1
|
Di Gilio A, Palmisani J, Nisi M, Pizzillo V, Fiorentino M, Rotella S, Mastrofilippo N, Gesualdo L, de Gennaro G. Breath Analysis: Identification of Potential Volatile Biomarkers for Non-Invasive Diagnosis of Chronic Kidney Disease (CKD). Molecules 2024; 29:4686. [PMID: 39407614 PMCID: PMC11477747 DOI: 10.3390/molecules29194686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Recently, volatile organic compound (VOC) determination in exhaled breath has seen growing interest due to its promising potential in early diagnosis of several pathological conditions, including chronic kidney disease (CKD). Therefore, this study aimed to identify the breath VOC pattern providing an accurate, reproducible and fast CKD diagnosis at early stages of disease. A cross-sectional observational study was carried out, enrolling a total of 30 subjects matched for age and gender. More specifically, the breath samples were collected from (a) 10 patients with end-stage kidney disease (ESKD) before undergoing hemodialysis treatment (DIAL); (b) 10 patients with mild-moderate CKD (G) including 3 patients in stage G2 with mild albuminuria, and 7 patients in stage G3 and (c) 10 healthy controls (CTRL). For each volunteer, an end-tidal exhaled breath sample and an ambient air sample (AA) were collected at the same time on two sorbent tubes by an automated sampling system and analyzed by Thermal Desorption-Gas Chromatography-Mass Spectrometry. A total of 110 VOCs were detected in breath samples but only 42 showed significatively different levels with respect to AA. Nonparametric tests, such as Wilcoxon/Kruskal-Wallis tests, allowed us to identify the most weighting variables able to discriminate between AA, DIAL, G and CTRL breath samples. A promising multivariate data mining approach incorporating only selected variables (showing p-values lower than 0.05), such as nonanal, pentane, acetophenone, pentanone, undecane, butanedione, ethyl hexanol and benzene, was developed and cross-validated, providing a prediction accuracy equal to 87% and 100% in identifying patients with both mild-moderate CKD (G) and ESKD (DIAL), respectively.
Collapse
Affiliation(s)
- Alessia Di Gilio
- Department of Bioscience, Biotechnologies and Environment, University of Bari, 70126 Bari, Italy
- Apulian Breath Analysis Center (CeRBA), IRCCS Giovanni Paolo II, 70124 Bari, Italy
| | - Jolanda Palmisani
- Department of Bioscience, Biotechnologies and Environment, University of Bari, 70126 Bari, Italy
- Apulian Breath Analysis Center (CeRBA), IRCCS Giovanni Paolo II, 70124 Bari, Italy
| | - Marirosa Nisi
- Department of Bioscience, Biotechnologies and Environment, University of Bari, 70126 Bari, Italy
- Apulian Breath Analysis Center (CeRBA), IRCCS Giovanni Paolo II, 70124 Bari, Italy
| | - Valentina Pizzillo
- Department of Bioscience, Biotechnologies and Environment, University of Bari, 70126 Bari, Italy
- Apulian Breath Analysis Center (CeRBA), IRCCS Giovanni Paolo II, 70124 Bari, Italy
| | - Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRE-J), University of Bari Aldo Moro, 70121 Bari, Italy
| | - Stefania Rotella
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRE-J), University of Bari Aldo Moro, 70121 Bari, Italy
| | | | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRE-J), University of Bari Aldo Moro, 70121 Bari, Italy
| | - Gianluigi de Gennaro
- Department of Bioscience, Biotechnologies and Environment, University of Bari, 70126 Bari, Italy
- Apulian Breath Analysis Center (CeRBA), IRCCS Giovanni Paolo II, 70124 Bari, Italy
| |
Collapse
|
2
|
Jia Z, Ong WQ, Zhang F, Du F, Thavasi V, Thirumalai V. A study of 9 common breath VOCs in 504 healthy subjects using PTR-TOF-MS. Metabolomics 2024; 20:79. [PMID: 39046579 DOI: 10.1007/s11306-024-02139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION This study employs Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) to analyze exhaled breath profiles of 504 healthy adults, focusing on nine common volatile organic compounds (VOCs): acetone, acetaldehyde, acetonitrile, ethanol, isoprene, methanol, propanol, phenol, and toluene. PTR-MS offers real-time VOC measurement, crucial for understanding breath biomarkers and their applications in health assessment. OBJECTIVES The study aims to investigate how demographic factors-gender, age, and smoking history-affect VOC concentrations in exhaled breath. The objective is to enhance our understanding of breath biomarkers and their potential for health monitoring and clinical diagnosis. METHODS Exhaled breath samples were collected using PTR-MS, measuring concentrations of nine VOCs. The data were analyzed to discern distribution patterns across demographic groups. RESULTS Males showed higher average VOC levels for certain compounds. Propanol and methanol concentrations significantly increased with age. Smoking history influenced VOC levels, with differences among non-smokers, current smokers, and ex-smokers. CONCLUSION This research provides valuable insights into demographic influences on exhaled VOC profiles, emphasizing the potential of breath analysis for health assessment. PTR-MS's real-time measurement capabilities are crucial for capturing dynamic VOC changes, offering advantages over conventional methods. These findings lay a foundation for advancements in non-invasive disease detection, highlighting the importance of considering demographics in breath biomarker research.
Collapse
Affiliation(s)
- Zhunan Jia
- Breathonix Pte Ltd, Singapore, Singapore
- University of Oklahoma, Norman, OK, USA
| | | | | | - Fang Du
- Breathonix Pte Ltd, Singapore, Singapore
| | | | | |
Collapse
|
3
|
Khokhar M. Non-invasive detection of renal disease biomarkers through breath analysis. J Breath Res 2024; 18:024001. [PMID: 38099568 DOI: 10.1088/1752-7163/ad15fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Breath biomarkers are substances found in exhaled breath that can be used for non-invasive diagnosis and monitoring of medical conditions, including kidney disease. Detection techniques include mass spectrometry (MS), gas chromatography (GC), and electrochemical sensors. Biosensors, such as GC-MS or electronic nose (e-nose) devices, can be used to detect volatile organic compounds (VOCs) in exhaled breath associated with metabolic changes in the body, including the kidneys. E-nose devices could provide an early indication of potential kidney problems through the detection of VOCs associated with kidney dysfunction. This review discusses the sources of breath biomarkers for monitoring renal disease during dialysis and different biosensor approaches for detecting exhaled breath biomarkers. The future of using various types of biosensor-based real-time breathing diagnosis for renal failure is also discussed.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
4
|
Li D, Xu C, Xie J, Lee C. Research Progress in Surface-Enhanced Infrared Absorption Spectroscopy: From Performance Optimization, Sensing Applications, to System Integration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2377. [PMID: 37630962 PMCID: PMC10458771 DOI: 10.3390/nano13162377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Infrared absorption spectroscopy is an effective tool for the detection and identification of molecules. However, its application is limited by the low infrared absorption cross-section of the molecule, resulting in low sensitivity and a poor signal-to-noise ratio. Surface-Enhanced Infrared Absorption (SEIRA) spectroscopy is a breakthrough technique that exploits the field-enhancing properties of periodic nanostructures to amplify the vibrational signals of trace molecules. The fascinating properties of SEIRA technology have aroused great interest, driving diverse sensing applications. In this review, we first discuss three ways for SEIRA performance optimization, including material selection, sensitivity enhancement, and bandwidth improvement. Subsequently, we discuss the potential applications of SEIRA technology in fields such as biomedicine and environmental monitoring. In recent years, we have ushered in a new era characterized by the Internet of Things, sensor networks, and wearable devices. These new demands spurred the pursuit of miniaturized and consolidated infrared spectroscopy systems and chips. In addition, the rise of machine learning has injected new vitality into SEIRA, bringing smart device design and data analysis to the foreground. The final section of this review explores the anticipated trajectory that SEIRA technology might take, highlighting future trends and possibilities.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Junsheng Xie
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China
| |
Collapse
|
5
|
Smith D, Španěl P, Demarais N, Langford VS, McEwan MJ. Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS). MASS SPECTROMETRY REVIEWS 2023:e21835. [PMID: 36776107 DOI: 10.1002/mas.21835] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/09/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Selected ion flow tube mass spectrometry (SIFT-MS) is now recognized as the most versatile analytical technique for the identification and quantification of trace gases down to the parts-per-trillion by volume, pptv, range. This statement is supported by the wide reach of its applications, from real-time analysis, obviating sample collection of very humid exhaled breath, to its adoption in industrial scenarios for air quality monitoring. This review touches on the recent extensions to the underpinning ion chemistry kinetics library and the alternative challenge of using nitrogen carrier gas instead of helium. The addition of reagent anions in the Voice200 series of SIFT-MS instruments has enhanced the analytical capability, thus allowing analyses of volatile trace compounds in humid air that cannot be analyzed using reagent cations alone, as clarified by outlining the anion chemistry involved. Case studies are reviewed of breath analysis and bacterial culture volatile organic compound (VOC), emissions, environmental applications such as air, water, and soil analysis, workplace safety such as transport container fumigants, airborne contamination in semiconductor fabrication, food flavor and spoilage, drugs contamination and VOC emissions from packaging to demonstrate the stated qualities and uniqueness of the new generation SIFT-MS instrumentation. Finally, some advancements that can be made to improve the analytical capability and reach of SIFT-MS are mentioned.
