1
|
Biedka S, Yablonska S, Peng X, Alkam D, Hartoyo M, VanEvery H, Kass DJ, Byrum SD, Xiao K, Zhang Y, Domsic RT, Lafyatis R, Ascherman DP, Minden JS. IP-to-MS: An Unbiased Workflow for Antigen Profiling. J Proteome Res 2025. [PMID: 39814365 DOI: 10.1021/acs.jproteome.4c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Immunoprecipitation is among the most widely utilized methods in biomedical research, with applications that include the identification of antibody targets and associated proteins. The path to identifying these targets is not straightforward, however, and often requires the use of chemical cross-linking and/or gel electrophoresis to separate targets from an overabundance of immunoglobulin protein. Such experiments are labor intensive and often yield long lists of candidate antibody targets. Here, we describe an unbiased immunoprecipitation-to-mass spectrometry (IP-to-MS) method that relies on a novel protein tag to separate low abundance immunoprecipitated proteins from overwhelmingly abundant immunoglobulins. We demonstrate that the IP-to-MS serotyping workflow is highly reproducible and can be used for the identification of novel, patient-specific antigen targets in multiple disease states. Furthermore, we show that IP-to-MS may outperform conventional methods of antibody detection, including enzyme-linked immunosorbent assay, while also enabling patient stratification beyond what is possible with traditional approaches.
Collapse
Affiliation(s)
- Stephanie Biedka
- Impact Proteomics, LLC., Pittsburgh, Pennsylvania 15206, United States
| | | | - Xi Peng
- Center for Proteomics & Artificial Intelligence, Allegheny Health Network Cancer Institute, Pittsburgh, Pennsylvania 15205, United States
- Center for Clinical Mass Spectrometry, Allegheny Health Network Cancer Institute, Pittsburgh, Pennsylvania 15205, United States
| | - Duah Alkam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Mara Hartoyo
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Hannah VanEvery
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Daniel J Kass
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Arkansas Children's Research Institute, Little Rock, Arkansas 72202, United States
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Kunhong Xiao
- Center for Proteomics & Artificial Intelligence, Allegheny Health Network Cancer Institute, Pittsburgh, Pennsylvania 15205, United States
- Center for Clinical Mass Spectrometry, Allegheny Health Network Cancer Institute, Pittsburgh, Pennsylvania 15205, United States
| | - Yingze Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Robyn T Domsic
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Dana P Ascherman
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Jonathan S Minden
- Impact Proteomics, LLC., Pittsburgh, Pennsylvania 15206, United States
| |
Collapse
|
2
|
Lourido L, Joshua V, Hansson M, Sjöberg R, Pin E, Ruiz-Romero C, Nilsson P, Alfredsson L, Klareskog L, Blanco FJ. Identification of circulating autoantibodies to non-modified proteins associated with ACPA status in early rheumatoid arthritis. Rheumatology (Oxford) 2024; 63:3106-3114. [PMID: 38195995 DOI: 10.1093/rheumatology/keae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
OBJECTIVE The objective of this study was to discover autoantibodies to non-modified proteins associated with the presence/absence of ACPAs in RA. METHODS The autoantibody repertoire of 80 ACPA-negative and 80 ACPA-positive RA subjects from the Swedish population-based Epidemiological Investigation of RA (EIRA) cohort was screened using a suspension bead array built on protein fragments earlier described as autoimmunity targets. Four autoantibodies positive in the initial screening were validated in another set of EIRA samples containing 317 ACPA-positive, 302 ACPA-negative and 372 age- and sex-matched controls. The relationship between the four autoantibodies and lung abnormalities on high-resolution CT (HRCT) was examined in 93 early-RA patients from the LURA cohort. Association between the autoantibodies, smoking and MHC class II alleles was assessed by logistic regression analysis. RESULTS Anti-ANOS1 and anti-MURC IgG levels were associated with ACPA-positive status [odds ratio (OR) = 3.02; 95% CI 1.87-4.89; and OR = 1.86; 95% CI 1.16-2.97, respectively] and increased in ACPA-positive patients compared with controls. Anti-ANOS1 IgG was associated with smoking habit (OR = 2.11; 95% CI 1.22-3.69) and anti-MURC IgG with the presence of the MHC class II 'shared-epitope' genes (OR = 1.95; 95% CI 1.11-3.46). Anti-TSPYL4 IgG was associated with being ACPA negative (OR = 0.41; 95% CI 0.19-0.89). Anti-TSPYL4 IgG and anti-MAP2K6 IgG levels were increased in the ACPA-negative patients compared with controls. Presence of anti-MAP2K6 IgG and anti-TSPYL4 IgG correlated negatively with HRCT-defined lung abnormalities. CONCLUSION These four autoantibodies may be useful in diagnostics and in predicting clinical phenotypes of RA.
