1
|
Tang Y, Rao P, Li S, Yu W, Wang R, Liu J. Individualized medication of venetoclax based on therapeutic drug monitoring in Chinese acute myeloid leukemia patients using an HPLC method. Anticancer Drugs 2024; 35:852-858. [PMID: 38995659 DOI: 10.1097/cad.0000000000001632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
OBJECTIVE The aim of this study was to establish a simple and sensitive high-performance liquid chromatography method for therapeutic drug monitoring of venetoclax (VEN) and optimize regimens. METHODS The analysis required the extraction of a 50 μl plasma sample and the precipitation of proteins using acetonitrile extraction. The chromatographic method employed a mobile phase of acetonitrile: 0.5% KH 2 PO 4 (pH 3.5) (60/40, v/v) on a Diamond C 18 (4.6 mm × 250 mm, 5 μm) column at a flow rate of 1.0 ml/min. The quantitative method was validated based on standards described in 'Bioanalytical Method Validation: Guidance for Industry' published by the US Food and Drug Administration (FDA). RESULTS The calibration curve was linear ( R2 = 0.9998) over the range of 75-4800 ng/ml, with limits of quantification of 25 ng/ml. The coefficients of intraday and interday validation, specificity, recovery, and stability all met the criteria of FDA guidance. The method was successfully applied to analyze VEN concentrations in 30 cases of acute myeloid leukemia patients. The peak concentration ( Cmax ) was 1881.19 ± 756.61 ng/ml, while the trough concentration ( Cmin ) was 1212.69 ± 767.92 ng/ml in acute myeloid leukemia patients. CONCLUSION Our study establishes a simple, precise, and sensitive high-performance liquid chromatography method for monitoring VEN and confirms its applicability for therapeutic drug monitoring of VEN in hematological cancers.
Collapse
Affiliation(s)
- Yue Tang
- School of Pharmacy, Anhui Medical University
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University
| | - Peng Rao
- School of Pharmacy, Anhui Medical University
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University
| | - Shuojiao Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Wenxian Yu
- School of Pharmacy, Anhui Medical University
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University
| | - Ranran Wang
- School of Pharmacy, Anhui Medical University
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University
| | - Jiatao Liu
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University
| |
Collapse
|
2
|
John L, Singh G, Dombi E, Wolters PL, Martin S, Baldwin A, Steinberg SM, Bernstein J, Whitcomb P, Pichard DC, Dufek A, Gillespie A, Heisey K, Bornhorst M, Fisher MJ, Weiss BD, Kim A, Widemann BC, Gross AM. Development and pilot validation of a novel disfigurement severity scale for plexiform neurofibromas in children with neurofibromatosis type 1. Clin Trials 2024; 21:189-198. [PMID: 37877369 PMCID: PMC11003851 DOI: 10.1177/17407745231206402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
BACKGROUND/AIMS We developed an observer disfigurement severity scale for neurofibroma-related plexiform neurofibromas to assess change in plexiform neurofibroma-related disfigurement and evaluated its feasibility, reliability, and validity. METHODS Twenty-eight raters, divided into four cohorts based on neurofibromatosis type 1 familiarity and clinical experience, were shown photographs of children in a clinical trial (NCT01362803) at baseline and 1 year on selumetinib treatment for plexiform neurofibromas (n = 20) and of untreated participants with plexiform neurofibromas (n = 4). Raters, blinded to treatment and timepoint, completed the 0-10 disfigurement severity score for plexiform neurofibroma on each image (0 = not at all disfigured, 10 = very disfigured). Raters evaluated the ease of completing the scale, and a subset repeated the procedure to assess intra-rater reliability. RESULTS Mean baseline disfigurement severity score for plexiform neurofibroma ratings were similar for the selumetinib group (6.23) and controls (6.38). Mean paired differences between pre- and on-treatment ratings was -1.01 (less disfigurement) in the selumetinib group and 0.09 in the control (p = 0.005). For the disfigurement severity score for plexiform neurofibroma ratings, there was moderate-to-substantial agreement within rater cohorts (weighted kappa range = 0.46-0.66) and agreement between scores of the same raters at repeat sessions (p > 0.05). In the selumetinib group, change in disfigurement severity score for plexiform neurofibroma ratings was moderately correlated with change in plexiform neurofibroma volume with treatment (r = 0.60). CONCLUSION This study demonstrates that our observer-rated disfigurement severity score for plexiform neurofibroma was feasible, reliable, and documented improvement in disfigurement in participants with plexiform neurofibroma shrinkage. Prospective studies in larger samples are needed to validate this scale further.
