1
|
Wilson ID, Broeckling C, Gethings LA, Munjoma NC, Trengove R, Rainville PD, Lai SK, Isaac G, Plumb RS. Development of a single mobile phase for LC-IM-MS-based discovery lipidomics and metabolic phenotyping: Application to methapyrilene hepatotoxicity in the rat. J Chromatogr A 2024; 1714:464552. [PMID: 38113579 DOI: 10.1016/j.chroma.2023.464552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
The untargeted global profiling of endogenous metabolites and lipids has the potential to increase knowledge and understanding in many areas of biology. LC-MS/MS is a key technology for such analyses however, several different LC methodologies, using different mobile phase compositions, are required to cover the diversity in polarity and analyte structure encountered in biological samples. Most notably many lipid screening methods make use of isopropanol (IPA) as a major component of mobile phases employed for comprehensive lipidomic profiling. In order to increase laboratory efficiency, and minimize opportunities for errors, a suite of methods, based on a single acetonitrile (ACN)-aqueous buffer mobile phase combination, has been developed. This mobile phase can be used for hydrophobic interaction liquid chromatography on an amide stationary phase (for polar analytes), reversed-phase (RP) LC analysis on a C8 stationary phase (for moderately polar-non-polar compounds) and RPLC using a CSH phenyl-hexyl bonded column (for lipids). All of these sub 10 minute separations had good throughput and reproducibility with CV's of analyte response <25 % whilst eliminating the need for complex mobile phase preparation and the use of IPA as an organic modifier for lipidomics. Advantages of removing IPA and replacing it with the ACN-based method were a 58 % increase in peak capacity for lipids, with improved resolution for the di- and triglycerides and cholesterol esters compared to current methods. Compared to the IPA-containing solvent system the ACN-based mobile phase also resulted in a 61 % increase in lipid feature detection. The utility of this "universal" mobile phase approach was demonstrated by its application to a rat toxicology study investigating the consequences of methapyrilene administration through on the endogenous metabolite profiles of plasma and urine. Methapyrilene and its metabolites were also profiled in these samples.
Collapse
Affiliation(s)
- Ian D Wilson
- Computational & Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Corey Broeckling
- Bioanalysis and Omics, Colorado State University, Fort Collins, CO 8052, USA
| | | | | | - Robert Trengove
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley WA 6102, Australia.
| | | | | | - Giorgis Isaac
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
2
|
Patterson Rosa L, Mallicote MF, Long MT, Brooks SA. Metabogenomics reveals four candidate regions involved in the pathophysiology of Equine Metabolic Syndrome. Mol Cell Probes 2020; 53:101620. [PMID: 32659253 DOI: 10.1016/j.mcp.2020.101620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Accepted: 06/14/2020] [Indexed: 02/02/2023]
Abstract
An analogous condition to human metabolic syndrome, Equine Metabolic Syndrome (EMS) is defined by several clinical signs including obesity, hyperinsulinemia, and peripheral insulin dysregulation (ID). Affected horses may also exhibit hypertension, hyperlipemia and systemic inflammation. Measures of ID typically comprise the gold-standard for diagnosis in veterinary care. Yet, the dynamic nature of insulin homeostasis and complex procedures of typical assays make accurate quantification of ID and EMS challenging. This work aimed to investigate new strategies for identification of biochemical markers and correlated genes in EMS. To quantify EMS risk within this population, we utilized a composite score derived from nine common diagnostic variables. We applied a global liquid chromatography/mass spectroscopy approach (HPLC/MS) to whole plasma collected from 49 Arabian horses, resulting in 3392 high-confidence features and identification of putative metabolites in public databases. We performed a genome wide association analysis with genotypes from the 670k Affymetrix Equine SNP array utilizing EMS-correlated metabolites as phenotypes. We discovered four metabolite features significantly correlated with EMS score (P < 1.474 × 10-5). GWAs for these features results (P = 6.787 × 10-7, Bonferroni) identified four unique candidate regions (r2 > 0.4) containing 63 genes. Significant genomic markers capture 43.52% of the variation in the original EMS score phenotype. The identified genomic loci provide insight into the pathways controlling variation in EMS and the origin of genetic predisposition to the condition. Rapid, feasible and accurate diagnostic tools derived from metabogenomics can be translated into measurable benefits in the timeline and quality of preventative management practices to preserve health in horses.