Collapse
Affiliation(s)
- David Smith
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | | | | | - Murray J McEwan
- Syft Technologies Limited, Christchurch, New Zealand
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
6
|
Parangusan H, Bhadra J, Al-Qudah RA, Elhadrami EC, Al-Thani NJ. Comparative Study on Gas-Sensing Properties of 2D (MoS 2, WS 2)/PANI Nanocomposites-Based Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4423. [PMID: 36558277 PMCID: PMC9783066 DOI: 10.3390/nano12244423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
NH3 is a highly harmful gas; when inhaled at levels that are too high for comfort, it is very dangerous to human health. One of the challenging tasks in research is developing ammonia sensors that operate at room temperature. In this study, we proposed a new design of an NH3 gas sensor that was comprised of two-dimensional (TMDs, mainly WS2 and MoS2) and PANI. The 2D-TMDs metal was successfully incorporated into the PANI lattice based on the results of XRD and SEM. The elemental EDX analysis results indicated that C, N, O, W, S and Mo were found in the composite samples. The bandgap of the materials decreased due to the addition of MoS2 and WS2. We also analyzed its structural, optical and morphological properties. When compared to MoS2 and PANI, the proposed NH3 sensor with the WS2 composite was found to have high sensitivity. The composite films also exhibited response and recovery times of 10/16 and 14/16 s. Therefore, the composite PANI/2D-TMDs is a suitable material for NH3 gas detection applications.
Collapse
Affiliation(s)
- Hemalatha Parangusan
- Qatar University Young Scientists Center (QUYSC), Qatar University, Doha P.O. Box 2713, Qatar
| | - Jolly Bhadra
- Qatar University Young Scientists Center (QUYSC), Qatar University, Doha P.O. Box 2713, Qatar
| | | | | | - Noora Jabor Al-Thani
- Qatar University Young Scientists Center (QUYSC), Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
7
|
Bordbar MM, Samadinia H, Hajian A, Sheini A, Safaei E, Aboonajmi J, Arduini F, Sharghi H, Hashemi P, Khoshsafar H, Ghanei M, Bagheri H. Mask assistance to colorimetric sniffers for detection of Covid-19 disease using exhaled breath metabolites. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 369:132379. [PMID: 35855726 DOI: 10.1016/j.snb.2022.132371] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 05/25/2023]
Abstract
According to World Health Organization reports, large numbers of people around the globe have been infected or died for Covid-19 due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Researchers are still trying to find a rapid and accurate diagnostic method for revealing infected people by low viral load with the overriding goal of effective diagnostic management. Monitoring the body metabolic changes is known as an effective and inexpensive approach for the evaluation of the infected people. Here, an optical sniffer is introduced to detect exhaled breath metabolites of patients with Covid-19 (60 samples), healthy humans (55 samples), and cured people (15 samples), providing a unique color pattern for differentiation between the studied samples. The sniffer device is installed on a thin face mask, and directly exposed to the exhaled breath stream. The interactions occurring between the volatile compounds and sensing components such as porphyrazines, modified organic dyes, porphyrins, inorganic complexes, and gold nanoparticles allowing for the change of the color, thus being tracked as the sensor responses. The assay accuracy for the differentiation between patient, healthy and cured samples is calculated to be in the range of 80%-84%. The changes in the color of the sensor have a linear correlation with the disease severity and viral load evaluated by rRT-PCR method. Interestingly, comorbidities such as kidney, lung, and diabetes diseases as well as being a smoker may be diagnosed by the proposed method. As a powerful detection device, the breath sniffer can replace the conventional rapid test kits for medical applications.
Collapse
Affiliation(s)
- Mohammad Mahdi Bordbar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hosein Samadinia
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Azarmidokht Sheini
- Department of Mechanical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Dashte Azadegan, Khuzestan, Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Hashem Sharghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Pegah Hashemi
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Hosein Khoshsafar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Bordbar MM, Samadinia H, Hajian A, Sheini A, Safaei E, Aboonajmi J, Arduini F, Sharghi H, Hashemi P, Khoshsafar H, Ghanei M, Bagheri H. Mask assistance to colorimetric sniffers for detection of Covid-19 disease using exhaled breath metabolites. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 369:132379. [PMID: 35855726 PMCID: PMC9279257 DOI: 10.1016/j.snb.2022.132379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 05/10/2023]
Abstract
According to World Health Organization reports, large numbers of people around the globe have been infected or died for Covid-19 due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Researchers are still trying to find a rapid and accurate diagnostic method for revealing infected people by low viral load with the overriding goal of effective diagnostic management. Monitoring the body metabolic changes is known as an effective and inexpensive approach for the evaluation of the infected people. Here, an optical sniffer is introduced to detect exhaled breath metabolites of patients with Covid-19 (60 samples), healthy humans (55 samples), and cured people (15 samples), providing a unique color pattern for differentiation between the studied samples. The sniffer device is installed on a thin face mask, and directly exposed to the exhaled breath stream. The interactions occurring between the volatile compounds and sensing components such as porphyrazines, modified organic dyes, porphyrins, inorganic complexes, and gold nanoparticles allowing for the change of the color, thus being tracked as the sensor responses. The assay accuracy for the differentiation between patient, healthy and cured samples is calculated to be in the range of 80%-84%. The changes in the color of the sensor have a linear correlation with the disease severity and viral load evaluated by rRT-PCR method. Interestingly, comorbidities such as kidney, lung, and diabetes diseases as well as being a smoker may be diagnosed by the proposed method. As a powerful detection device, the breath sniffer can replace the conventional rapid test kits for medical applications.
Collapse
Affiliation(s)
- Mohammad Mahdi Bordbar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hosein Samadinia
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Azarmidokht Sheini
- Department of Mechanical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Dashte Azadegan, Khuzestan, Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Hashem Sharghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Pegah Hashemi
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Hosein Khoshsafar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Romani A, Marrone G, Celotto R, Campo M, Vita C, Chiaramonte C, Carretta A, Di Daniele N, Noce A. Utility of SIFT-MS to evaluate volatile organic compounds in nephropathic patients' breath. Sci Rep 2022; 12:10413. [PMID: 35729207 PMCID: PMC9428186 DOI: 10.1038/s41598-022-14152-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Several studies highlighted a correlation between exhaled air volatile organic compounds (VOCs) and some pathological conditions, such as chronic kidney disease (CKD), chronic liver disease, etc. In fact, in literature has been reported that CKD is characterized by an increased concentration of ammonia, trimethylamine (TMA) and isoprene compared to healthy subjects. Currently, there is not a validate and standardized method to detect VOCs. For this purpose, we examined the utility of selected ion flow tube-mass spectrometry (SIFT-MS) to measure VOCs in CKD patients and we evaluated the possible correlation between VOCs and the presence of CKD and its stage. We enrolled 68 CKD patients under conservative therapy and 54 healthy subjects. The analysis of the VOCs of the exhaled air of the enrolled subjects was performed by SIFT-MS. Among all the VOCs analyzed, the most relevant results by ROC curves were observed for TMA, acetone, ammonia and dimethyl sulfide. We found that a breath TMA concentration superior to 26 ppbv characterizes a 6.11 times greater risk of CKD, compared to subjects with lower levels. Moreover, we detected an increased concentration of acetone and ammonia in CKD patients compared to healthy subjects. We highlight the potential utility of SIFT-MS in CKD clinical management. Clinical trial registry: R.S. 15.19 of 6 February 2019.
Collapse
Affiliation(s)
- Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy
| | - Roberto Celotto
- Department of Cardiovascular Disease, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Margherita Campo
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Chiara Vita
- QuMAP-PIN S.c.r.l.-Polo Universitario "Città di Prato" Servizi Didattici e Scientifici per L'Università di Firenze, Piazza Giovanni Ciardi, 25, 59100, Prato, Italy
| | - Carlo Chiaramonte
- Department of Statistics, University of Rome Tor Vergata, 00133, Rome, Italy
| | | | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy.
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
10
|
Shahzad AA, Mushtaq S, Waris A, Gilani SO, Alnuwaiser MA, Jameel M, Khan NB. A Low-Cost Device for Measurement of Exhaled Breath for the Detection of Obstructive Lung Disease. BIOSENSORS 2022; 12:409. [PMID: 35735555 PMCID: PMC9221323 DOI: 10.3390/bios12060409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 05/12/2023]
Abstract
Breath sensor technology can be used in medical diagnostics. This study aimed to build a device to measure the level of hydrogen sulfide, ammonia, acetone and alcohol in exhaled breath of patients as well as healthy individuals. The purpose was to determine the efficacy of these gases for detection of obstructive lung disease. This study was conducted on a total of 105 subjects, where 60 subjects were patients of obstructive lung disease and 45 subjects were healthy individuals. Patients were screened by means of the Pulmonary Function Test (PFT) by a pulmonologist. The gases present in the exhaled breath of all subjects were measured. The level of ammonia (32.29 ± 20.83 ppb), (68.83 ± 35.25 ppb), hydrogen sulfide (0.50 ± 0.26 ppm), (62.71 ± 22.20 ppb), and acetone (103.49 ± 35.01 ppb), (0.66 ± 0.31 ppm) in exhaled breath were significantly different (p < 0.05) between obstructive lung disease patients and healthy individuals, except alcohol, with a p-value greater than 0.05. Positive correlation was found between ammonia w.r.t Forced Expiratory Volume in 1 s (FEV1) (r = 0.74), Forced Vital Capacity (FVC) (r = 0.61) and Forced Expiratory Flow (FEF) (r = 0.63) and hydrogen sulfide w.r.t FEV1 (r = 0.54), FVC (r = 0.41) and FEF (r = 0.37). Whereas, weak correlation was found for acetone and alcohol w.r.t FEV1, FVC and PEF. Therefore, the level of ammonia and hydrogen sulfide are useful breath markers for detection of obstructive lung disease.