Collapse
Affiliation(s)
- Liny John
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gurbani Singh
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pamela L Wolters
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Staci Martin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Baldwin
- Clinical Research Directorate (CRD), Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jessica Bernstein
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Whitcomb
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dominique C Pichard
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anne Dufek
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andy Gillespie
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kara Heisey
- Clinical Research Directorate (CRD), Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Miriam Bornhorst
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC, USA
| | - Michael J Fisher
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brian D Weiss
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - AeRang Kim
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Bulbule RR, Jadav T, Rajput N, Das R, Chatterjee DR, Shard A, Sengupta P. Comprehensive characterization and preclinical assessment of an imidazopyridine-based anticancer lead molecule. Drug Dev Res 2024; 85:e22139. [PMID: 38084651 DOI: 10.1002/ddr.22139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024]
Abstract
Imidazopyridine scaffold holds significant pharmacological importance in the treatment of cancer. An in-house synthesized imidazopyridine-based molecule was found to have promising anticancer activity against breast cancer, lung cancer, and colon cancer. The molecule is an inhibitor of pyruvate kinase M2, the enzyme that elevates tumor growth, metastasis and chemoresistance by directly controlling tumor cell metabolism. Screening of the physicochemical properties of any lead molecules is essential to avoid failure in late-stage drug development. In this research, the physicochemical properties of the molecule including log P, log D, pKa, and plasma protein binding were assessed to check its drug-likeness. Plasma and metabolic stability of the molecule were also evaluated. Moreover, pharmacokinetic profiles of the lead molecule in Sprague-Dawley rats and in vitro metabolite identification studies were also performed. Finally, an in silico software, Pro-Tox-II, was used to predict toxicity of the molecule and its metabolites. Log P, Log D (pH 7.4), pKa, and plasma protein binding of the molecule were found to be 2.03%, 2.42%, 10.4%, and 98%, respectively. The molecule was stable in plasma and metabolic conditions. A total of nine new metabolites were identified and characterized. Cmax and t½ of this molecule were found to be 4016 ± 313.95 ng/mL and 9.57 ± 3.05 h, respectively. Based on the previously reported study and this finding, the molecule can be considered as a promising anticancer lead with potential drug-likeness properties. Further preclinical and clinical drug discovery studies may be initiated in continuation of this study in search of a potential anticancer lead.
Collapse
Affiliation(s)
- Ratik Ramesh Bulbule
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Tarang Jadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Niraj Rajput
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Cao Q, Wu X, Zhang Q, Gong J, Chen Y, You Y, Shen J, Qiang Y, Cao G. Mechanisms of action of the BCL-2 inhibitor venetoclax in multiple myeloma: a literature review. Front Pharmacol 2023; 14:1291920. [PMID: 38026941 PMCID: PMC10657905 DOI: 10.3389/fphar.2023.1291920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Abnormal cellular apoptosis plays a pivotal role in the pathogenesis of Multiple Myeloma (MM). Over the years, BCL-2, a crucial anti-apoptotic protein, has garnered significant attention in MM therapeutic research. Venetoclax (VTC), a small-molecule targeted agent, effectively inhibits BCL-2, promoting the programmed death of cancerous cells. While VTC has been employed to treat various hematological malignancies, its particular efficacy in MM has showcased its potential for broader clinical applications. In this review, we delve into the intricacies of how VTC modulates apoptosis in MM cells by targeting BCL-2 and the overarching influence of the BCL-2 protein family in MM apoptosis regulation. Our findings highlight the nuanced interplay between VTC, BCL-2, and MM, offering insights that may pave the way for optimizing therapeutic strategies. Through this comprehensive analysis, we aim to lay a solid groundwork for future explorations into VTC's clinical applications and the profound effects of BCL-2 on cellular apoptosis.