Collapse
Affiliation(s)
- Lucía Lourido
- Unidad de Proteómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, España
| | - Vijay Joshua
- Division for Rheumatology, Department of Medicine, (Solna) Karolinska Institutet, Stockholm, Sweden
| | - Monika Hansson
- Division for Rheumatology, Department of Medicine, (Solna) Karolinska Institutet, Stockholm, Sweden
| | - Ronald Sjöberg
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elisa Pin
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Cristina Ruiz-Romero
- Unidad de Proteómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, España
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, España
| | - Peter Nilsson
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Klareskog
- Division for Rheumatology, Department of Medicine, (Solna) Karolinska Institutet, Stockholm, Sweden
| | - Francisco J Blanco
- Unidad de Proteómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, España
- Grupo de Investigación en Reumatología y Salud (GIR-S), Centro Interdisciplinar de Química e Bioloxía (CICA), Departamento de Fisioterapia, Medicina y Ciencias Biomédica, Facultad de Fisioterapia, Universidade da Coruña (UDC), A Coruña, Spain
| |
Collapse
|
3
|
Yari P, Liang S, Chugh VK, Rezaei B, Mostufa S, Krishna VD, Saha R, Cheeran MCJ, Wang JP, Gómez-Pastora J, Wu K. Nanomaterial-Based Biosensors for SARS-CoV-2 and Future Epidemics. Anal Chem 2023; 95:15419-15449. [PMID: 37826859 DOI: 10.1021/acs.analchem.3c01522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Affiliation(s)
- Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Venkatramana Divana Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Jian-Ping Wang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
4
|
Levy S, Abd Alhadi M, Azulay A, Kahana A, Bujanover N, Gazit R, McGargill MA, Friedman LM, Hertz T. FLU-LISA (fluorescence-linked immunosorbent assay): high-throughput antibody profiling using antigen microarrays. Immunol Cell Biol 2023; 101:231-248. [PMID: 36567516 DOI: 10.1111/imcb.12618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
Vaccination and natural infection both elicit potent humoral responses that provide protection from subsequent infections. The immune history of an individual following such exposures is in part encoded by antibodies. While there are multiple immunoassays for measuring antibody responses, the majority of these methods measure responses to a single antigen. A commonly used method for measuring antibody responses is ELISA-a semiquantitative assay that is simple to perform in research and clinical settings. Here, we present FLU-LISA (fluorescence-linked immunosorbent assay)-a novel antigen microarray-based assay for rapid high-throughput antibody profiling. The assay can be used for profiling immunoglobulin (Ig) G, IgA and IgM responses to multiple antigens simultaneously, requiring minimal amounts of sample and antigens. Using several influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen microarrays, we demonstrated the specificity and sensitivity of our novel assay and compared it with the traditional ELISA, using samples from mice, chickens and humans. We also showed that our assay can be readily used with dried blood spots, which can be collected from humans and wild birds. FLU-LISA can be readily used to profile hundreds of samples against dozens of antigens in a single day, and therefore offers an attractive alternative to the traditional ELISA.
