1
|
Dejager L, Banton S, Marques P, Rinikova G, Lory S, Hickford ES, Martin-Hamka C, Penney M, Grootjans S. BiSim Tool: a binding simulation tool to aid and simplify ligand-binding assay design and development. Bioanalysis 2024; 16:519-533. [PMID: 38629337 PMCID: PMC11299794 DOI: 10.4155/bio-2023-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/29/2024] [Indexed: 08/02/2024] Open
Abstract
Ligand-binding assays (LBAs) rely on the reversible, noncovalent binding between the analyte of interest and the assay reagents, and understanding their dynamic equilibrium is key to building robust LBA methods. Although the dynamic interplay of free and bound fractions can be calculated using mathematical models, these are not routinely applied. This approach is costly in terms of both assay development time and reagents, and can result in an under-exploration of the possible parameter combinations. Therefore, we have created a user-friendly simulation tool to facilitate LBA development (the BiSim Tool). We describe the models driving the mathematical simulations and the main features of our software solution by means of case studies, illustrating the tool's value in drug development. To support drug development for all patients worldwide, the BiSim Tool is now available as an open-source code project and as a free web-based tool at https://proteinbindingsimulation.shinyapps.io/BiSim-ProteinBindingSimulation [1].
Collapse
Affiliation(s)
- Lien Dejager
- UCB Biopharma, Allée de la Recherche 60, 1070 Brussels, Belgium
| | - Sophia Banton
- UCB Biopharma, Allée de la Recherche 60, 1070 Brussels, Belgium
| | - Patricia Marques
- UCB Biopharma, Allée de la Recherche 60, 1070 Brussels, Belgium
- Employed by UCB at the time the work was undertaken
| | - Gabriela Rinikova
- UCB Biopharma, Allée de la Recherche 60, 1070 Brussels, Belgium
- Employed by UCB at the time the work was undertaken
| | - Sabrina Lory
- UCB Biopharma, Allée de la Recherche 60, 1070 Brussels, Belgium
| | | | | | - Mark Penney
- UCB Biopharma, Bath Road, Slough, SL1 3WE, UK
- Employed by UCB at the time the work was undertaken
| | | |
Collapse
|
2
|
Lotz GP, Lutz A, Martin-Facklam M, Hansbauer A, Schick E, Moessner E, Antony M, Stuchly T, Viert M, Hosse RJ, Freimoser-Grundschober A, Klein C, Schäfer M, Ritter M, Stubenrauch KG. Characterization of anti-drug antibody responses to the T-cell engaging bispecific antibody cibisatamab to understand the impact on exposure. Front Immunol 2024; 15:1406353. [PMID: 38881900 PMCID: PMC11176492 DOI: 10.3389/fimmu.2024.1406353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
An appropriately designed pharmacokinetic (PK) assay that is sensitive for anti-drug antibody (ADA) impact on relevant exposure is an alternative strategy to understand the neutralizing potential of ADAs. However, guidance on how to develop such PK assays and how to confirm the functional ADA impact on exposure is missing. Here, the PK assay of a T-cell-engaging bispecific antibody, cibisatamab, was developed based on its mechanism of action (MoA). Using critical monoclonal anti-idiotypic (anti-ID) antibody positive controls as ADA surrogates, the impact on exposure was evaluated pre-clinically. In a phase I clinical trial (NCT02324257), initial data suggest that the combination of ADA and PK assays for correlation of the ADA response with cibisatamab exposure. To understand the neutralizing potential of patient-derived ADAs on drug activity, advanced ADA characterization has been performed. Structural binding analysis of ADAs to antibody domains of the drug and its impact on targeting were assessed. For this purpose, relevant patient ADA binding features were identified and compared with the specific monoclonal anti-ID antibody-positive controls. Comparable results of target binding inhibition and similar impacts on exposure suggest that the observed reduction of Cmax and Ctrough levels in patients is caused by the neutralizing potential of ADAs and allows a correlation between ADA response and loss of exposure. Therefore, the described study provides important functional aspects for the development of an appropriately designed PK assay for bispecific antibodies as an alternative option towards understanding the neutralizing ADA impact on exposure.