Collapse
Affiliation(s)
- Adil Ahmad Shahzad
- National University of Sciences and Technology (NUST), Islamabad, Pakistan; (A.A.S.); (A.W.); (S.O.G.)
| | - Shafaq Mushtaq
- Accidents and Emergency Department, Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan;
| | - Asim Waris
- National University of Sciences and Technology (NUST), Islamabad, Pakistan; (A.A.S.); (A.W.); (S.O.G.)
| | - Syed Omer Gilani
- National University of Sciences and Technology (NUST), Islamabad, Pakistan; (A.A.S.); (A.W.); (S.O.G.)
| | - Maha Abdallah Alnuwaiser
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohammed Jameel
- Department of Civil Engineering, College of Engineering, King Khalid University, Asir Abha, Saudi Arabia, P.O. Box: 960 - Postal Code: 61421;
| | - Niaz Bahadur Khan
- National University of Sciences and Technology (NUST), Islamabad, Pakistan; (A.A.S.); (A.W.); (S.O.G.)
| |
Collapse
|
11
|
Wang C, Cai Y, Zhou W, Chen P, Xu L, Han T, Hu Y, Xu X, Liu B, Yu X. A Wearable Respiration Sensor for Real-Time Monitoring of Chronic Kidney Disease. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12630-12639. [PMID: 35230095 DOI: 10.1021/acsami.1c23878] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human respiration is accompanied with abundant physiological and pathological information, such as the change in ammonia (NH3) content, which is related to chronic kidney disease (CKD); hence, monitoring the breathing behavior helps in health assessment and illness prediction. In this work, a wearable respiration sensor based on CeO2@polyaniline (CeO2@PANI) nanocomposites that underwent a hydrogen plasma treatment is developed. The results unambiguously show that the response of the corresponding nanocomposites is significantly enhanced from 165 to 670% to 100 ppm NH3 compared to the counterpart that did not undergo hydrogen plasma treatment and even reaches 24% to 50 ppb NH3, suggesting its fascinating capability of detecting the trace level of NH3 in human breathing. The superior response for NH3 is ascribed to the stable oxygen vacancies produced by the hydrogen plasma treatment. Furthermore, the clinical tests for patients with uremia suggest that the as-designed sensor has potential applications in clinical monitoring for CKD. Herein, this work offers a new strategy to obtain respiration sensors with high performance and provides a feasible approach for health evaluation and disease monitoring of patients with CKD.
Collapse
Affiliation(s)
- Chao Wang
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610000, China
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, P.R. China
| | - Yiyu Cai
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, P.R. China
| | - Wei Zhou
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, P.R. China
| | - Peng Chen
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Li Xu
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Tao Han
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Yulin Hu
- Department of Kidney Disease Rheumatology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Xuhui Xu
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, P.R. China
| | - Bitao Liu
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610000, China
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, P.R. China
| | - Xue Yu
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610000, China
| |
Collapse
|
12
|
Bhatia M, Manini N, Biasioli F, Cappellin L. Theoretical Investigation of Charge Transfer from NO + and O 2+ Ions to Wine-Related Volatile Compounds for Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:251-264. [PMID: 35020398 DOI: 10.1021/jasms.1c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Density-functional theory (DFT) is used to obtain the molecular data essential for predicting the reaction kinetics of chemical-ionization-mass spectrometry (CI-MS), as applied in the analysis of volatile organic compounds (VOCs). We study charge-transfer reactions from NO+ and O2+ reagent ions to VOCs related to cork-taint and off-flavor in wine. We evaluate the collision rate coefficients of ion-molecule reactions by means of collision-based models. Many NO+ and O2+ reactions are known to proceed at or close to their respective collision rates. Factors affecting the collision reaction rates, including electric-dipole moment and polarizability, temperature, and electric field are addressed, targeting the conditions of standard CI-MS techniques. The molecular electric-dipole moment and polarizability are the basic ingredients for the calculation of collision reaction rates in ion-molecule collision-based models. Using quantum-mechanical calculations, we evaluate these quantities for the neutral VOCs. We also investigate the thermodynamic feasibility of the reactions by computing the enthalpy change in these charge-transfer reactions.
Collapse
Affiliation(s)
- Manjeet Bhatia
- Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria, 16, I-20133 Milano, Italy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Trentino, Italy
| | - Nicola Manini
- Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria, 16, I-20133 Milano, Italy
| | - Franco Biasioli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Trentino, Italy
| | - Luca Cappellin
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Trentino, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35121 Padua, Italy
| |
Collapse
|
13
|
Yan M, Chen J, Wang B, Xu W, Cao H, Fu Y, He Q, Cheng J. High-Sensitivity Sensor Array Base on Molecular Design and Machine Learning for amine differentiation in exhaled vapor. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Lee JE, Lim CK, Song H, Choi SY, Lee DS. A highly smart MEMS acetone gas sensors in array for diet-monitoring applications. MICRO AND NANO SYSTEMS LETTERS 2021. [DOI: 10.1186/s40486-021-00136-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractIn the present work, gas sensor arrays consisted of four different sensing materials based on CuO and their depositions on the MEMS microheaters were designed, fabricated and characterized. The sensor array is consisted with CuO, CuO with Pt NPs, ZnO–CuO and ZnO–CuO with Au NPs and their gas sensing properties are characterized for detection of exhaled breath-related VOCs. Through MEMS microheaters, power consumption is considered for application to healthcare devices which requires ultrasensitive acetone gas sensitivity. Also, using the principal component analysis, it enables to discriminate acetone gas, a biomarker for fat burning during diet, with other VOCs gases. The device would be applicable for on-site diet monitoring in the field of mobile healthcare.
Collapse
|
15
|
Liu C, Zeng J, Sinues P, Fang M, Zhou Z, Li X. Quantification of volatile organic compounds by secondary electrospray ionization-high resolution mass spectrometry. Anal Chim Acta 2021; 1180:338876. [PMID: 34538336 DOI: 10.1016/j.aca.2021.338876] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023]
Abstract
Secondary electrospray ionization coupled with high resolution mass spectrometry (SESI-HRMS) is a direct mass spectrometry technique, which can identify trace volatile organic compounds (VOCs) in real time without sample pretreatment and chromatographic separation. SESI-HRMS has been successfully applied in multiple applications, including breath analysis, animals and plants VOCs emissions, analysis of headspace of cell cultures and indoor and outdoor air. The range of areas where the technique can potentially have a substantial impact is very broad. However, one critical aspect that requires further development to consolidate the technique is absolute quantification. Therefore, in this study we aim to develop a quantitative method for eight representative VOCs, including ketones (acetone, 2-butanone and 2-pentanone), alkenes (isoprene and α-terpinene) and aromatics (toluene, styrene and mesitylene). The mass spectrometric platform includes a commercial SESI source hyphenated with a Q-Exactive hybrid quadrupole Orbitrap high resolution mass spectrometer. Within the concentration range of 0-100 ppbv studied, the optimal coefficient of determination for linear regression (R2 = 0.993-0.999) between signal intensity and concentration is obtained in the range of 0-10 ppbv for all eight VOCs. The detection limits range between 3 (2-Pentanone) and 15 (Acetone) pptv. The intra-day (n = 10) and inter-day (n = 30) coefficients of variation (CV) are ≤ 6% and ≤10%, respectively. Finally the method is applied for the fast evaluation (<5 min) of different materials widely used for the collection, storage or pretreatment of gas sample. Better recovery of trace levels of eight VOCs is observed for PTFE gas sampling bag as compared to Nalophan and Tedlar bags; when Nafion tube is used to pretreat the gas sample, recovery of ≤50% are obtained for 2-pentanone, α-terpinene and all three aromatics.