Collapse
Affiliation(s)
- Shlomia Levy
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Marwa Abd Alhadi
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Asaf Azulay
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Amit Kahana
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Nir Bujanover
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Roi Gazit
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lilach M Friedman
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Tomer Hertz
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Beer-Sheva, Israel.,Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
5
|
Burbelo PD, Ji Y, Iadarola MJ. Advancing Luciferase-Based Antibody Immunoassays to Next-Generation Mix and Read Testing. BIOSENSORS 2023; 13:303. [PMID: 36979515 PMCID: PMC10046223 DOI: 10.3390/bios13030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Antibody measurements play a central role in the diagnosis of many autoimmune and infectious diseases. One antibody detection technology, Luciferase Immunoprecipitation Systems (LIPS), utilizes genetically encoded recombinant luciferase antigen fusion proteins in an immunoglobulin capture format to generate robust antibody measurement with high diagnostic sensitivity and specificity. The LIPS technology has been highly useful in detecting antibodies for research diagnostics and the discovery of new autoantigens. The methodology of the assay requires immunoglobulin binding reagents such as protein A/G beads and washing steps to process the immune complex before antibody levels are measured by light production with a luminometer. Recently, simplified mix and read immunoassays based on split components of the nanoluciferase enzyme in a complementation format have been developed for antibody measurements without requiring immunoglobulin-capturing beads or washing steps. The mix and read immunoassays utilize two or three nanoluciferase fragments which when reconstituted via antigen-specific antibody binding generate a functional enzyme. At present, these split luciferase tests have been developed mainly for detecting SARS-CoV-2 antibodies. Here, we describe the traditional LIPS technology and compare it to the new split luciferase methodologies focusing on their technical features, strengths, limitations, and future opportunities for diagnostic research, and clinical applications.
Collapse
Affiliation(s)
- Peter D. Burbelo
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 202892, USA
| | - Youngmi Ji
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 202892, USA
| | - Michael J. Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 202892, USA
| |
Collapse
|
6
|
Multiplexed Bead-Based Peptide Immunoassays for the Detection of Antibody Reactivities. Methods Mol Biol 2023; 2628:505-533. [PMID: 36781804 DOI: 10.1007/978-1-0716-2978-9_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Antigenic peptides are commonly used in serological test settings such as enzyme-linked immunosorbent assays (ELISA) to determine reactive antibodies (ABs) from serum or plasma samples. The use of synthetic peptides provides advantages like lower production effort and easier incorporation of specific chemical modifications compared to full-length antigenic proteins. Multiplexed antibody (AB) profiling methods such as microarray technologies enable the simultaneous identification of multiple novel biomarkers for the use in early disease diagnostics, vaccine development, or monitoring of immune responses. Despite various benefits they still show major limitations which can be overcome with bead-based assay technologies like the multi-analyte profiling (xMAP) technology developed by Luminex. In this chapter we introduce our established workflow for AB profiling with a multiplexed bead-based peptide immunoassay. The workflow is based on copper-catalyzed click chemistry to immobilize designed synthetic peptides onto uniquely color-coded paramagnetic beads in an orientation-specific manner. The individual peptide-coupled beads can be distinguished by their unique emission spectra during readout in the xMAP instrument and therefore allow testing of up to 500 different antigenic peptides in one multiplexed reaction. The multistep process described in this chapter is divided into separate sections for peptide design, coupling of functionalized peptides to MagPlex beads via click chemistry, confirmation of successful peptide immobilization, processing of serum or plasma samples, or preferably purified IgG thereof, with the multiplexed bead-based peptide immunoassay and subsequent data export and analysis.