Collapse
Affiliation(s)
- Qiang Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinyan Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qi Zhang
- Undergraduate Department, Taishan University, Taian, China
| | - Junling Gong
- School of Public Health, Nanchang University, Nanchang, China
| | - Yuquan Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanwei You
- Division of Sports Science & Physical Education, Tsinghua University, Beijing, China
| | - Jun Shen
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi Qiang
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Guangzhu Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
5
|
Alnasser AI, Hefnawy MM, Al-Hossaini AM, Bin Jardan YA, El-Azab AS, Abdel-Aziz AM, Al-Obaid AM, Al-Suwaidan IA, Attwa MW, El-Gendy MA. LC-MS/MS method for the quantitation of decitabine and venetoclax in rat plasma after SPE: Application to pharmacokinetic study. Saudi Pharm J 2023; 31:101693. [PMID: 37559870 PMCID: PMC10407895 DOI: 10.1016/j.jsps.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023] Open
Abstract
This study developed a novel, sensitive and selective LC-MS/MS method for the concurrent determination of DCB and VTX in rat plasma using encorafenib as internal standard (IS). To identify DCB, VTX, and IS, the positive multiple reaction monitoring (MRM) mode was used. Chromatographic separation was carried out using a reversed-phase Agilent Eclipse plus C18 column (100 mm × 2.1 mm, 3.5 µm) and an isocratic mobile phase made up of water with 0.1% formic acid and acetonitrile (50:50, v/v, pH 3.2) at a flow rate of 0.30 mL/min for 3.0 min. Prior to analysis, the DCB and VTX with the IS were extracted from plasma using the solid-phase extraction (SPE) method. High recovery rates for DCB, VTX and IS were achieved using the C18 cartridge without interference from plasma endogenous. The developed method was validated as per the FDA guidelines over a linear concentration range in rat plasma from 5-3000 and 5-1000 ng/mL for DCB and VTX, respectively with r2 ≥ 0.998. For both drugs, the lower limits of detection (LLOD) were 2.0 ng/mL. After the HLOQ sample was injected, less than 20% of the LLOQ of DCB, VTX, and less than 5% of the IS carry-over in the blank sample was attained. The overall recoveries of DCB and VTX from rat plasma were in the range of 90.68-97.56%, and the mean RSD of accuracy and precision results was ≤6.84%. For the first time, the newly developed approach was effectively used in a pharmacokinetic study on the simultaneous oral administration of DCB and VTX in rats that received 15.0 mg/kg of DCB and 100.0 mg/kg of VTX.
Collapse
Affiliation(s)
- Abdulaziz I. Alnasser
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed M. Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Al-Hossaini
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adel S. El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alaa M. Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman M. Al-Obaid
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ibrahim A. Al-Suwaidan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manal A. El-Gendy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Jadav T, Rajput N, Sahu AK, Sengupta P. LC-QQQ-MS based intracellular quantification of bictegravir in peripheral blood mononuclear cells and plasma. Anal Biochem 2023; 667:115084. [PMID: 36806669 DOI: 10.1016/j.ab.2023.115084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Most antiretrovirals (ARVs) have intracellular therapeutic target sites and therefore, their plasma concentration may be misleading when relating to their efficacy or toxicity. A bioanalytical method for quantification of the ARV drug bictegravir (BTG) in its target site peripheral blood mononuclear cells (PBMCs) is not available till date. This is the first time to establish a sufficiently sensitive mass spectrometry-based bioanalytical method to quantify BTG in both rat PBMCs and plasma. The developed method was validated over the range of 1 ng/ml to 100 ng/ml and 0.005 ng-10ng/sample for plasma and PBMCs, respectively. For PBMCs, average accuracy and precision at four quality control levels were found to be 93.30%-110.00% and 6.52%-8.25%, respectively. Plasma and intracellular pharmacokinetics of BTG was evaluated by the developed method in rats and a lack of accumulation of BTG in the PBMCs was observed. Pearson correlation coefficient data analysis indicated a moderated correlation between plasma and PBMC concentration of BTG. Therefore, it will be beneficial to include a quantification plan for BTG in its actual therapeutic target site during all its future research and development work. This reported method can be useful for site-specific monitoring of BTG in research laboratories and pharmaceutical industries.