Collapse
Affiliation(s)
- Chao Liu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632, China
| | - Jiafa Zeng
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632, China; Department of Biomedical Engineering, Basel University, Allschwil, 4123, Switzerland; University of Basel Children's Hospital (UKBB), Basel, 4056, Switzerland
| | - Pablo Sinues
- Department of Biomedical Engineering, Basel University, Allschwil, 4123, Switzerland; University of Basel Children's Hospital (UKBB), Basel, 4056, Switzerland
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632, China; Guangzhou Hexin Instrument Co., LTD., Guangzhou, 510530, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632, China; Guangzhou Hexin Instrument Co., LTD., Guangzhou, 510530, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China.
| |
Collapse
|
16
|
Farea MA, Mohammed HY, Shirsat SM, Sayyad PW, Ingle NN, Al-Gahouari T, Mahadik MM, Bodkhe GA, Shirsat MD. Hazardous gases sensors based on conducting polymer composites: Review. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138703] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Hydrothermal synthesis of flower-like Cr2O3-doped In2O3 nanorods clusters for ultra-low isoprene detection. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Silva LG, Bueno SCE, da Silva MG, Mota L, Sthel MS, de Castro MPP, Santiago Neto RM, Kuba VM. Photoacoustic detection of ammonia exhaled by individuals with chronic kidney disease. Lasers Med Sci 2021; 37:983-991. [PMID: 34050494 DOI: 10.1007/s10103-021-03342-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
Ammonia (NH3) has been reported as a breath biomarker for chronic kidney disease (CKD) usually detected at concentrations greater than 0.25 parts per million by volume (ppmV). NH3 was detected in breath of individuals with CKD through gaseous photoacoustic spectroscopy (PAS). The efficiency of hemodialysis (HD) was demonstrated. Eight volunteers aged between 20 and 60 years and without previous respiratory disease were eligible, among which six were control volunteers (CV) and two volunteers with advanced CKD, named CKDV1 and CKDV2. The presence of CKD was confirmed by the calculation of creatinine clearance (CC) according to the Cockcroft-Gault equation. Before HD, the mean NH3 concentration exhaled by CKDV1 was 0.9 ± 0.1 ppmV and after HD was 0.20 ± 0.03 ppmV, which demonstrated an efficiency of 76% NH3 reduction in breath. The CKDV2 exhaled 1.27 ± 0.03 ppmV of NH3 pre-HD and 0.42 ± 0.08 ppmV post-HD, which resulted in efficiency of about 67%. It was not possible to quantify NH3 from CV, what led us to infer that all of them exhaled amounts below the detection limit, i.e., 0.20 ppmV. This assumption is underpinned by CC, whose values hovered at 90 ≤ CC ≤ 120 mL/ min, confirming normal renal function.
Collapse
Affiliation(s)
- Liana Genuncio Silva
- Centro de Ciência e Tecnologia Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Sâmylla Cristina Espécie Bueno
- Centro de Ciência e Tecnologia Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Marcelo Gomes da Silva
- Centro de Ciência e Tecnologia Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Leonardo Mota
- Centro de Ciência e Tecnologia Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Marcelo Silva Sthel
- Centro de Ciência e Tecnologia Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Maria Priscila Pessanha de Castro
- Centro de Ciência e Tecnologia Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil.
| | | | - Valeska Mansur Kuba
- Faculdade de Medicina de Campos, Avenida Alberto Torres, 217, Campos dos Goytacazes, Rio de Janeiro, 28035-581, Brazil
| |
Collapse
|
19
|
Dryahina K, Som S, Smith D, Španěl P. Reagent and analyte ion hydrates in secondary electrospray ionization mass spectrometry (SESI-MS), their equilibrium distributions and dehydration in an ion transfer capillary: Modelling and experiments. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9047. [PMID: 33434952 DOI: 10.1002/rcm.9047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Secondary electrospray ionization (SESI) in a water spray environment at atmospheric pressure involves the reactions of hydrated hydronium reagent ions, H3 O+ (H2 O)n , with trace analyte compounds in air samples. Understanding the formation and dehydration of reagent and analyte ions is the foundation for meaningful quantification of trace compounds by SESI-mass spectrometry (MS). METHODS A numerical model based on gas-phase ion thermochemistry is developed that describes equilibria in H3 O+ (H2 O)n reagent cluster ion distributions and ligand switching reactions with polar NH3 molecules leading to equilibrated hydrated ammonium ions NH4 + (H2 O)m . The model predictions are compared with experimental results obtained using a cylindrical SESI source coupled to an ion-trap mass spectrometer via a heated ion transfer capillary. Non-polar isoprene, C5 H8 , was used to further probe the nature of the reagent ions. RESULTS Equilibrium distributions of H3 O+ (H2 O)n ions and their reactions with NH3 molecules have been characterized by the model in the near-atmospheric pressure SESI source. NH3 analyte molecules displace H2 O ligands from the H3 O+ (H2 O)n ions at the collisional rate forming NH4 + (H2 O)m ions, which travel through the heated ion transfer capillary losing H2 O molecules. The data for variable NH3 concentrations match the model predictions and the C5 H8 test substantiates the notion of dehydration in the heated capillary. CONCLUSIONS Large cluster ions formed in the SESI region are dehydrated to H3 O+ (H2 O)1,2,3 and NH4 + (H2 O)1,2 while passing through the heated capillary, and considerable diffusion losses also occur. This phenomenon is also predicted for other polar analyte molecules, A, that can undergo similar switching reactions, thus forming AH+ and AH+ (H2 O)m analyte ions.
Collapse
Affiliation(s)
- Kseniya Dryahina
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, Prague 8, 18223, Czech Republic
| | - Suman Som
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, Prague 8, 18223, Czech Republic
| | - David Smith
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, Prague 8, 18223, Czech Republic
| | - Patrik Španěl
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, Prague 8, 18223, Czech Republic
| |
Collapse
|
20
|
Breath Ammonia Is a Useful Biomarker Predicting Kidney Function in Chronic Kidney Disease Patients. Biomedicines 2020; 8:biomedicines8110468. [PMID: 33142890 PMCID: PMC7692127 DOI: 10.3390/biomedicines8110468] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease (CKD) is a public health problem and its prevalence has increased worldwide; patients are commonly unaware of the condition. The present study aimed to investigate whether exhaled breath ammonia via vertical-channel organic semiconductor (V-OSC) sensor measurement could be used for rapid CKD screening. We enrolled 121 CKD stage 1–5 patients, including 19 stage 1 patients, 26 stage 2 patients, 38 stage 3 patients, 21 stage 4 patients, and 17 stage 5 patients, from July 2019 to January 2020. Demographic and laboratory data were recorded. The exhaled ammonia was collected and rapidly measured by the V-OSC sensor to correlate with kidney function. Results showed no significant difference in age, sex, body weight, hemoglobin, albumin level, and comorbidities in different CKD stage patients. Correlation analysis demonstrated a good correlation between breath ammonia and blood urea nitrogen levels, serum creatinine levels, and estimated glomerular filtration rate (eGFR). Breath ammonia concentration was significantly elevated with increased CKD stage compared with the previous stage (CKD stage 1/2/3/4/5: 636 ± 94; 1020 ± 120; 1943 ± 326; 4421 ± 1042; 12781 ± 1807 ppb, p < 0.05). The receiver operating characteristic curve analysis showed an area under the curve (AUC) of 0.835 (p < 0.0001) for distinguishing CKD stage 1 from other CKD stages at 974 ppb (sensitivity, 69%; specificity, 95%). The AUC was 0.831 (p < 0.0001) for distinguishing between patients with/without eGFR < 60 mL/min/1.73 m2 (cutoff 1187 ppb: sensitivity, 71%; specificity, 78%). At 886 ppb, the sensitivity increased to 80% but the specificity decreased to 69%. This value is suitable for kidney function screening. Breath ammonia detection with V-OSC is a real time, inexpensive, and easy to administer measurement device for screening CKD with reliable diagnostic accuracy.
Collapse
|
21
|
Lin X, Li Y, Li Z, Hua R, Xing Y, Lu Y. Portable environment-signal detection biosensors with cell-free synthetic biosystems. RSC Adv 2020; 10:39261-39265. [PMID: 35518409 PMCID: PMC9057330 DOI: 10.1039/d0ra05293k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/09/2020] [Indexed: 01/27/2023] Open
Abstract
By embedding regulated genetic circuits and cell-free systems onto a paper, the portable in vitro biosensing platform showed the possibility of detecting environmental pollutants, namely arsenic ions and bacterial quorum-sensing signal AHLs (N-acyl homoserine lactones). This platform has a great potential for practical environmental management and diagnosis. By embedding the regulated genetic circuits and cell-free systems onto a paper, a portable in vitro biosensing platform has been established.![]()
Collapse
Affiliation(s)
- Xiaomei Lin
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yuting Li
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Zhixia Li
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Rui Hua
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yuyang Xing
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
22
|
Dumitras DC, Petrus M, Bratu AM, Popa C. Applications of Near Infrared Photoacoustic Spectroscopy for Analysis of Human Respiration: A Review. Molecules 2020; 25:E1728. [PMID: 32283766 PMCID: PMC7180475 DOI: 10.3390/molecules25071728] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
In this review, applications of near-infrared photoacoustic spectroscopy are presented as an opportunity to evaluate human respiration because the measurement of breath is fast, intact and simple to implement. Recently, analytical methods for measuring biomarkers in exhaled air have been extensively developed. With laser-based photoacoustic spectroscopy, volatile organic compounds can be identified with high sensitivity, at a high rate, and with very good selectivity. The literature review has shown the applicability of near-infrared photoacoustic spectroscopy to one of the problems of the real world, i.e., human health. In addition, the review will consider and explore different breath sampling methods for human respiration analysis.