Collapse
|
7
|
Levy S, Abd Alhadi M, Azulay A, Kahana A, Bujanover N, Gazit R, Mcgargill MA, Friedman LM, Hertz T. ELISA–on-Chip: High throughput antibody profiling using antigen microarrays.. [DOI: 10.1101/2022.07.05.22277251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractVaccination and natural infection both elicit potent humoral responses that provide protection from subsequent infections. The immune-history of an individual following such exposures is in part encoded by antibodies. While there are multiple immunoassays for measuring antibody responses, the majority of these methods measure responses to a single antigen. A commonly used method for measuring antibody responses is the enzyme-linked immunosorbent assay (ELISA) assay - a semi-quantitative assay that is simple to perform in research and clinical settings. Here we present the ELISA-on-Chip assay - a novel antigen microarray based assay for rapid high-throughput antibody profiling. The assay can be used for profiling IgG, IgA and IgM responses to multiple antigens simultaneously, requiring minimal amounts of sample and antigens. Using three different types of influenza antigen microarrays, we demonstrated the specificity and sensitivity of our novel assay and compared it to the traditional ELISA assay, using samples from mice, chickens and humans. We also showed that our assay can be readily used with dried blood spots, which can be collected from wild birds, as well as from newborns and children. The ELISA-on-Chip assay can be readily used to profile hundreds of samples against dozens of antigens in a single day, and therefore offers an attractive alternative to the traditional ELISA assay.
Collapse
|
8
|
Burbelo PD, Castagnoli R, Shimizu C, Delmonte OM, Dobbs K, Discepolo V, Lo Vecchio A, Guarino A, Licciardi F, Ramenghi U, Rey-Jurado E, Vial C, Marseglia GL, Licari A, Montagna D, Rossi C, Montealegre Sanchez GA, Barron K, Warner BM, Chiorini JA, Espinosa Y, Noguera L, Dropulic L, Truong M, Gerstbacher D, Mató S, Kanegaye J, Tremoulet AH, Eisenstein EM, Su HC, Imberti L, Poli MC, Burns JC, Notarangelo LD, Cohen JI. Autoantibodies Against Proteins Previously Associated With Autoimmunity in Adult and Pediatric Patients With COVID-19 and Children With MIS-C. Front Immunol 2022; 13:841126. [PMID: 35360001 PMCID: PMC8962198 DOI: 10.3389/fimmu.2022.841126] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
The antibody profile against autoantigens previously associated with autoimmune diseases and other human proteins in patients with COVID-19 or multisystem inflammatory syndrome in children (MIS-C) remains poorly defined. Here we show that 30% of adults with COVID-19 had autoantibodies against the lung antigen KCNRG, and 34% had antibodies to the SLE-associated Smith-D3 protein. Children with COVID-19 rarely had autoantibodies; one of 59 children had GAD65 autoantibodies associated with acute onset of insulin-dependent diabetes. While autoantibodies associated with SLE/Sjögren's syndrome (Ro52, Ro60, and La) and/or autoimmune gastritis (gastric ATPase) were detected in 74% (40/54) of MIS-C patients, further analysis of these patients and of children with Kawasaki disease (KD), showed that the administration of intravenous immunoglobulin (IVIG) was largely responsible for detection of these autoantibodies in both groups of patients. Monitoring in vivo decay of the autoantibodies in MIS-C children showed that the IVIG-derived Ro52, Ro60, and La autoantibodies declined to undetectable levels by 45-60 days, but gastric ATPase autoantibodies declined more slowly requiring >100 days until undetectable. Further testing of IgG and/or IgA antibodies against a subset of potential targets identified by published autoantigen array studies of MIS-C failed to detect autoantibodies against most (16/18) of these proteins in patients with MIS-C who had not received IVIG. However, Troponin C2 and KLHL12 autoantibodies were detected in 2 of 20 and 1 of 20 patients with MIS-C, respectively. Overall, these results suggest that IVIG therapy may be a confounding factor in autoantibody measurements in MIS-C and that antibodies against antigens associated with autoimmune diseases or other human proteins are uncommon in MIS-C.
