PMID: 29071539 DOI: 10.1007/s11010-017-3213-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/20/2017] [Indexed: 01/30/2023]
Abstract
The purpose of the article is to investigate the role of IARS2 in proliferation, apoptosis, and cell cycle of gastric cancer (GC) cells in vitro. The IARS2-shRNA lentiviral vector was established and used to infect the GC cell line AGS. qRT-PCR and Western blot were employed to determine the efficiency of IARS2 knockdown. The effects of IARS2 knockdown on cell proliferation, cell clone formation, and cell cycle were assessed by MTT assay, colony formation assay, and flow cytometer analysis, respectively. Finally, a PathScan Antibody Array Kit was used to detect the expression levels of cell cycle-related proteins after IARS2 knockdown in AGS cells to elucidate the underlying mechanisms. Compared with negative control group, IARS2 was significantly knocked down by transfection with lentivirus encoding shRNA of IARS2 in AGS cells. IARS2 knockdown significantly inhibited the proliferation and colony formation ability and induced cycle arrest at G2/M phase of AGS cells. IARS2 knockdown significantly decreased the expression levels of phosphorylation of (p-Smad2), p-SAPK/JUK, cleavage-Caspase-7, and p-TAK1, but increased the expression levels of p-53 and cleavage-PARP in AGS cells compared to shCtrl group. We demonstrated that IARS2 knockdown inhibits proliferation, suppresses colony formation, and causes cell cycle arrest in AGS cells. We also found that IARS2 regulates key molecules of cell apoptosis-related signaling pathway.
Collapse
Affiliation(s)
- Zheng Fang
- Department of Emergency Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Xingyu Wang
- Department of Emergency Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Qiang Yan
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, People's Republic of China
| | - Shangxin Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, People's Republic of China
| | - Yongxiang Li
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, People's Republic of China.
| |
Collapse
|