Collapse
Affiliation(s)
- Laura Patterson Rosa
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America, PO Box 110910, Gainesville, FL, 32611, USA
| | - Martha F Mallicote
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, PO Box 100136, Gainesville, FL, 32610, USA
| | - Maureen T Long
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, PO Box 100123, Gainesville, FL, 32610, USA
| | - Samantha A Brooks
- Department of Animal Sciences and UF Genetics Institute, University of Florida, Gainesville, FL, United States of America, PO Box 110910, Gainesville, FL, 32611, USA.
| |
Collapse
|
3
|
Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA, Kanojia K, Dayalan S, Jones OAH, Dias DA. Review of recent developments in GC-MS approaches to metabolomics-based research. Metabolomics 2018; 14:152. [PMID: 30830421 DOI: 10.1007/s11306-018-1449-2] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Metabolomics aims to identify the changes in endogenous metabolites of biological systems in response to intrinsic and extrinsic factors. This is accomplished through untargeted, semi-targeted and targeted based approaches. Untargeted and semi-targeted methods are typically applied in hypothesis-generating investigations (aimed at measuring as many metabolites as possible), while targeted approaches analyze a relatively smaller subset of biochemically important and relevant metabolites. Regardless of approach, it is well recognized amongst the metabolomics community that gas chromatography-mass spectrometry (GC-MS) is one of the most efficient, reproducible and well used analytical platforms for metabolomics research. This is due to the robust, reproducible and selective nature of the technique, as well as the large number of well-established libraries of both commercial and 'in house' metabolite databases available. AIM OF REVIEW This review provides an overview of developments in GC-MS based metabolomics applications, with a focus on sample preparation and preservation techniques. A number of chemical derivatization (in-time, in-liner, offline and microwave assisted) techniques are also discussed. Electron impact ionization and a summary of alternate mass analyzers are highlighted, along with a number of recently reported new GC columns suited for metabolomics. Lastly, multidimensional GC-MS and its application in environmental and biomedical research is presented, along with the importance of bioinformatics. KEY SCIENTIFIC CONCEPTS OF REVIEW The purpose of this review is to both highlight and provide an update on GC-MS analytical techniques that are common in metabolomics studies. Specific emphasis is given to the key steps within the GC-MS workflow that those new to this field need to be aware of and the common pitfalls that should be looked out for when starting in this area.
Collapse
Affiliation(s)
- David J Beale
- Land and Water, Commonwealth Scientific & Industrial Research Organization (CSIRO), P.O. Box 2583, Brisbane, QLD, 4001, Australia.
| | - Farhana R Pinu
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Konstantinos A Kouremenos
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
- Trajan Scientific and Medical, 7 Argent Pl, Ringwood, 3134, Australia
| | - Mahesha M Poojary
- Chemistry Section, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Vinod K Narayana
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Berin A Boughton
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, 3010, Australia
| | - Komal Kanojia
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, GPO Box 2476, Melbourne, 3001, Australia
| | - Daniel A Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, PO Box 71, Bundoora, 3083, Australia.