Collapse
Affiliation(s)
- Peter D Burbelo
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, United States
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States.,Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Chisato Shimizu
- Department of Pediatrics, Rady Children's Hospital, University of California San Diego, San Diego, CA, United States
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Valentina Discepolo
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Andrea Lo Vecchio
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Francesco Licciardi
- Division of Pediatric Immunology and Rheumatology, Department of Public Health and Pediatric Sciences, "Regina Margherita" Children's Hospital, University of Turin, Turin, Italy
| | - Ugo Ramenghi
- Division of Pediatric Immunology and Rheumatology, Department of Public Health and Pediatric Sciences, "Regina Margherita" Children's Hospital, University of Turin, Turin, Italy
| | - Emma Rey-Jurado
- Instituto de Ciencias e Innovación en Medicina (ICIM), Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Cecilia Vial
- Instituto de Ciencias e Innovación en Medicina (ICIM), Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Gian Luigi Marseglia
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Amelia Licari
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Daniela Montagna
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Camillo Rossi
- Direzione Sanitaria, ASST Spedali Civili, Brescia, Italy
| | - Gina A Montealegre Sanchez
- Intramural Clinical Management and Operations Branch (ICMOB), Division of Clinical Research NIAID, NIH, Bethesda, MD, United States
| | - Karyl Barron
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD, United States
| | - Blake M Warner
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, United States
| | - John A Chiorini
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, United States
| | | | - Loreani Noguera
- Instituto de Ciencias e Innovación en Medicina (ICIM), Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Lesia Dropulic
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Meng Truong
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Dana Gerstbacher
- Pediatric Rheumatology, Stanford Children's Hospital, Stanford, CA, United States
| | - Sayonara Mató
- Pediatric Infectious Diseases, Randall Children's Hospital at Legacy Emanuel, Portland, OR, United States
| | - John Kanegaye
- Department of Pediatrics, Rady Children's Hospital, University of California San Diego, San Diego, CA, United States
| | - Adriana H Tremoulet
- Department of Pediatrics, Rady Children's Hospital, University of California San Diego, San Diego, CA, United States
| | | | - Eli M Eisenstein
- Department of Pediatrics, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Luisa Imberti
- CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Maria Cecilia Poli
- Instituto de Ciencias e Innovación en Medicina (ICIM), Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Hospital Roberto del Río, Santiago, Chile
| | - Jane C Burns
- Department of Pediatrics, Rady Children's Hospital, University of California San Diego, San Diego, CA, United States
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| |
Collapse
|
9
|
Maqbool I, Ali SI, Paul V, Muzaffer U. Immunognetics: a tool for the identification of novel therapeutic targets in immune disorders. CLINICAL APPLICATIONS OF IMMUNOGENETICS 2022:355-376. [DOI: 10.1016/b978-0-323-90250-2.00015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Belousov PV. Analysis of the Repertoires of Circulating Autoantibodies' Specificities as a Tool for Identification of the Tumor-Associated Antigens: Current Problems and Solutions. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1225-1242. [PMID: 34903148 DOI: 10.1134/s0006297921100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 06/14/2023]
Abstract
Circulating autoantibodies against tumor-associated autoantigens (TAA) may serve as valuable biomarkers for a wide range of diagnostic purposes. Modern immunology offers a large variety of methods for in-depth comparative analysis of the repertoires of circulating antibodies' antigenic specificities in health and disease. Nevertheless, this research field so far has met somewhat limited clinical success, while numerous data on the repertoires of circulating autoantibodies' specificities in cancer patients are poorly integrated into the contemporary picture of the immunological and molecular landscapes of human tumors. This review is an attempt to identify and systematize the key and essentially universal conceptual and methodological limitations of analyses of the repertoires of circulating antibodies' antigenic specificities in cancer (expression bias, redundancy of TAA repertoires, identification of natural IgG, the absence of the pathogenetically relevant context in the experimental systems used to detect TAA), as well as to discuss potential and already known methodological improvements that may significantly increase the detectability of the pathogenetically relevant and diagnostically significant bona fide TAA.