Collapse
Affiliation(s)
- Dan C. Dumitras
- University “Politehnica” of Bucharest, Physics Department, Faculty of Applied Sciences, University “Politehnica” of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Mioara Petrus
- National Institute for Laser, Plasma and Radiation Physics, Laser Department, 409 Atomistilor St., PO Box MG 36, 077125 Magurele, Romania; (M.P.); (A.-M.B.); (C.P.)
| | - Ana-Maria Bratu
- National Institute for Laser, Plasma and Radiation Physics, Laser Department, 409 Atomistilor St., PO Box MG 36, 077125 Magurele, Romania; (M.P.); (A.-M.B.); (C.P.)
| | - Cristina Popa
- National Institute for Laser, Plasma and Radiation Physics, Laser Department, 409 Atomistilor St., PO Box MG 36, 077125 Magurele, Romania; (M.P.); (A.-M.B.); (C.P.)
| |
Collapse
|
23
|
Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS. CLINICAL MASS SPECTROMETRY 2020; 16:18-24. [DOI: 10.1016/j.clinms.2020.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 12/11/2022]
|
24
|
Li H, Shi Y, Han G, Liu J, Zhang J, Li C, Liu J, Yi Y, Li T, Gao X, Di C, Huang J, Che Y, Wang D, Hu W, Liu Y, Jiang L. Monolayer Two-dimensional Molecular Crystals for an Ultrasensitive OFET-based Chemical Sensor. Angew Chem Int Ed Engl 2020; 59:4380-4384. [PMID: 31943644 PMCID: PMC7079129 DOI: 10.1002/anie.201916397] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 11/10/2022]
Abstract
The sensitivity of conventional thin-film OFET-based sensors is limited by the diffusion of analytes through bulk films and remains the central challenge in sensing technology. Now, for the first time, an ultrasensitive (sub-ppb level) sensor is reported that exploits n-type monolayer molecular crystals (MMCs) with porous two-dimensional structures. Thanks to monolayer crystal structure of NDI3HU-DTYM2 (NDI) and controlled formation of porous structure, a world-record detection limit of NH3 (0.1 ppb) was achieved. Moreover, the MMC-OFETs also enabled direct detection of solid analytes of biological amine derivatives, such as dopamine at an extremely low concentration of 500 ppb. The remarkably improved sensing performances of MMC-OFETs opens up the possibility of engineering OFETs for ultrasensitive (bio)chemical sensing.
Collapse
Affiliation(s)
- Haiyang Li
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100190China
| | - Yanjun Shi
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100190China
| | - Guangchao Han
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100190China
| | - Jie Liu
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100190China
| | - Jing Zhang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100190China
| | - Chunlei Li
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100190China
| | - Jie Liu
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100190China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100190China
| | - Tao Li
- School of Chemistry and Chemical Engineering and Key Laboratory of Thin Film and Microfabrication (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Xike Gao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional MoleculesCenter for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai200032China
| | - Chongan Di
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100190China
| | - Jia Huang
- Interdisciplinary Materials Research CenterSchool of Materials Science and EngineeringTongji UniversityShanghai201804China
| | - Yanke Che
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100190China
| | - Dong Wang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100190China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistrySchool of ScienceTianjin UniversityTianjin300072China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100190China
| | - Lang Jiang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100190China
| |
Collapse
|
25
|
Li H, Shi Y, Han G, Liu J, Zhang J, Li C, Liu J, Yi Y, Li T, Gao X, Di C, Huang J, Che Y, Wang D, Hu W, Liu Y, Jiang L. Monolayer Two‐dimensional Molecular Crystals for an Ultrasensitive OFET‐based Chemical Sensor. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haiyang Li
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Yanjun Shi
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Guangchao Han
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Jie Liu
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Jing Zhang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Chunlei Li
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Jie Liu
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Tao Li
- School of Chemistry and Chemical Engineering and Key Laboratory of Thin Film and Microfabrication (Ministry of Education)Shanghai Jiao Tong University Shanghai 200240 China
| | - Xike Gao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional MoleculesCenter for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
| | - Chongan Di
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Jia Huang
- Interdisciplinary Materials Research CenterSchool of Materials Science and EngineeringTongji University Shanghai 201804 China
| | - Yanke Che
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Dong Wang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Lang Jiang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
26
|
Zhou Q, Wang Q, Chen B, Han Y, Cheng L, Shen Y, Hao P, Zhang Z. Factors influencing breath analysis results in patients with diabetes mellitus. J Breath Res 2019; 13:046012. [PMID: 31489846 DOI: 10.1088/1752-7163/ab285a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breath analysis is used to detect the composition of exhaled gas. As a quick and non-invasive detection method, breath analysis provides deep insights into the progression of various kinds of diseases, especially those with metabolism disorders. Abundant information on volatile compounds in diabetic patients has been studied in numerous articles in the literature. However, exhaled gas in diabetic patients can be altered by various complications. So far, little attention has been paid to this alteration. In our paper, we found that under air pollution conditions, diabetic patients exhale more nitric oxide. Diabetic patients with heart failure exhale more acetone than those without heart failure. After 13C-labeled glucose intake, patients infected with Helicobacter pylori exhaled more 13C and less 18O than those without infection. Exhalation with chronic kidney disease changes volatile organic compounds on a large scale. Diabetic patients with ketoacidosis exhale more acetone than those without ketoacidosis. Some specific volatile organic compounds also emanate from diabetic feet. By monitoring breath frequency, diabetic patients with obstructive sleep apnea syndrome exhibit a unique breath pattern and rhythm as compared with other diabetic patients, and sleep apnea is prevalent among diabetic patients. In addition to clinical findings, we analyzed the underlying mechanisms at the levels of molecules, cells and whole bodies, and provided suggestions for further studies.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Department of Cardiology, Shandong University Qilu Hospital, and School of Medicine of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Iitani K, Toma K, Arakawa T, Mitsubayashi K. Ultrasensitive Sniff-Cam for Biofluorometric-Imaging of Breath Ethanol Caused by Metabolism of Intestinal Flora. Anal Chem 2019; 91:9458-9465. [PMID: 31287286 DOI: 10.1021/acs.analchem.8b05840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We developed a gas-imaging system (sniff-cam) for gaseous ethanol (EtOH) with improved sensitivity. The sniff-cam was applied to measure the extremely low concentration distribution of breath EtOH without the consumption of alcohol, which is related to the activity of the oral or gut bacterial flora. A ring-type ultraviolet-light-emitting diode was mounted around a camera lens as an excitation light source, which enabled simultaneous excitation and imaging of the fluorescence. In the EtOH sniff-cam, a nicotinamide adenine dinucleotide (NAD)-dependent alcohol dehydrogenase (ADH) was used to catalyze the redox reaction between EtOH and the oxidized form of NAD (NAD+). Upon application of gaseous EtOH to the ADH-immobilized mesh that was soaked in an NAD+ solution and placed in front of the camera, NADH was produced through an ADH-mediated reaction. NADH expresses fluorescence at an emission wavelength of 490 nm and excitation wavelength of 340 nm. Thus, the concentration distribution of EtOH was visualized by measuring the distribution of the fluorescence light intensity from NADH on the ADH-immobilized mesh surface. First, a comparison of image analysis methods based on the red-green-blue color (RGB) images and the optimization of the buffer pH and NAD+ solution concentration was performed. The new sniff-cam showed a 25-fold greater sensitivity and broader dynamic range (20.6-300000 ppb) in comparison to those of the previously fabricated sniff-cam. Finally, we measured the concentration distribution of breath EtOH without alcohol consumption using the improved sniff-cam and obtained a value of 116.2 ± 35.7 ppb (n = 10).
Collapse
Affiliation(s)
- Kenta Iitani
- Postdoctoral Research Fellow PD , Japan Society for the Promotion of Science , 5-3-1 Kojimatchi , Chiyoda-ku, Tokyo 102-0083 , Japan.,Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering , Waseda University (TWIns) , 2-2 Wakamatsu-cho , Shinjuku-ku, Tokyo 162-8480 , Japan.,Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University , 1-5-45 Yushima , Bunkyo-ku, Tokyo 113-8510 , Japan
| | - Koji Toma
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai , Chiyoda-ku, Tokyo 101-0062 , Japan
| | - Takahiro Arakawa
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai , Chiyoda-ku, Tokyo 101-0062 , Japan
| | - Kohji Mitsubayashi
- Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University , 1-5-45 Yushima , Bunkyo-ku, Tokyo 113-8510 , Japan.,Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai , Chiyoda-ku, Tokyo 101-0062 , Japan
| |
Collapse
|
28
|
Wang KH, Hsieh JC, Chen CC, Zan HW, Meng HF, Kuo SY, Nguyễn MTN. A low-cost, portable and easy-operated salivary urea sensor for point-of-care application. Biosens Bioelectron 2019; 132:352-359. [DOI: 10.1016/j.bios.2019.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/31/2023]
|
29
|
Abstract
A significant interaction between kidneys and lungs has been shown in physiological and pathological conditions. The two organs can both be targets of the same systemic disease (eg., some vasculitides). Moreover, loss of normal function of either of them can induce direct and indirect dysregulation of the other one. Subjects suffering from COPD may have systemic inflammation, hypoxemia, endothelial dysfunction, increased sympathetic activation and increased aortic stiffness. As well as the exposure to nicotine, all the foresaid factors can induce a microvascular damage, albuminuria, and a worsening of renal function. Renal failure in COPD can be unrecognized since elderly and frail patients may have normal serum creatinine concentration. Lungs and kidneys participate in maintaining the acid-base balance. Compensatory role of the lungs rapidly expresses through an increase or reduction of ventilation. Renal compensation usually requires a few days as it is achieved through changes in bicarbonate reabsorption. Chronic kidney disease and end-stage renal diseases increase the risk of pneumonia. Vaccination against Streptococcus pneumonia and seasonal influenza is recommended for these patients. Vaccines against the last very virulent H1N1 influenza A strain are also available and effective. Acute lung injury and acute kidney injury are frequent complications in critical illnesses, associated with high morbidity and mortality. The concomitant failure of kidneys and lungs implies a multidisciplinary approach, both in terms of diagnostic processes and therapeutic management.