| |
Collapse
|
4
|
Silva ACA, Ebrahimi-Najafadabi H, McGinitie TM, Casilli A, Pereira HMG, Aquino Neto FR, Harynuk JJ. Thermodynamic-based retention time predictions of endogenous steroids in comprehensive two-dimensional gas chromatography. Anal Bioanal Chem 2015; 407:4091-9. [DOI: 10.1007/s00216-015-8627-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
|
5
|
Emwas AHM, Al-Talla ZA, Kharbatia NM. Sample collection and preparation of biofluids and extracts for gas chromatography-mass spectrometry. Methods Mol Biol 2015; 1277:75-90. [PMID: 25677148 DOI: 10.1007/978-1-4939-2377-9_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To maximize the utility of gas chromatography-mass spectrometry (GC-MS) in metabonomics research, all stages of the experimental design should be standardized, including sample collection, storage, preparation, and sample separation. Moreover, the prerequisite for any GC-MS analysis is that a compound must be volatile and thermally stable if it is to be analyzed using this technique. Since many metabolites are nonvolatile and polar in nature, they are not readily amenable to analysis by GC-MS and require initial chemical derivatization of the polar functional groups in order to reduce the polarity and to increase the thermal stability and volatility of the analytes. In this chapter, an overview is presented of the optimum approach to sample collection, storage, and preparation for gas chromatography-mass spectrometry-based metabonomics with particular focus on urine samples as example of biofluids.
Collapse
Affiliation(s)
- Abdul-Hamid M Emwas
- NMR Core Lab, King Abdullah University of Science and Technology, Room 0149, 23955-6900, Thuwal, Kingdom of Saudi Arabia,
| | | | | |
Collapse
|
6
|
Abstract
Multidimensional gas chromatography (MDGC) methods are high-resolution volatile chemical separation techniques, and comprise classical heart-cutting MDGC and its more recent incarnation, comprehensive 2D GC. Although available for a long period, MDGC approaches are still not widely practiced in the field of bioanalysis, possibly reflecting the general preference for regular GC versus MDGC approaches. With the recent introduction of ‘-omic’ techniques that emphasize global nontargeted profiling of metabolites within living systems, it is evident that MDGC is gaining momentum as a separation tool, since it offers very high resolution. By untangling metabolites within highly complex biological matrices, and expanding the metabolic coverage, MDGC plays a frontline role in ‘-omics’ based studies. This review highlights state-of-the-art MDGC approaches, and summarizes the recent developments in bioanalytics.
Collapse
|
7
|
Chin ST, Nolvachai Y, Marriott PJ. Enantiomeric separation in comprehensive two-dimensional gas chromatography with accurate mass analysis. Chirality 2014; 26:747-53. [PMID: 24420979 DOI: 10.1002/chir.22280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 11/18/2013] [Indexed: 11/11/2022]
Abstract
Chiral comprehensive two-dimensional gas chromatography (eGC×GC) coupled to quadrupole-accurate mass time-of-flight mass spectrometry (QTOFMS) was evaluated for its capability to report the chiral composition of several monoterpenes, namely, α-pinene, β-pinene, and limonene in cardamom oil. Enantiomers in a standard mixture were fully resolved by direct enantiomeric-GC analysis with a 2,3-di-O-methyl-6-t-butylsilyl derivatized β-cyclodextrin phase; however, the (+)-(R)-limonene enantiomer in cardamom oil was overlapped with other background components including cymene and cineole. Verification of (+)-(R)-limonene components based on characteristic ions at m/z 136, 121, and 107 acquired by chiral single-dimension GC-QTOFMS in the alternate MS/MSMS mode of operation was unsuccessful due to similar parent/daughter ions generated by interfering or co-eluting cymene and cineole. Column phases SUPELCOWAX, SLB-IL111, HP-88, and SLB-IL59, were incorporated as the second dimension column ((2)D) in chiral GC×GC analysis; the SLB-IL59 offered the best resolution for the tested monoterpene enantiomers from the matrix background. Enantiomeric ratios for α-pinene, β-pinene, and limonene were determined to be 1.325, 2.703, and 1.040, respectively, in the cardamom oil sample based on relative peak area data.