Collapse
Affiliation(s)
- Pavel V Belousov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- National Center for Personalized Medicine of Endocrine Diseases, National Medical Research Center of Endocrinology, Ministry of Health of the Russian Federation, Moscow, 117036, Russia
| |
Collapse
|
11
|
Lew TTS, Aung KMM, Ow SY, Amrun SN, Sutarlie L, Ng LFP, Su X. Epitope-Functionalized Gold Nanoparticles for Rapid and Selective Detection of SARS-CoV-2 IgG Antibodies. ACS NANO 2021; 15:12286-12297. [PMID: 34133128 PMCID: PMC8231658 DOI: 10.1021/acsnano.1c04091] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/14/2021] [Indexed: 05/02/2023]
Abstract
Rapid and inexpensive immunodiagnostic assays to monitor severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroconversion are essential for conducting large-scale COVID-19 epidemiological surveillance and profiling humoral responses against SARS-CoV-2 infections or immunizations. Herein, a colorimetic serological assay to detect SARS-CoV-2 IgGs in patients' plasma was developed using short antigenic epitopes conjugated to gold nanoparticles (AuNPs). Four immunodominant linear B-cell epitopes, located on the spike (S) and nucleocapsid (N) proteins of SARS-CoV-2, were characterized for their IgG binding affinity and used as highly specific biological motifs on the nanoparticle to recognize target antibodies. Specific bivalent binding between SARS-CoV-2 antibodies and epitope-functionalized AuNPs trigger nanoparticle aggregation, which manifests as a distinct optical transition in the AuNPs' plasmon characteristics within 30 min of antibody introduction. Co-immobilization of two epitopes improved the assay sensitivity relative to single-epitope AuNPs with a limit of detection of 3.2 nM, commensurate with IgG levels in convalescent COVID-19-infected patients. A passivation strategy was further pursued to preserve the sensing response in human plasma medium. When tested against 35 clinical plasma samples of varying illness severity, the optimized nanosensor assay can successfully identify SARS-CoV-2 infection with 100% specificity and 83% sensitivity. As the epitopes are conserved within the circulating COVID-19 variants, the proposed platform holds great potential to serve as a cost-effective and highly specific alternative to classical immunoassays employing recombinant viral proteins. These epitope-enabled nanosensors further expand the serodiagnostic toolbox for COVID-19 epidemiological study, humoral response monitoring, or vaccine efficiency assessment.
Collapse
Affiliation(s)
- Tedrick Thomas Salim Lew
- Institute of Materials Research and
Engineering, Agency for Science, Technology and Research (A*STAR), 2
Fusionopolis Way, Singapore 138634, Singapore
| | - Khin Moh Moh Aung
- Institute of Materials Research and
Engineering, Agency for Science, Technology and Research (A*STAR), 2
Fusionopolis Way, Singapore 138634, Singapore
| | - Sian Yang Ow
- Institute of Materials Research and
Engineering, Agency for Science, Technology and Research (A*STAR), 2
Fusionopolis Way, Singapore 138634, Singapore
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases Laboratories (A*STAR ID
Laboratories), Agency for Science, Technology and Research
(A*STAR), Singapore 138648, Singapore
| | - Laura Sutarlie
- Institute of Materials Research and
Engineering, Agency for Science, Technology and Research (A*STAR), 2
Fusionopolis Way, Singapore 138634, Singapore
| | - Lisa F. P. Ng
- A*STAR Infectious Diseases Laboratories (A*STAR ID
Laboratories), Agency for Science, Technology and Research
(A*STAR), Singapore 138648, Singapore
- National Institute of Health Research, Health Protection
Research Unit in Emerging and Zoonotic Infections, University of
Liverpool, Liverpool L69 7BE, United Kingdom
- Institute of Infection, Veterinary and Ecological
Sciences, University of Liverpool, Liverpool CH64 7TE,
United Kingdom
| | - Xiaodi Su
- Institute of Materials Research and
Engineering, Agency for Science, Technology and Research (A*STAR), 2
Fusionopolis Way, Singapore 138634, Singapore
- Department of Chemistry, National
University of Singapore, Block S8, Level 3, 3 Science Drive 3, Singapore
117543, Singapore
| |
Collapse
|
12
|