Collapse
Affiliation(s)
- Tarang Jadav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Niraj Rajput
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
7
|
Gao P, Zhang W, Fang X, Leng B, Zhang Y, Liu X, Wang X, Guo N. Simultaneous quantification of venetoclax and voriconazole in human plasma by UHPLC-MS/MS and its application in acute myeloid leukemia patients. J Pharm Biomed Anal 2023; 227:115279. [PMID: 36739719 DOI: 10.1016/j.jpba.2023.115279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Venetoclax, an orally bioavailable BCL-2 inhibitor, has been regarded as a breakthrough for the treatment of leukemia but has a wide interindividual variability and drug-drug interaction in pharmacokinetics. In this study, a simple and sensitive ultra-high performance liquid chromatography-tandem with mass spectrometry method was established and fully validated to quantify venetoclax and voriconazole simultaneously in human plasma. After protein precipitation, the analytes were separated on a Hypersil GOLD C18 column (3 µm, 2.1 × 50 mm) by gradient elution. The mass detection was operated under multiple reaction monitoring mode at m/z 868.5 →636.2 for venetoclax, 350.0 → 127.0 for voriconazole and 353.0 → 127.0 for voriconazole-D3(Internal Standard). The calibration ranges were 0.1-10 μg/mL for venetoclax and 0.05-10 μg/mL for voriconazole with correlation coefficients (r2)>0.998. The validated method was successfully applied to the pharmacokinetic study in acute myeloid leukemia patients receiving venetoclax with or without voriconazole. The results suggested that co-treatment with 200 mg q12h voriconazole, the peak concentration of venetoclax (100 mg qd) could be raised to the same level as the 400 mg qd group. However, the trough concentration of venetoclax (100 mg qd) was much higher than that of the 400 mg qd group. Therapeutic drug monitoring might give some guidance for the adjustment of dosing regimens to guarantee the drug efficacy and safety of patients to some extent.
Collapse
Affiliation(s)
- Ping Gao
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Wen Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Bing Leng
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xin Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Nan Guo
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
8
|
Hefnawy MM, Alanazi MM, Al-Hossaini AM, Alnasser AI, El-Azab AS, Jardan YAB, Attwa MW, El-Gendy MA. A Rapid and Sensitive Liquid Chromatography-Tandem Mass Spectrometry Bioanalytical Method for the Quantification of Encorafenib and Binimetinib as a First-Line Treatment for Advanced (Unresectable or Metastatic) Melanoma-Application to a Pharmacokinetic Study. Molecules 2022; 28:molecules28010079. [PMID: 36615272 PMCID: PMC9822280 DOI: 10.3390/molecules28010079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The combination regimen targeting BRAF and MEK inhibition, for instance, encorafenib (Braftovi™, ENF) plus binimetinib (Mektovi®, BNB), are now recommended as first-line treatment in patients with unresectable or metastatic melanoma with a BRAF V600-activating mutation. Patients treated with combination therapy of ENF and BNB demonstrated a delay in resistance development, increases in antitumor activity, and attenuation of toxicities compared with the activity of either agent alone. However, the pharmacokinetic profile of the FDA-approved ENF and BNB is still unclear. In this study, a rapid and sensitive LC-MS/MS bioanalytical method for simultaneous quantification of ENF and BNB in rat plasma was developed and validated. Chromatography was performed on an Agilent Eclipse plus C18 column (50 mm × 2.1 mm, 1.8 µm), with an isocratic mobile phase composed of 0.1% formic acid in water/acetonitrile (67:33, v/v, pH 3.2) at a flow rate of 0.35 mL/min. A positive multiple reaction monitoring (MRM) mode was chosen for detection and the process of analysis was run for 2 min. Plasma samples were pre-treated using protein precipitation with acetonitrile containing spebrutinib as the internal standard (IS). Method validation was assessed as per the FDA guidelines for the determination of ENF and BNB over concentration ranges of 0.5-3000 ng/mL (r2 ≥ 0.997) for each drug (plasma). The lower limits of detection (LLOD) for both drugs were 0.2 ng/mL. The mean relative standard deviation (RSD) of the results for accuracy and precision was ≤ 7.52%, and the overall recoveries of ENF and BNB from rat plasma were in the range of 92.88-102.28%. The newly developed approach is the first LC-MS/MS bioanalytical method that can perform simultaneous quantification of ENF and BNB in rat plasma and its application to a pharmacokinetic study. The mean result for Cmax for BNB and ENF was found to be 3.43 ± 0.46 and 16.42 ± 1.47 µg/mL achieved at 1.0 h for both drugs, respectively. The AUC0-∞ for BNB and ENF was found to be 18.16 ± 1.31 and 36.52 ± 3.92 µg/mL.h, respectively. On the other hand, the elimination half-life (t1/2kel) parameters for BNB and ENF in the rat plasma were found to be 3.39 ± 0.43 h and 2.48 ± 0.24 h, and these results are consistent with previously reported values.