Collapse
Affiliation(s)
- Sung-Tong Chin
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|
8
|
Dormoy V, Massfelder T. [Medical perspectives of metabolomics: the example of renal carcinoma]. Med Sci (Paris) 2013; 29:463-8. [PMID: 23732093 DOI: 10.1051/medsci/2013295007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Valérian Dormoy
- Inserm U1113, équipe 3 signalisation et communication cellulaires dans les cancers du rein et de la prostate , université de Strasbourg, faculté de médecine, 11, rue Humann, 67085 Strasbourg, France.
| | | |
Collapse
|
9
|
Insenser M, Montes-Nieto R, Murri M, Escobar-Morreale HF. Proteomic and metabolomic approaches to the study of polycystic ovary syndrome. Mol Cell Endocrinol 2013; 370:65-77. [PMID: 23422073 DOI: 10.1016/j.mce.2013.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is considered a complex multifactorial disorder resulting from the interaction of genetic, environmental, and lifestyle influences. Nontargeted proteomics and metabolomics have been used in the past years with the aim of identifying molecules potentially involved in the pathophysiology of this frequent disorder. The biomolecules identified so far participate in many metabolic pathways, including energy metabolism (glucose and lipid metabolism), protein metabolic processes and protein folding, cytoskeleton structure, immune response, inflammation and iron metabolism, fibrinolysis and thrombosis, oxidative stress and intracellular calcium metabolism. These molecules provide key information about molecular functions altered in PCOS and raise questions concerning their precise role in the pathogenesis of this syndrome. The biomolecules identified by nontargeted proteomic and metabolomic approaches should be considered as candidates in future studies aiming to define specific molecular phenotypes of PCOS.
Collapse
Affiliation(s)
- María Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Hospital Universitario Ramón y Cajal & Universidad de Alcalá, E-28034 Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Lv H. Mass spectrometry-based metabolomics towards understanding of gene functions with a diversity of biological contexts. MASS SPECTROMETRY REVIEWS 2013; 32:118-128. [PMID: 22890819 DOI: 10.1002/mas.21354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 01/25/2012] [Accepted: 03/30/2012] [Indexed: 06/01/2023]
Abstract
Currently, mass spectrometry-based metabolomics studies extend beyond conventional chemical categorization and metabolic phenotype analysis to understanding gene function in various biological contexts (e.g., mammalian, plant, and microbial). These novel utilities have led to many innovative discoveries in the following areas: disease pathogenesis, therapeutic pathway or target identification, the biochemistry of animal and plant physiological and pathological activities in response to diverse stimuli, and molecular signatures of host-pathogen interactions during microbial infection. In this review, we critically evaluate the representative applications of mass spectrometry-based metabolomics to better understand gene function in diverse biological contexts, with special emphasis on working principles, study protocols, and possible future development of this technique. Collectively, this review raises awareness within the biomedical community of the scientific value and applicability of mass spectrometry-based metabolomics strategies to better understand gene function, thus advancing this application's utility in a broad range of biological fields.
Collapse
Affiliation(s)
- Haitao Lv
- Center for Women's Infectious Diseases Research, Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
11
|
Kouremenos KA, Johansson M, Marriott PJ. Advances in gas chromatographic methods for the identification of biomarkers in cancer. J Cancer 2012; 3:404-20. [PMID: 23074381 PMCID: PMC3471081 DOI: 10.7150/jca.4956] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/15/2012] [Indexed: 02/07/2023] Open
Abstract
Screening complex biological specimens such as exhaled air, tissue, blood and urine to identify biomarkers in different forms of cancer has become increasingly popular over the last decade, mainly due to new instruments and improved bioinformatics. However, despite some progress, the identification of biomarkers has shown to be a difficult task with few new biomarkers (excluding recent genetic markers) being considered for introduction to clinical analysis. This review describes recent advances in gas chromatographic methods for the identification of biomarkers in the detection, diagnosis and treatment of cancer. It presents a general overview of cancer metabolism, the current biomarkers used for cancer diagnosis and treatment, a background to metabolic changes in tumors, an overview of current GC methods, and collectively presents the scope and outlook of GC methods in oncology.