Pin E, Petricoin EF, Cortes N, Bowman TG, Andersson E, Uhlén M, Nilsson P, Caswell SV. Immunoglobulin A Autoreactivity toward Brain Enriched and Apoptosis-Regulating Proteins in Saliva of Athletes after Acute Concussion and Subconcussive Impacts. J Neurotrauma 2021; 38:2373-2383. [PMID: 33858214 DOI: 10.1089/neu.2020.7375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The diagnosis and management of concussion is hindered by its diverse clinical presentation and assessment tools reliant on subjectively experienced symptoms. The biomechanical threshold of concussion is also not well understood, and asymptomatic concussion or "subconcussive impacts" of variable magnitudes are common in contact sports. Concerns have risen because athletes returning to activity too soon have an increased risk of prolonged recovery or long-term adverse health consequences. To date, little is understood on a molecular level regarding concussion and subconcussive impacts. Recent research suggests that neuroinflammatory mechanisms may serve an important role subsequent to concussion and possibly to subconcussive impacts. These studies suggest that autoantibodies may be a valuable tool for detection of acute concussion and monitoring for changes caused by cumulative exposure to subconcussive impacts. Hence, we aimed to profile the immunoglobulin (Ig)A autoantibody repertoire in saliva by screening a unique sport-related head trauma biobank. Saliva samples (n = 167) were donated by male and female participants enrolled in either the concussion (24-48 h post-injury) or subconcussion (non-concussed participants having moderate or high cumulative subconcussive impact exposure) cohorts. Study design included discovery and verification phases. Discovery aimed to identify new candidate autoimmune targets of IgA. Verification tested whether concussion and subconcussion cohorts increased IgA reactivity and whether cohorts showed similarities. The results show a significant increase in the prevalence of IgA toward protein fragments representing 5-hydroxytryptamine receptor 1A (HTR1A), serine/arginine repetitive matrix 4 (SRRM4) and FAS (tumor necrosis factor receptor superfamily member 6) after concussion and subconcussion. These results may suggest that concussion and subconcussion induce similar physiological effects, especially in terms of immune response. Our study demonstrates that saliva is a potential biofluid for autoantibody detection in concussion and subconcussion. After rigorous confirmation in much larger independent study sets, a validated salivary autoantibody assay could provide a non-subjective quantitative means of assessing concussive and subconcussive events.
Collapse
Affiliation(s)
- Elisa Pin
- Division of Affinity Proteomics, Department of Protein Science, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Kinesiology, George Mason University, Manassas, Virginia, USA.,Institute for BioHealth Innovation, and School of Kinesiology, George Mason University, Manassas, Virginia, USA
| | - Nelson Cortes
- Institute for BioHealth Innovation, and School of Kinesiology, George Mason University, Manassas, Virginia, USA.,Sports Medicine Assessment Research and Testing Laboratory, School of Kinesiology, George Mason University, Manassas, Virginia, USA
| | - Thomas G Bowman
- Department of Athletic Training, University of Lynchburg, Lynchburg, Virginia, USA
| | - Eni Andersson
- Division of Affinity Proteomics, Department of Protein Science, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Mathias Uhlén
- Division of Systems Biology, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Shane V Caswell
- Institute for BioHealth Innovation, and School of Kinesiology, George Mason University, Manassas, Virginia, USA.,Sports Medicine Assessment Research and Testing Laboratory, School of Kinesiology, George Mason University, Manassas, Virginia, USA
| |
Collapse
|
13
|
Li S, Song G, Bai Y, Song N, Zhao J, Liu J, Hu C. Applications of Protein Microarrays in Biomarker Discovery for Autoimmune Diseases. Front Immunol 2021; 12:645632. [PMID: 34012435 PMCID: PMC8126629 DOI: 10.3389/fimmu.2021.645632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/13/2021] [Indexed: 01/18/2023] Open
Abstract
Dysregulated autoantibodies and cytokines were deemed to provide important cues for potential illnesses, such as various carcinomas and autoimmune diseases. Increasing biotechnological approaches have been applied to screen and identify the specific alterations of these biomolecules as distinctive biomarkers in diseases, especially autoimmune diseases. As a versatile and robust platform, protein microarray technology allows researchers to easily profile dysregulated autoantibodies and cytokines associated with autoimmune diseases using various biological specimens, mainly serum samples. Here, we summarize the applications of protein microarrays in biomarker discovery for autoimmune diseases. In addition, the key issues in the process of using this approach are presented for improving future studies.