Collapse
Affiliation(s)
- Gregor P. Lotz
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Achim Lutz
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Meret Martin-Facklam
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Andre Hansbauer
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Eginhard Schick
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Ekkehard Moessner
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Michael Antony
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Thomas Stuchly
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Maria Viert
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Ralf J. Hosse
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | - Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Martin Schäfer
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Mirko Ritter
- Roche Diagnostics GmbH, Antibody Development Technologies, Penzberg, Germany
| | - Kay-Gunnar Stubenrauch
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
3
|
Baratta M, Jian W, Hengel S, Kaur S, Cunliffe J, Boer J, Hughes N, Kar S, Kellie J, Kim YJ, Lassman M, Mehl J, Morgan L, Palandra J, Sarvaiya H, Zeng J, Zheng N, Wang J, Yuan L, Ji A, Kochansky C, Tao L, Huang Y, Maes E, Barbero L, Contrepois K, Ferrari L, Fu Y, Johnson J, Jones B, Kansal M, Lu Y, Post N, Shen H(H, Xue Y(YJ, Zhang Y(C, Biswas G, Cho S(J, Edmison A, Benson K, Abberley L, Azadeh M, Francis J, Garofolo F, Gupta S, Ivanova I(D, Ishii-Watabe A, Karnik S, Kassim S, Kavetska O, Keller S, Kossary E, Li W, McCush F, Mendes DN, Abhari MR, Scheibner K, Sikorski T, Staack RF, Tabler E, Tang H, Wan K, Wang YM, Whale E, Yang L, Zimmer J, Bandukwala A, Du X, Kholmanskikh O, Gijsel SKD, Wadhwa M, Xu J, Buoninfante A, Cludts I, Diebold S, Maxfield K, Mayer C, Pedras-Vasconcelos J, Abhari MR, Shubow S, Tanaka Y, Tounekti O, Verthelyi D, Wagner L. 2023 White Paper on Recent Issues in Bioanalysis: Deuterated Drugs; LNP; Tumor/FFPE Biopsy; Targeted Proteomics; Small Molecule Covalent Inhibitors; Chiral Bioanalysis; Remote Regulatory Assessments; Sample Reconciliation/Chain of Custody (PART 1A - Recommendations on Mass Spectrometry, Chromatography, Sample Preparation Latest Developments, Challenges, and Solutions and BMV/Regulated Bioanalysis PART 1B - Regulatory Agencies' Inputs on Regulated Bioanalysis/BMV, Biomarkers/IVD/CDx/BAV, Immunogenicity, Gene & Cell Therapy and Vaccine). Bioanalysis 2024; 16:307-364. [PMID: 38913185 PMCID: PMC11216509 DOI: 10.1080/17576180.2024.2347153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
The 17th Workshop on Recent Issues in Bioanalysis (17th WRIB) took place in Orlando, FL, USA on June 19-23, 2023. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 17th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.Moreover, in-depth workshops on "EU IVDR 2017/746 Implementation and impact for the Global Biomarker Community: How to Comply with this NEW Regulation" and on "US FDA/OSIS Remote Regulatory Assessments (RRAs)" were the special features of the 17th edition.As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues.This 2023 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2023 edition of this comprehensive White Paper has been divided into three parts for editorial reasons.This publication covers the recommendations on Mass Spectrometry Assays, Regulated Bioanalysis/BMV (Part 1A) and Regulatory Inputs (Part 1B). Part 2 (Biomarkers, IVD/CDx, LBA and Cell-Based Assays) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 16 of Bioanalysis, issues 7 and 8 (2024), respectively.