Collapse
|
12
|
Rocha SM, Caldeira M, Carrola J, Santos M, Cruz N, Duarte IF. Exploring the human urine metabolomic potentialities by comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry. J Chromatogr A 2012; 1252:155-63. [PMID: 22776727 DOI: 10.1016/j.chroma.2012.06.067] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/08/2012] [Accepted: 06/19/2012] [Indexed: 12/01/2022]
Abstract
Metabolomics represents an emerging issue that can aid in the diagnosis and/or prognosis of different diseases. Metabolomic study of urine is particularly interesting as it can be on the base of the developing of new faster and non-invasive methodologies. In response to this actual trend, comprehensive two-dimensional gas chromatography-time of flight mass spectrometry (GC×GC-ToFMS) combined with headspace solid phase microextraction (HS-SPME) is applied, for the first time to our knowledge, to the untargeted and comprehensive study of the volatile composition of human urine. From a total of ca. 700 compounds detected per sample, 294 were tentatively identified and distributed over the chemical families of hydrocarbons, amines, amides, esters, ketones, aldehydes, alcohols, carboxylic acids, ethers, nitriles, halides, sulfides, thiols, terpenoids, and heterocyclic compounds. To our knowledge, this is the most complete information available so far about whole human urine volatile composition, which represents a valuable data for future advanced studies in the clinical field based on urine fingerprinting. Relevant SPME and GC×GC parameters were considered. Complex sample characterization of human urine is significantly simplified due to the structured GC×GC chromatogram that produces distinct spaces for metabolite chemical families. Furthermore, the potential of this methodology in health related applications was explored by comparing the urinary volatile profiles between smoker (high-risk population for lung cancer) vs. non-smoker adults, focusing on metabolites related to oxidative stress (aliphatic alkanes and aldehydes). In spite of the small sample numbers considered, the results suggest that the urinary volatile profiles may be useful for differentiating subjects with different physiological conditions, thus making it worth to further explore its diagnostic potential.
Collapse
Affiliation(s)
- Sílvia M Rocha
- QOPNA, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | |
Collapse
|
13
|
Chemometrics in comprehensive multidimensional separations. Anal Bioanal Chem 2011; 401:2373-86. [DOI: 10.1007/s00216-011-5139-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/22/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
|
14
|
Kind T, Fiehn O. Advances in structure elucidation of small molecules using mass spectrometry. BIOANALYTICAL REVIEWS 2010; 2:23-60. [PMID: 21289855 PMCID: PMC3015162 DOI: 10.1007/s12566-010-0015-9] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 08/03/2010] [Indexed: 12/22/2022]
Abstract
The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12566-010-0015-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Kind
- Genome Center–Metabolomics, University of California Davis, Davis, CA 95616 USA
| | - Oliver Fiehn
- Genome Center–Metabolomics, University of California Davis, Davis, CA 95616 USA
| |
Collapse
|
15
|
Abstract
Affinity chromatography on monolithic supports is a powerful analytical chemical platform because it allows for fast analyses, small sample volumes, strong enrichment of trace biomarkers and applications in microchips. In this review, the recent research using monolithic materials in the field of bioaffinity chromatography (including immunochromatography) is summarized and discussed. After giving an introduction into affinity chromatography, information on different biomolecules (antibodies, enzymes, lectins, aptamers) that can act as ligands in bioaffinity chromatography is presented. Subsequently, the history of monoliths, their advantages, preparation and formats (disks, capillaries and microchips) as well as ligand immobilization techniques are mentioned. Finally, analytical and preparative applications of bioaffinity chromatography on monoliths are presented. During the last four years 37 papers appeared. Protein A and G are still most often used as ligands for the enrichment of immunoglobulins. Antibodies and lectins remain popular for the analysis of mainly smaller molecules and saccharides, respectively. The highly porous cryogels modified with ligands are applied for the sorting of different cells or bacteria. New is the application of aptamers and phages as ligands on monoliths. Convective interaction media (epoxy CIM disks) are currently the most used format in monolithic bioaffinity chromatography.
Collapse
Affiliation(s)
- Kishore K R Tetala
- Laboratory of Organic Chemistry, Natural Products Chemistry Group, Wageningen University, Wageningen, The Netherlands.
| | | |
Collapse
|