Collapse
|
30
|
Breath analysis as promising indicator of hemodialysis efficiency. Clin Exp Nephrol 2018; 23:251-257. [PMID: 30121801 DOI: 10.1007/s10157-018-1625-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND The measurement of trimethylamine and isoprene in exhaled breath collected from dialysed patients indicates the changes in concentration of both compounds during dialysis. The aim of the presented study was to confirm diagnostic usefulness of TMA and isoprene detected in breath, as potential biomarkers of hemodialysis efficiency. METHODS The samples of exhaled breath were collected from 22 dialyzed patients (9 women, 13 men) before and after hemodialysis (HD). All analyses were carried out using a gas chromatograph equipped with a mass spectrometer. Thermal desorption was used as breath sample enrichment method. RESULTS Chromatographic analysis of breath samples indicated statistically significant differences in trimethylamine (TMA) and 2-methyl-1,3-butadiene (isoprene) concentrations in patients' breath collected before and after HD. TMA concentrations measured in breath samples, before dialysis, ranged from 0.024 to 0.461 nmol/L. After dialysis, the values of detected TMA were lower versus output values and ranged from 0.008 to 0.050 nmol/L. Isoprene concentrations before dialysis were present in the range from 0.236 to 9.718 nmol/L, after dialysis in the range from 0.478 to 26.182 nmol/L. Additionally, the dependences of TMA and isoprene concentrations, detected in breath with renal efficiency parameters detected in blood, were studied. The relationships between TMA and urea (r = 0.67; p < 0.00001) and creatinine (r = 0.61; p = 0.00002) were checked. In case of isoprene considerably higher concentrations were observed after dialysis, but no statistically significant correlation of isoprene with blood parameters was noticed. CONCLUSION The observed decrease of TMA concentrations during dialysis could be useful as a measure of dialysis efficiency. The explanation of isoprene increase in breath during dialysis requires further investigation.
Collapse
|
31
|
Casas-Ferreira AM, Nogal-Sánchez MD, Pérez-Pavón JL, Moreno-Cordero B. Non-separative mass spectrometry methods for non-invasive medical diagnostics based on volatile organic compounds: A review. Anal Chim Acta 2018; 1045:10-22. [PMID: 30454564 DOI: 10.1016/j.aca.2018.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/16/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
Abstract
In this review, an assessment of non-separative methods based on mass spectrometry used to analyse volatile organic compounds in the field of bioanalysis is performed. The use of non-separative methods based on mass spectrometry has been established as an attractive option for analysing compounds. These instrumental configurations are suitable for biomedical applications because of their versatility, rapid output of results, and the wide range of volatile organic compounds that can be determined. Here, techniques such as headspace sampling coupled to mass spectrometry, membrane introduction mass spectrometry, selected ion flow tube mass spectrometry, proton transfer reaction mass spectrometry, secondary electrospray ionization mass spectrometry and ion mobility mass spectrometry, are evaluated. Samples involving non-invasive methods of collection, such as urine, saliva, breath and sweat, are mainly considered. To the best of our knowledge, a comprehensive review of all the non-separative instrumental configurations applied to the analysis of gaseous samples from all matrices non-invasively collected has not yet been carried out. The assessment of non-separative techniques for the analysis of these type of samples can be considered a key issue for future clinical applications, as they allow real-time sample analysis, without patient suffering. Any contribution to the early diagnosis of disease can be considered a priority for the scientific community. Therefore, the identification and determination of volatile organic compounds related to particular diseases has become an important field or research.
Collapse
Affiliation(s)
- Ana María Casas-Ferreira
- Departamento de Química Analítica, Nutrición y Bromatología Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Miguel Del Nogal-Sánchez
- Departamento de Química Analítica, Nutrición y Bromatología Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain.
| | - José Luis Pérez-Pavón
- Departamento de Química Analítica, Nutrición y Bromatología Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Bernardo Moreno-Cordero
- Departamento de Química Analítica, Nutrición y Bromatología Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
32
|
Determination of deuterium oxide content in water based on luminescence quenching. Talanta 2018; 184:364-368. [DOI: 10.1016/j.talanta.2018.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 11/19/2022]
|
33
|
Abstract
Breath analysis is a form of metabolomics that utilises the identification and quantification of volatile chemicals to provide information about physiological or pathological processes occurring within the body. An inherent assumption of such analyses is that the concentration of the exhaled gases correlates with the concentration of the same gas in the tissue of interest. In this study we have investigated this assumption by quantifying some volatile compounds in peripheral venous blood headspace, and in nasal breath collected in Tedlar bags obtained at the same time from 30 healthy volunteers, prior to analysis by selected ion flow tube mass spectrometry. Some endogenous compounds were significantly correlated between blood headspace and nasal breath, such as isoprene (r p = 0.63) and acetone (r p = 0.68), however many, such as propanol (r p = -0.26) and methanol (r p = 0.23), were not. Furthermore, the relative concentrations of volatiles in blood and breath varied markedly between compounds, with some, such as isoprene and acetone, having similar concentrations in each, while others, such as acetic acid, ammonia and methanol, being significantly more abundant in breath, and others, such as methanal, being detectable only in breath. We also observed that breath propanol and acetic acid concentrations were higher in male compared to female participants, and that the blood headspace methanol concentration was negatively correlated to body mass index. No relationship between volatile concentrations and age was observed. Our data suggest that breath concentrations of volatiles do not necessarily give information about the same compound in the blood stream. This is likely due to the upper airway contributing compounds over and above that originating in the circulation. An investigation of the relationship between breath volatile concentrations and that in the tissue(s) of interest should therefore become a routine part of the development process of breath-based biomarkers.
Collapse
Affiliation(s)
- Brian M Ross
- Northern Ontario School of Medicine and Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | | |
Collapse
|
34
|
Bila WC, Mariano RMDS, Silva VR, Dos Santos MESM, Lamounier JA, Ferriolli E, Galdino AS. Applications of deuterium oxide in human health. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2017; 53:327-343. [PMID: 28165769 DOI: 10.1080/10256016.2017.1281806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
The main aim goal of this review was to gather information about recent publications related to deuterium oxide (D2O), and its use as a scientific tool related to human health. Searches were made in electronic databases Pubmed, Scielo, Lilacs, Medline and Cochrane. Moreover, the following patent databases were consulted: EPO (Espacenet patent search), USPTO (United States Patent and Trademark Office) and Google Patents, which cover researches worldwide related to innovations using D2O.
Collapse
Affiliation(s)
- Wendell Costa Bila
- a Graduate Programme in Health Sciences , Federal University of São João Del Rei-West Centre Campus , Divinópolis , Brazil
| | - Reysla Maria da Silveira Mariano
- b Graduate Programme in Biochemistry and Molecular Biology , Federal University of São João del Rei , Divinópolis , Brazil
- c Graduate Program in Biotechnology , Federal University of São João del Rei , Divinópolis , Brazil
| | - Valmin Ramos Silva
- d Faculty of Medicine, School of Sciences of Santa Casa de Misericórdia of Vitória , Nossa Senhora da Glória Children's Hospital , Vitória , Brazil
| | | | - Joel Alves Lamounier
- a Graduate Programme in Health Sciences , Federal University of São João Del Rei-West Centre Campus , Divinópolis , Brazil
| | - Eduardo Ferriolli
- e Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , Brazil
| | - Alexsandro Sobreira Galdino
- b Graduate Programme in Biochemistry and Molecular Biology , Federal University of São João del Rei , Divinópolis , Brazil
- c Graduate Program in Biotechnology , Federal University of São João del Rei , Divinópolis , Brazil
| |
Collapse
|
35
|
The application of chromatographic breath analysis in the search of volatile biomarkers of chronic kidney disease and coexisting type 2 diabetes mellitus. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:103-110. [DOI: 10.1016/j.jchromb.2017.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
|
36
|
Li W, Liu H, Xie D, He Z, Pi X. Lung Cancer Screening Based on Type-different Sensor Arrays. Sci Rep 2017; 7:1969. [PMID: 28512336 PMCID: PMC5434050 DOI: 10.1038/s41598-017-02154-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/07/2017] [Indexed: 12/22/2022] Open
Abstract
In recent years, electronic nose (e-nose) systems have become a focus method for diagnosing pulmonary diseases such as lung cancer. However, principles and patterns of sensor responses in traditional e-nose systems are relatively homogeneous. Less study has been focused on type-different sensor arrays. In this paper, we designed a miniature e-nose system using 14 gas sensors of four types and its subsequent analysis of 52 breath samples. To investigate the performance of this system in identifying and distinguishing lung cancer from other respiratory diseases and healthy controls, five feature extraction algorithms and two classifiers were adopted. Lastly, the influence of type-different sensors on the identification ability of e-nose systems was analyzed. Results indicate that when using the LDA fuzzy 5-NN classification method, the sensitivity, specificity and accuracy of discriminating lung cancer patients from healthy controls with e-nose systems are 91.58%, 91.72% and 91.59%, respectively. Our findings also suggest that type-different sensors could significantly increase the diagnostic accuracy of e-nose systems. These results showed e-nose system proposed in this study was potentially practicable in lung cancer screening with a favorable performance. In addition, it is important for type-different sensors to be considered when developing e-nose systems.