Collapse
Affiliation(s)
| | - Wenying Jian
- Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | | | | | | | | | | | | | | | | | | | - John Mehl
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | - Naiyu Zheng
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | - Yue Huang
- AstraZeneca, South San Francisco, CA, USA
| | | | | | | | - Luca Ferrari
- F. Hoffmann-La Roche Ltd, Roche Pharma Research & Early Development (pRED), Basel, Switzerland
| | | | | | | | | | - Yang Lu
- US FDA, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Roland F Staack
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | | | | | | | - Li Yang
- US FDA, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Spreafico A, Couselo EM, Irmisch A, Bessa J, Au-Yeung G, Bechter O, Svane IM, Sanmamed MF, Gambardella V, McKean M, Callahan M, Dummer R, Klein C, Umaña P, Justies N, Heil F, Fahrni L, Opolka-Hoffmann E, Waldhauer I, Bleul C, Staack RF, Karanikas V, Fowler S. Phase 1, first-in-human study of TYRP1-TCB (RO7293583), a novel TYRP1-targeting CD3 T-cell engager, in metastatic melanoma: active drug monitoring to assess the impact of immune response on drug exposure. Front Oncol 2024; 14:1346502. [PMID: 38577337 PMCID: PMC10991832 DOI: 10.3389/fonc.2024.1346502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Although checkpoint inhibitors (CPIs) have improved outcomes for patients with metastatic melanoma, those progressing on CPIs have limited therapeutic options. To address this unmet need and overcome CPI resistance mechanisms, novel immunotherapies, such as T-cell engaging agents, are being developed. The use of these agents has sometimes been limited by the immune response mounted against them in the form of anti-drug antibodies (ADAs), which is challenging to predict preclinically and can lead to neutralization of the drug and loss of efficacy. Methods TYRP1-TCB (RO7293583; RG6232) is a T-cell engaging bispecific (TCB) antibody that targets tyrosinase-related protein 1 (TYRP1), which is expressed in many melanomas, thereby directing T cells to kill TYRP1-expressing tumor cells. Preclinical studies show TYRP1-TCB to have potent anti-tumor activity. This first-in-human (FIH) phase 1 dose-escalation study characterized the safety, tolerability, maximum tolerated dose/optimal biological dose, and pharmacokinetics (PK) of TYRP1-TCB in patients with metastatic melanoma (NCT04551352). Results Twenty participants with cutaneous, uveal, or mucosal TYRP1-positive melanoma received TYRP1-TCB in escalating doses (0.045 to 0.4 mg). All participants experienced ≥1 treatment-related adverse event (TRAE); two participants experienced grade 3 TRAEs. The most common toxicities were grade 1-2 cytokine release syndrome (CRS) and rash. Fractionated dosing mitigated CRS and was associated with lower levels of interleukin-6 and tumor necrosis factor-alpha. Measurement of active drug (dual TYPR1- and CD3-binding) PK rapidly identified loss of active drug exposure in all participants treated with 0.4 mg in a flat dosing schedule for ≥3 cycles. Loss of exposure was associated with development of ADAs towards both the TYRP1 and CD3 domains. A total drug PK assay, measuring free and ADA-bound forms, demonstrated that TYRP1-TCB-ADA immune complexes were present in participant samples, but showed no drug activity in vitro. Discussion This study provides important insights into how the use of active drug PK assays, coupled with mechanistic follow-up, can inform and enable ongoing benefit/risk assessment for individuals participating in FIH dose-escalation trials. Translational studies that lead to a better understanding of the underlying biology of cognate T- and B-cell interactions, ultimately resulting in ADA development to novel biotherapeutics, are needed.
Collapse
Affiliation(s)
- Anna Spreafico
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Eva Muñoz Couselo
- Department of Medical Oncology, Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Anja Irmisch
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Juliana Bessa
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - George Au-Yeung
- Department of Medical Oncology, Peter MacCallum Cancer Center and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Oliver Bechter
- Department of General Medical Oncology, Universitair Ziekenhuis (UZ), Leuven, Leuven, Belgium
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy and Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Miguel F. Sanmamed
- Department of Medical Oncology, Clínica Universidad de Navarra and Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Valentina Gambardella
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Meredith McKean
- Sarah Cannon Research Institute at Tennessee Oncology, Nashville, TN, United States
| | - Margaret Callahan
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Klein
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Pablo Umaña
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Nicole Justies
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Florian Heil
- Roche Pharma Research & Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Linda Fahrni
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Eugenia Opolka-Hoffmann
- Roche Pharma Research & Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Inja Waldhauer
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Conrad Bleul
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Roland F. Staack
- Roche Pharma Research & Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Vaios Karanikas