Collapse
Affiliation(s)
- Mohamed M. Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +966-1-467-7346; Fax: +966-1-467-6220
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Al-Hossaini
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz I. Alnasser
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adel S. El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manal A. El-Gendy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Bioanalysis by LC-MS/MS and preclinical pharmacokinetic interaction study of ribociclib and oleanolic acid. Bioanalysis 2022; 14:1051-1065. [PMID: 36148926 DOI: 10.4155/bio-2022-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Ribociclib (RIBO), approved in 2017 for HR-positive and HER-2-negative metastatic breast cancer treatment is reported to have the potential to induce hepatobiliary toxicity in patients. Oleanolic acid (OLA) has hepatoprotective potential that can be beneficial if coadministered with RIBO. Methodology & results: The primary scope of this study was to develop quantitative bioanalytical methods for RIBO and OLA. Two methods (for +ve electrospray ionization [ESI] and -ve ESI) were developed and validated according to USFDA bioanalytical guidelines. Discussion/conclusion: A single and simple sample preparation method was developed with >75% recovery. The accuracy and precision for RIBO and OLA were within acceptable limits over the calibration range of 5-500 ng/ml. This work reports, for the first time, the drug-drug interaction potential between RIBO and OLA.
Collapse
|
10
|
Rachmale M, Rajput N, Jadav T, Sahu AK, Tekade RK, Sengupta P. Implication of metabolomics and transporter modulation based strategies to minimize multidrug resistance and enhance site-specific bioavailability: a needful consideration toward modern anticancer drug discovery. Drug Metab Rev 2022; 54:101-119. [PMID: 35254954 DOI: 10.1080/03602532.2022.2048007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Induction of drug-metabolizing enzymes and efflux transporters (DMET) through activation of pregnane x receptor (PXR) is the primary factor involved in almost all bioavailability and drug resistance-related problems of anticancer drugs. PXR is a transcriptional regulator of many metabolizing enzymes and efflux transporters proteins like p-glycoprotein (p-gp), multidrug resistant protein 1 and 2 (MRP 1 and 2), and breast cancer resistant protein (BCRP), etc. Several anticancer drugs are potent activators of PXR receptors and can modulate the gene expression of DMET proteins. Involvement of anticancer drugs in transcriptional regulation of DMET can prompt increased metabolism and efflux of their own or other co-administered drugs, which leads to poor site-specific bioavailability and increased drug resistance. In this review, we have discussed several novel strategies to evade drug-induced PXR activation and p-gp efflux including assessment of PXR ligand and p-gp substrate at early stages of drug discovery. Additionally, we have critically discussed the chemical structure and drug delivery-based approaches to avoid PXR binding and inhibit the p-gp activity of the drugs at their target sites.
Collapse
Affiliation(s)
- Megha Rachmale
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Niraj Rajput
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Tarang Jadav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
11
|
Quantification of Venetoclax for Therapeutic Drug Monitoring in Chinese Acute Myeloid Leukemia Patients by a Validated UPLC-MS/MS Method. Molecules 2022; 27:molecules27051607. [PMID: 35268708 PMCID: PMC8911561 DOI: 10.3390/molecules27051607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 01/20/2023] Open
Abstract
Venetoclax has emerged as a breakthrough for treatment of leukemia with a wide interindividual variability in pharmacokinetics. Herein, a rapid, sensitive, and reliable UPLC-MS/MS method for quantification of venetoclax in plasma was developed and validated. The method was operated in the multiple-reaction monitoring (MRM) mode to detect venetoclax at m/z transition 868.5 > 321.0 and IS at 875.5 > 321.0, respectively. Protein precipitation prior to injection into the LC-MS/MS and the analyte was separated on an ACQUITY UPLC BEH C18 column by gradient elution with acetonitrile and 0.1% formic acid in water. Linear calibration curves were obtained in the range of 25−8000 ng/mL. The specificity, recovery, matrix effect, and stability also met the acceptance criteria of FDA guidance. The method was successfully applied to analyze plasma in acute myeloid leukemia (AML) patients. The peak plasma concentration (Cmax) of venetoclax in Chinese AML patient was 2966.0 ± 1595.0 ng/mL while the trough concentration (Cmin) was 1018.0 ± 729.4 ng/mL. Additionally, Cmax and Cmin showed a positive correlation with AST levels. Furthermore, Cmax was significantly higher in the older patients. The present method can be applied for TDM of venetoclax in treatment of hematological cancers.
Collapse
|