Collapse
Affiliation(s)
- Wang Li
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, P.R. China
- Artificial Intelligence of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, Sichuan Province, P.R. China
| | - Hongying Liu
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, P.R. China.
- Chongqing Engineering Research Center of Medical Electronics, Chongqing, P.R. China.
| | - Dandan Xie
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, P.R. China
| | - Zichun He
- Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Chongqing, P.R. China
| | - Xititan Pi
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, P.R. China.
- Key Laboratories for National Defense Science and Technology of Innovative Micro-Nano Devices and System Technology, Chongqing University, Chongqing, P.R. China.
| |
Collapse
|
37
|
Nakhleh MK, Haick H, Humbert M, Cohen-Kaminsky S. Volatolomics of breath as an emerging frontier in pulmonary arterial hypertension. Eur Respir J 2017; 49:49/2/1601897. [DOI: 10.1183/13993003.01897-2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/15/2016] [Indexed: 01/26/2023]
Abstract
There is accumulating evidence in support of the significant improvement in survival rates and clinical outcomes when pulmonary arterial hypertension (PAH) is diagnosed at early stages. Nevertheless, it remains a major clinical challenge and the outcomes are dependent on invasive right heart catheterisation.Resulting from pathophysiological processes and detectable in exhaled breath, volatile organic compounds (VOCs) have been proposed as noninvasive biomarkers for PAH. Studies have confirmed significant alterations of the exhaled VOCs among PAH patients when compared to controls and/or patients with other respiratory diseases. This suggests exhaled breath analysis as a potential noninvasive medical application in the field of PAH.In this article, we review and discuss the progress made so far in the field of exhaled volatolomics (the omics of VOCs) as a potential noninvasive diagnostics of PAH. In addition, we propose a model including possible biochemical pathways on the level of the remodelled artery, in which specific VOCs could be detectable in exhaled breath during the early phases of PAH. We debate the different analytical approaches used and recommend a diagram including a “bottom–top” strategy, from basic to translational studies, required for promoting the field.
Collapse
|
38
|
Rees CA, Franchina FA, Nordick KV, Kim PJ, Hill JE. Expanding the Klebsiella pneumoniae volatile metabolome using advanced analytical instrumentation for the detection of novel metabolites. J Appl Microbiol 2017; 122:785-795. [PMID: 27930839 DOI: 10.1111/jam.13372] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/03/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022]
Abstract
AIMS The purpose of this study was to identify the volatile molecules produced by the pathogenic Gram-negative bacterium Klebsiella pneumoniae (ATCC 13883) during in vitro growth using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS). METHODS AND RESULTS Klebsiella pneumoniae ATCC 13883 was incubated in lysogeny broth to mid-exponential and stationary growth phases. Headspace volatile molecules from culture supernatants were concentrated using solid-phase microextraction (SPME) and analysed via GC×GC-TOFMS. Ninety-two K. pneumoniae-associated volatile molecules were detected, of which 78 (85%) were detected at both phases of growth and 14 (15%) were detected at either mid-exponential or stationary growth phases. CONCLUSIONS This study has increased the total number of reported K. pneumoniae-associated volatile molecules from 77 to 150, demonstrating the sensitivity and resolution achieved by employing GC×GC-TOFMS for the analysis of bacterial headspace volatiles. SIGNIFICANCE AND IMPACT OF THE STUDY This study represents an early-stage comprehensive volatile metabolomic analysis of an opportunistic bacterial pathogen. Characterizing the volatile molecules produced by K. pneumoniae during in vitro growth could provide us with a better understanding of this organisms' metabolism, an area that has not been extensively studied to date.
Collapse
Affiliation(s)
- C A Rees
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - F A Franchina
- Thayer School of Engineering at Dartmouth, Hanover, NH, USA
| | | | - P J Kim
- Dartmouth College, Hanover, NH, USA
| | - J E Hill
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Thayer School of Engineering at Dartmouth, Hanover, NH, USA
| |
Collapse
|
39
|
Bayrakli I, Turkmen A, Akman H, Sezer MT, Kutluhan S. Applications of external cavity diode laser-based technique to noninvasive clinical diagnosis using expired breath ammonia analysis: chronic kidney disease, epilepsy. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:87004. [PMID: 27533447 DOI: 10.1117/1.jbo.21.8.087004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
An external cavity laser (ECL)-based off-axis cavity-enhanced absorption spectroscopy was applied to noninvasive clinical diagnosis using expired breath ammonia analysis: (1) the correlation between breath ammonia levels and blood parameters related to chronic kidney disease (CKD) was investigated and (2) the relationship between breath ammonia levels and blood concentrations of valproic acid (VAP) was studied. The concentrations of breath ammonia in 15 healthy volunteers, 10 epilepsy patients (before and after taking VAP), and 27 patients with different stages of CKD were examined. The range of breath ammonia levels was 120 to 530 ppb for healthy subjects and 710 to 10,400 ppb for patients with CKD. There was a statistically significant positive correlation between breath ammonia concentrations and urea, blood urea nitrogen, creatinine, or estimated glomerular filtration rate in 27 patients. It was demonstrated that taking VAP gave rise to increasing breath ammonia levels. A statistically significant difference was found between the levels of exhaled ammonia (NH3) in healthy subjects and in patients with epilepsy before and after taking VAP. The results suggest that our breath ammonia measurement system has great potential as an easy, noninvasive, real-time, and continuous monitor of the clinical parameters related to epilepsy and CKD.
Collapse
Affiliation(s)
- Ismail Bayrakli
- Suleyman Demirel University, Biomedical Engineering, Bati kampüsü Isparta, Turkey
| | - Aysenur Turkmen
- Suleyman Demirel University, Biomedical Engineering, Bati kampüsü Isparta, Turkey
| | - Hatice Akman
- Suleyman Demirel University, Biomedical Engineering, Bati kampüsü Isparta, Turkey
| | - M Tugrul Sezer
- Suleyman Demirel University, School of Medicine, Department of Nephrology, Dogu kampüsü Isparta, Turkey
| | - Suleyman Kutluhan
- Suleyman Demirel University, School of Medicine, Department of Neurology, Dogu kampüsü, Isparta, Turkey
| |
Collapse
|
40
|
Boots AW, Bos LD, van der Schee MP, van Schooten FJ, Sterk PJ. Exhaled Molecular Fingerprinting in Diagnosis and Monitoring: Validating Volatile Promises. Trends Mol Med 2016; 21:633-644. [PMID: 26432020 DOI: 10.1016/j.molmed.2015.08.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 12/19/2022]
Abstract
Medical diagnosis and phenotyping increasingly incorporate information from complex biological samples. This has promoted the development and clinical application of non-invasive metabolomics in exhaled air (breathomics). In respiratory medicine, expired volatile organic compounds (VOCs) are associated with inflammatory, oxidative, microbial, and neoplastic processes. After recent proof of concept studies demonstrating moderate to good diagnostic accuracies, the latest efforts in breathomics are focused on optimization of sensor technologies and analytical algorithms, as well as on independent validation of clinical classification and prediction. Current research strategies are revealing the underlying pathophysiological pathways as well as clinically-acceptable levels of diagnostic accuracy. Implementing recent guidelines on validating molecular signatures in medicine will enhance the clinical potential of breathomics and the development of point-of-care technologies.
Collapse
Affiliation(s)
- Agnes W Boots
- Department of Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| | - Lieuwe D Bos
- Department of Respiratory Medicine, Academic Medical Centre, University of Medical Centre Amsterdam, The Netherlands
| | - Marc P van der Schee
- Department of Respiratory Medicine, Academic Medical Centre, University of Medical Centre Amsterdam, The Netherlands; Department of Pediatric Pulmonology, Emma's Children's Hospital, Academic Medical Centre Amsterdam, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Centre, University of Medical Centre Amsterdam, The Netherlands
| |
Collapse
|
41
|
Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas. Bioanalysis 2016; 8:1183-201. [PMID: 27212131 DOI: 10.4155/bio-2016-0038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This article reflects our observations of recent accomplishments made using selected ion flow tube MS (SIFT-MS). Only brief descriptions are given of SIFT-MS as an analytical method and of the recent extensions to the underpinning analytical ion chemistry required to realize more robust analyses. The challenge of breath analysis is given special attention because, when achieved, it renders analysis of other air media relatively straightforward. Brief overviews are given of recent SIFT-MS breath analyses by leading research groups, noting the desirability of detection and quantification of single volatile biomarkers rather than reliance on statistical analyses, if breath analysis is to be accepted into clinical practice. A 'strengths, weaknesses, opportunities and threats' analysis of SIFT-MS is made, which should help to increase its utility for trace gas analysis.