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Stephen Fowler
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
5
|
Sumner G, Keller S, Huleatt J, Staack RF, Wagner L, Azadeh M, Bandukwala A, Cao L, Du X, Salinas GF, Garofolo F, Harris S, Hopper S, Irwin C, Ji Q, Joseph J, King L, Kinhikar A, Lu Y, Luo R, Mabrouk O, Malvaux L, Marshall JC, McGuire K, Mikol V, Neely R, Qiu X, Saito Y, Salaun B, Scully I, Smeraglia J, Solstad T, Stoop J, Tang H, Teixeira P, Wang Y, Wright M, Mendez L, Beaver C, Eacret J, Au-Yeung A, Decman V, Dessy F, Eck S, Goihberg P, Alcaide EG, Gonneau C, Grugan K, Hedrick MN, Kar S, Sehra S, Stevens E, Stevens C, Sun Y, McCush F, Williams L, Fischer S, Wu B, Jordan G, Burns C, Cludts I, Coble K, Grimaldi C, Henderson N, Joyce A, Lotz G, Lu Y, Luo L, Neff F, Sperinde G, Stubenrauch KG, Wang Y, Ware M, Xu W. 2022 White Paper on Recent Issues in Bioanalysis: Enzyme Assay Validation, BAV for Primary End Points, Vaccine Functional Assays, Cytometry in Tissue, LBA in Rare Matrices, Complex NAb Assays, Spectral Cytometry, Endogenous Analytes, Extracellular Vesicles Part 2 - Recommendations on Biomarkers/CDx, Flow Cytometry, Ligand-Binding Assays Development & Validation; Emerging Technologies; Critical Reagents Deep Characterization. Bioanalysis 2023; 15:861-903. [PMID: 37584363 DOI: 10.4155/bio-2023-0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on LBA, Biomarkers/CDx and Cytometry. Part 1 (Mass Spectrometry and ICH M10) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 16 and 14 (2023), respectively.
Collapse
Affiliation(s)
| | | | | | - Roland F Staack
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | - Qin Ji
- AbbVie, North Chicago, IL, USA
| | | | | | | | - Yang Lu
- US FDA, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Priscila Teixeira
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | - Yixin Wang
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gregor Jordan
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | | | | | - Neil Henderson
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Gregor Lotz
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | - Florian Neff
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Direct bioanalysis or indirect calculation of target engagement and free drug exposure: do we apply double standards? Bioanalysis 2023; 15:5-16. [PMID: 36762451 DOI: 10.4155/bio-2022-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Analysis of "free" drug/target concentrations is important to set up appropriate pharmacokinetic-pharmacodynamic models, to evaluate active-drug exposure and target engagement. Such "free-analyte" determination could be done by direct bioanalysis using an appropriate "free-analyte" assay. Development of "free" assays is often considered challenging from a technological and regulatory perspective. The application of a "total-total" approach, where the "free-analyte" concentration is determined mathematically, is considered a more convenient option. In this perspective, we examine and discuss the challenges of this "total-total" approach, from the affinity data, the importance of applying an appropriate "total" assay, the impact of additional binding partners and the variability of the total drug/target assays and their impact on the quality and variability of the final "free-analyte" dataset.
Collapse
|
7
|
2021 White Paper on Recent Issues in Bioanalysis: ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry ( Part 2 - Recommendations on Biomarkers/CDx Assays Development & Validation, Cytometry Validation & Innovation, Biotherapeutics PK LBA Regulated Bioanalysis, Critical Reagents & Positive Controls Generation). Bioanalysis 2022; 14:627-692. [PMID: 35578974 DOI: 10.4155/bio-2022-0080] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included three Main Workshops and seven Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "context of use" [COU]); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry. Part 1A (Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC), Part 1B (Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine) and Part 3 (TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparability & Cut Point Appropriateness) are published in volume 14 of Bioanalysis, issues 9 and 11 (2022), respectively.
Collapse
|
8
|
Increasing robustness, reliability and storage stability of critical reagents by freeze-drying. Bioanalysis 2021; 13:829-840. [PMID: 33890493 DOI: 10.4155/bio-2020-0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: Stabilization of critical reagents by freeze-drying would facilitate storage and transportation at ambient temperatures, and simultaneously enable constant reagent performance for long-term bioanalytical support throughout drug development. Freeze-drying as a generic process for stable performance and storage of critical reagents was investigated by establishing an universal formulation buffer and lyophilization process. Results: Using a storage-labile model protein, formulation buffers were evaluated to preserve reagent integrity during the freeze-drying process, and to retain functional performance after temperature stress. Application to critical reagents used in pharmacokinetics and anti-drug antibodies assays demonstrated stable functional performance of the reagents after 11 month at +40°C. Conclusion: Stabilization and storage of critical assay reagents by freeze-drying is an attractive alternative to traditional deep freezing.
Collapse
|
9
|
Watanabe H, Shibuya M, Shibahara N, Ruike Y, Sampei Z, Haraya K, Tachibana T, Wakabayashi T, Sakamoto A, Tsunoda H, Murao N. A Novel Total Drug Assay for Quantification of Anti-C5 Therapeutic Monoclonal Antibody in the Presence of Abundant Target. AAPS JOURNAL 2021; 23:21. [PMID: 33415498 DOI: 10.1208/s12248-020-00539-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022]
Abstract
SKY59 or RO7112689 is a humanized monoclonal antibody against complement protein C5 with pH-dependent C5-binding and neonatal Fc receptor-mediated recycling capabilities, which result in long-lasting neutralization of C5. We developed and validated a novel total drug assay for quantification of target-binding competent SKY59 in the presence of endogenous C5 in cynomolgus monkey plasma. The target-binding competent SKY59 was determined after complex formation by the addition of recombinant monkey C5 using goat anti-human IgG-heavy chain monkey-adsorbed polyclonal antibody as a capture antibody and rabbit anti-C5 monoclonal antibody (mAb) non-competing with SKY59 for detection. The total SKY59 assay was shown to be accurate and precise over the range of 0.05-3.2 μg/mL as well as be tolerant to more than 400 μg/mL of C5 (~ 3000-fold molar excess of target). We also developed and validated a total C5 assay, confirmed selectivity and parallelism, and verified the utility of recombinant monkey C5 for the total C5 assay as well as the total SKY59 assay. Furthermore, we used these validated methods to measure SKY59 and C5 concentrations in cynomolgus monkey plasma samples in a toxicology study. This total drug assay can be applied not only to other antibody therapeutics against shed/soluble targets when a non-competing reagent mAb is available but also for clinical studies when a reagent mAb specific for engineered Fc region on a therapeutic mAb is available.
Collapse
Affiliation(s)
- Hiroo Watanabe
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan.
| | - Mitsuko Shibuya
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Norihito Shibahara
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Yoshinao Ruike
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Zenjiro Sampei
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Kenta Haraya
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Tatsuhiko Tachibana
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Tetsuya Wakabayashi
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Akihisa Sakamoto
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Hiroyuki Tsunoda
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Naoaki Murao
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| |
Collapse
|
10
|
Toward comparability of anti-drug antibody assays: is the amount of anti-drug antibody–reagent complexes at cut-point (CP-ARC) the missing piece? Bioanalysis 2020; 12:1021-1031. [DOI: 10.4155/bio-2020-0143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Immunogenicity testing is a mandatory and critical activity during the development of therapeutic proteins. Multiple regulatory guidelines provide clear recommendations on appropriate immunogenicity testing strategies and required bioanalytical assay performances. Unfortunately, it is still generally accepted that a comparison of the immunogenicity of different compounds is not possible due to apparent performance differences of the used bioanalytical methods. In this perspective, we propose the ‘cut-point anti-drug antibody–reagents complex’ (CP-ARC) concept for technical comparability of the bioanalytical methods. The feasibility and implementation in routine assay development is discussed as well as the potential improvement of reporting of bioanalytical immunogenicity data to allow comparison across drugs. Scientific sound comparability of the bioanalytical methods is the first step toward comparability of clinical immunogenicity.
Collapse
|
11
|
Abstract
The Japan Bioanalysis Forum Symposium was held on 12-14 February 2019 (Yokohama, Japan), in celebration of its 10th anniversary, and over 370 participants from pharmaceutical industries, contractors, academia and regulatory authorities from home and abroad came together in Yokohama. The 3-day symposium particularly aimed to foster collaboration with the scientists surrounding bioanalysts, according to the theme 'Open to the Public.' The symposium also included a broad range of pioneering programs, such as lectures by speakers from DMPK/metabolomics fields, discussions of future bioanalysis and poster presentations by publicly offered presenters as well as the regular ones we had organized. This report summarizes the major topics as a conference report.