Collapse
|
42
|
Brannelly NT, Hamilton-Shield JP, Killard AJ. The Measurement of Ammonia in Human Breath and its Potential in Clinical Diagnostics. Crit Rev Anal Chem 2016; 46:490-501. [PMID: 26907707 DOI: 10.1080/10408347.2016.1153949] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ammonia is an important component of metabolism and is involved in many physiological processes. During normal physiology, levels of blood ammonia are between 11 and 50 µM. Elevated blood ammonia levels are associated with a variety of pathological conditions such as liver and kidney dysfunction, Reye's syndrome and a variety of inborn errors of metabolism including urea cycle disorders (UCD), organic acidaemias and hyperinsulinism/hyperammonaemia syndrome in which ammonia may reach levels in excess of 1 mM. It is highly neurotoxic and so effective measurement is critical for assessing and monitoring disease severity and treatment. Ammonia is also a potential biomarker in exercise physiology and studies of drug metabolism. Current ammonia testing is based on blood sampling, which is inconvenient and can be subject to significant analytical errors due to the quality of the sample draw, its handling and preparation for analysis. Blood ammonia is in gaseous equilibrium with the lungs. Recent research has demonstrated the potential use of breath ammonia as a non-invasive means of measuring systemic ammonia. This requires measurement of ammonia in real breath samples with associated temperature, humidity and gas characteristics at concentrations between 50 and several thousand parts per billion. This review explores the diagnostic applications of ammonia measurement and the impact that the move from blood to breath analysis could have on how these processes and diseases are studied and managed.
Collapse
Affiliation(s)
- N T Brannelly
- a Department of Biological Biomedical and Analytical Science , University of the West of England , Bristol , UK
| | | | - A J Killard
- a Department of Biological Biomedical and Analytical Science , University of the West of England , Bristol , UK
| |
Collapse
|
43
|
Blinded Validation of Breath Biomarkers of Lung Cancer, a Potential Ancillary to Chest CT Screening. PLoS One 2015; 10:e0142484. [PMID: 26698306 PMCID: PMC4689411 DOI: 10.1371/journal.pone.0142484] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/22/2015] [Indexed: 01/26/2023] Open
Abstract
Background Breath volatile organic compounds (VOCs) have been reported as biomarkers of lung cancer, but it is not known if biomarkers identified in one group can identify disease in a separate independent cohort. Also, it is not known if combining breath biomarkers with chest CT has the potential to improve the sensitivity and specificity of lung cancer screening. Methods Model-building phase (unblinded): Breath VOCs were analyzed with gas chromatography mass spectrometry in 82 asymptomatic smokers having screening chest CT, 84 symptomatic high-risk subjects with a tissue diagnosis, 100 without a tissue diagnosis, and 35 healthy subjects. Multiple Monte Carlo simulations identified breath VOC mass ions with greater than random diagnostic accuracy for lung cancer, and these were combined in a multivariate predictive algorithm. Model-testing phase (blinded validation): We analyzed breath VOCs in an independent cohort of similar subjects (n = 70, 51, 75 and 19 respectively). The algorithm predicted discriminant function (DF) values in blinded replicate breath VOC samples analyzed independently at two laboratories (A and B). Outcome modeling: We modeled the expected effects of combining breath biomarkers with chest CT on the sensitivity and specificity of lung cancer screening. Results Unblinded model-building phase. The algorithm identified lung cancer with sensitivity 74.0%, specificity 70.7% and C-statistic 0.78. Blinded model-testing phase: The algorithm identified lung cancer at Laboratory A with sensitivity 68.0%, specificity 68.4%, C-statistic 0.71; and at Laboratory B with sensitivity 70.1%, specificity 68.0%, C-statistic 0.70, with linear correlation between replicates (r = 0.88). In a projected outcome model, breath biomarkers increased the sensitivity, specificity, and positive and negative predictive values of chest CT for lung cancer when the tests were combined in series or parallel. Conclusions Breath VOC mass ion biomarkers identified lung cancer in a separate independent cohort, in a blinded replicated study. Combining breath biomarkers with chest CT could potentially improve the sensitivity and specificity of lung cancer screening. Trial Registration ClinicalTrials.gov NCT00639067
Collapse
|
44
|
Španěl P, Dryahina K, Vicherková P, Smith D. Increase of methanol in exhaled breath quantified by SIFT-MS following aspartame ingestion. J Breath Res 2015; 9:047104. [PMID: 26582819 DOI: 10.1088/1752-7155/9/4/047104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aspartame, methyl-L-α-aspartyl-L-phenylalaninate, is used worldwide as a sweetener in foods and drinks and is considered to be safe at an acceptable daily intake (ADI) of 40 mg per kg of body weight. This compound is completely hydrolyzed in the gastrointestinal tract to aspartic acid, phenylalanine and methanol, each being toxic at high levels. The objective of the present study was to quantify the volatile methanol component in the exhaled breath of ten healthy volunteers following the ingestion of a single ADI dose of aspartame. Direct on-line measurements of methanol concentration were made in the mouth and nose breath exhalations using selected ion flow tube mass spectrometry, SIFT-MS, several times before aspartame ingestion in order to establish individual pre-dose (baseline) levels and then during two hours post-ingestion to track their initial increase and subsequent decrease. The results show that breath methanol concentrations increased in all volunteers by 1082 ± 205 parts-per-billion by volume (ppbv) from their pre-ingestion values, which ranged from 193 to 436 ppbv to peak values ranging from 981-1622 ppbv, from which they slowly decreased. These observations agree quantitatively with a predicted increase of 1030 ppbv estimated using a one-compartment model of uniform dilution of the methanol generated from a known amount of aspartame throughout the total body water (including blood). In summary, an ADI dose of aspartame leads to a 3-6 fold increase of blood methanol concentration above the individual baseline values.
Collapse
Affiliation(s)
- Patrik Španěl
- J. Heyrovsky Institute of Physical Chemistry, Academy of Science of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic
| | | | | | | |
Collapse
|
45
|
Smith D, Spanel P. Pitfalls in the analysis of volatile breath biomarkers: suggested solutions and SIFT-MS quantification of single metabolites. J Breath Res 2015; 9:022001. [PMID: 25830501 DOI: 10.1088/1752-7155/9/2/022001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The experimental challenges presented by the analysis of trace volatile organic compounds (VOCs) in exhaled breath with the objective of identifying reliable biomarkers are brought into focus. It is stressed that positive identification and accurate quantification of the VOCs are imperative if they are to be considered as discreet biomarkers. Breath sampling procedures are discussed and it is suggested that for accurate quantification on-line real time sampling and analysis is desirable. Whilst recognizing such real time analysis is not always possible and sample collection is often required, objective recognition of the pitfalls involved in this is essential. It is also emphasized that mouth-exhaled breath is always contaminated to some degree by orally generated compounds and so, when possible, analysis of nose-exhaled breath should be performed. Some difficulties in breath analysis are mitigated by the choice of analytical instrumentation used, but no single instrument can provide solutions to all the analytical challenges. Analysis and interpretation of breath analysis data, however acquired, needs to be treated circumspectly. In particular, the excessive use of statistics to treat imperfect mass spectrometry/mobility spectra should be avoided, since it can result in unjustifiable conclusions. It is should be understood that recognition of combinations of VOCs in breath that, for example, apparently describe particular cancer states, will not be taken seriously until they are replicated in other laboratories and clinics. Finally, the inhibiting notion that single biomarkers of infection and disease will not be identified and utilized clinically should be dispelled by the exemplary and widely used single biomarkers NO and H2 and now, as indicated by recent selected ion flow tube mass spectroscopy (SIFT-MS) results, triatomic hydrogen cyanide and perhaps pentane and acetic acid. Hopefully, these discoveries will provide encouragement to research workers to be more open-minded on this important and desirable issue.
Collapse
Affiliation(s)
- David Smith
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
| | | |
Collapse
|
46
|
Smith D, Španěl P. SIFT-MS and FA-MS methods for ambient gas phase analysis: developments and applications in the UK. Analyst 2015; 140:2573-91. [DOI: 10.1039/c4an02049a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The origins of SIFT created to study interstellar chemistry and SIFT-MS developed for ambient gas and exhaled breath analysis and the UK centres in which these techniques are being exploited.
Collapse
Affiliation(s)
- David Smith
- Institute for Science and Technology in Medicine – Keele University
- Guy Hilton Research Centre
- Stoke-on-Trent
- UK
| | - Patrik Španěl
- Institute for Science and Technology in Medicine – Keele University
- Guy Hilton Research Centre
- Stoke-on-Trent
- UK
- J. Heyrovský Institute of Physical Chemistry
| |
Collapse
|