Collapse
|
12
|
Protein quantification by LC–MS: a decade of progress through the pages of Bioanalysis. Bioanalysis 2019; 11:629-644. [DOI: 10.4155/bio-2019-0032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the past 10 years, there has been a remarkable increase in the use of LC–MS for the quantitative determination of proteins, and this technique can now be considered an established bioanalytical platform for the quantification of macromolecular drugs and biomarkers, next to the traditional ligand-binding assays. Many researchers have contributed to the field and helped improve both the technical possibilities of LC–MS-based workflows and our understanding of the meaning of the results that are obtained. As a tribute to Bioanalysis, which has published many important contributions, this report gives a high-level overview of the most important trends in the field of protein LC–MS, as published in this journal since its inauguration a decade ago. It describes the major technical developments with regard to sample handling, separation and MS detection of both digested and intact protein analysis. In addition, the relevance of the complex structure and in vivo behavior of proteins is discussed and the effect of protein–protein interactions, biotransformation and the occurrence of isoforms on the analytical result is addressed.
Collapse
|
13
|
Evaluation of the potential use of hybrid LC–MS/MS for active drug quantification applying the ‘free analyte QC concept’. Bioanalysis 2017; 9:1705-1717. [DOI: 10.4155/bio-2017-0158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Assessment of active drug exposure of biologics may be crucial for drug development. Typically, ligand-binding assay methods are used to provide free/active drug concentrations. To what extent hybrid LC–MS/MS procedures enable correct ‘active’ drug quantification is currently under consideration. Experimental & results: The relevance of appropriate extraction condition was evaluated by a hybrid target capture immuno-affinity LC–MS/MS method using total and free/active quality controls (QCs). The rapid extraction (10 min) provided correct results, whereas overnight incubation resulted in significant overestimation of the free/active drug (monclonal antibody) concentration. Conventional total QCs were inappropriate to determine optimal method conditions in contrast to free/active QCs. Conclusion: The ‘free/active analyte QC concept’ enables development of appropriate extraction conditions for correct active drug quantification by hybrid LC–MS/MS.
Collapse
|
14
|
3-(4-Hydroxyphenyl)propionic acid: the forgotten detection substrate for ligand-binding assay-based bioanalysis. Bioanalysis 2017; 9:407-418. [DOI: 10.4155/bio-2016-0225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ligand-binding assays are ideal for routine bioanalysis, but we reason that the straightforward replacement of the conventional chromogenic horseradish peroxidase substrate, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, of a routinely used preclinical immunoassay to detect hIgG, with the fluorogenic 3-(4-hydroxyphenyl)propionic acid would broaden the narrow dynamic range. The replacement leads to a sensitivity of 0.47 (minimum required dilution [MRD] 10) and 1.02 (MRD 50) ng/ml, and dynamic ranges of 3.3 (MRD 10) and 3.6 (MRD 50) orders of magnitude, and thereby had improved sensitivity and dynamic range compared with other conventional colorimetric ELISAs, other ligand-binding assay technologies or LC–MS assays. Improvements in sensitivity and dynamic range were achieved for the sera of horse, mice and monkeys without assay optimization.
Collapse
|
15
|
Validation of a ligand-binding assay for active protein drug quantification following the ‘free analyte QC concept’. Bioanalysis 2016; 8:2537-2549. [DOI: 10.4155/bio-2016-0172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Active drug assays are becoming increasingly important in protein drug development. We describe the validation of a ligand-binding assay for active protein drug quantification and address practical challenges as well as regulatory implications. Results: A bioanalytical method for active protein drug quantification was successfully validated. Validation data prove that this method can be routinely used applying the commonly accepted acceptance criteria for ligand-binding assays. Conclusion: Active drug assays are a powerful tool to elucidate the pharmacokinetic/pharmacodynamic relationship as they take into consideration the influence of various matrix components, such as soluble ligand and anti-drug antibodies. However, not all aspects of the validation concept described in the guidelines for pharmacokinetic assays can be applied to active drug assays and thus regulatory guidelines should be adapted in consequence.
Collapse
|
16
|
Proposal for a harmonized descriptive analyte nomenclature for quantitative large-molecule bioanalysis. Bioanalysis 2015; 7:3057-62. [DOI: 10.4155/bio.15.218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
17
|
Quantification of a bifunctional drug in the presence of an immune response: a ligand-binding assay specific for ‘active’ drug. Bioanalysis 2015; 7:3097-106. [DOI: 10.4155/bio.15.213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: During development of biologics, safety and efficacy assessments are often hampered by immune responses to the treatment. The raised antidrug antibodies (ADA) might interfere with the bioanalytical method and complicate result interpretation if non-fully characterized bioanalytical methods were applied. Methods: Here, we report an approach to characterize a ligand-binding assay (LBA) for the quantification of active drug exposure of a bifunctional therapeutic protein in the presence of antidrug antibodies, by correlating LBA results with those of a cell-based PK assay. Results: A clear correlation between both assays could be observed when monoclonal and polyclonal antibodies against the toxin moiety of the drug were used as ADA surrogates, and results were confirmed with human ADA-positive sera. Conclusion: The observed correlation between the LBA-based and cell-based PK assay indicated the suitability of the developed LBA for the determination of active drug exposure in the presence of an immune response.
Collapse
|
18
|
An ex vivo potency assay to assess active drug levels of a GLP-1 agonistic peptide during preclinical safety studies. Bioanalysis 2015; 7:3063-72. [PMID: 26440381 DOI: 10.4155/bio.15.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND During development of biologics, safety and efficacy assessments are often hampered by immune responses to the treatment. To assess active exposure of a drug peptide in a toxicology study, we developed an ex vivo potency assay which complemented the total drug quantification assay. METHODOLOGY Compound activity was assessed in samples of treated monkeys by cell-based cAMP measurements. For each animal, activity was compared with its predose sample to which the compound has been added at the postdose concentration as determined by a total LC-MS/MS assay. CONCLUSION We were able to show that despite a high total test compound level, activity was reduced tremendously in antidrug-antibody-positive monkeys. Therefore, the applied ex vivo potency assay supplements drug quantification methods to determine active exposures.
Collapse
|
19
|
Kelley M, Stevenson L, Golob M, Devanarayan V, Pedras-Vasconcelos J, Staack RF, Jenkins R, Booth B, Wakshull E, Bowsher R, Rock M, Dudal S, DeSilva B. Workshop Report: AAPS Workshop on Method Development, Validation, and Troubleshooting of Ligand-Binding Assays in the Regulated Environment. AAPS JOURNAL 2015; 17:1019-24. [PMID: 25921938 DOI: 10.1208/s12248-015-9767-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/25/2015] [Indexed: 12/23/2022]
Abstract
A novel format was introduced at the recent AAPS NBC Workshop on Method Development, Validation and Troubleshooting in San Diego on 18th May 2014. The workshop format was initiated by Binodh De Silva; Marie Rock and Sherri Dudal joined the initiative to develop and chair the workshop. Questions were solicited by a variety of avenues, including a Linked-In Discussion Group. Once collated and clarified, the topics covered assay development, validation, and analysis of PK, Immunogenicity, and Biomarkers with an additional topic on alternative bioanalytical technologies. A panel of experts (workshop report co-authors) was assigned to each topic to bring forward thought-provoking aspects of each topic. The format of the workshop was developed to target the needs of bioanalytical scientists with intermediate to advanced experience in the field ranging to enable robust discussion and to delve deeper into the current bioanalytical hot topics. While the new format allowed for an interactive session with the topical discussion driven by the audience members, it did not foster equal discussion time for all of the proposed topics, especially Biomarkers and alternative LBA technologies.
Collapse
|
20
|
Stubenrauch K, Wessels U, Essig U, Vogel R, Waltenberger H, Hansbauer A, Koehler A, Heinrich J. An immunodepletion procedure advances free angiopoietin-2 determination in human plasma samples during anti-cancer therapy with bispecific anti-Ang2/VEGF CrossMab. J Pharm Biomed Anal 2015; 102:459-67. [DOI: 10.1016/j.jpba.2014.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022]
|
21
|
Can LC–MS/MS and ligand-binding assays live in harmony for large-molecule bioanalysis? Bioanalysis 2014; 6:1735-7. [DOI: 10.4155/bio.14.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|