Collapse
Affiliation(s)
- Siting Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Guang Song
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yina Bai
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Ning Song
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Jian Liu
- Department of Rheumatology, Aerospace Center Hospital, Aerospace, Clinical Medical College, Peking University, Beijing, China
| | - Chaojun Hu
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| |
Collapse
|
14
|
Luo Y, Brigham D, Bednarek J, Torres R, Wang D, Ahmad S, Mack CL. Unique Cholangiocyte-Targeted IgM Autoantibodies Correlate With Poor Outcome in Biliary Atresia. Hepatology 2021; 73:1855-1867. [PMID: 32767570 PMCID: PMC7867668 DOI: 10.1002/hep.31504] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/27/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS The etiology of biliary atresia (BA) is not known and is likely multifactorial, including a genetic predisposition, a viral or environmental trigger, an aberrant autoimmune response targeting cholangiocytes, and unique susceptibilities of the neonatal bile ducts to injury. Damaged cholangiocytes may express neo self-antigens and elicit autoreactive T-cell-mediated inflammation and B-cell production of autoantibodies. The aim of this study was to discover autoantibodies in BA that correlated with outcomes. APPROACH AND RESULTS An autoantigen microarray encompassing approximately 9,500 autoantigens was used to screen for serum immunoglobulin M (IgM) and immunoglobulin G (IgG) autoantibodies in patients with BA or other liver disease controls. Validation of candidate autoantibodies by enzyme-linked immunosorbent assay on a second cohort of subjects (6-12 months following Kasai portoenterostomy) and correlations of autoantibodies with outcomes were performed (serum bilirubin levels and need for liver transplant in first 2 years of life). Mean anti-chitinase 3-like 1 (CHI3L1), anti-delta-like ligand (DLL-4), and antisurfactant protein D (SFTPD) IgM autoantibodies in BA were significantly higher compared with controls, and IgM autoantibody levels positively correlated with worse outcomes. Immunofluorescence revealed cholangiocyte-predominant expression of CHI3L1, DLL-4, and SFTPD. The humoral autoantibody response was associated with C3d complement activation and T-cell autoimmunity, based on detection of cholangiocyte-predominant C3d co-staining and peripheral blood autoreactive T cells specific to CHI3L1, DLL-4 and SFTPD, respectively. CONCLUSIONS BA is associated with cholangiocyte-predominant IgM autoantibodies in the first year after Kasai portoenterostomy. Anti-CHI3L1, anti-DLL-4, and anti-SFTPD IgM autoantibody correlations with worse outcomes and the detection of C3d on cholangioctyes and antigen-specific autoreactive T cells suggest that autoimmunity plays a role in the ongoing bile duct injury and progression of disease.
Collapse
Affiliation(s)
- Yuhuan Luo
- University of Colorado School of Medicine
| | | | - Joseph Bednarek
- University of Colorado School of Medicine and University of Utah
| | | | - Dong Wang
- University of Colorado School of Medicine
| | - Sara Ahmad
- University of Colorado School of Medicine
| | - Cara L. Mack
- University of Colorado School of Medicine, Children’s Hospital Colorado
| | | |
Collapse
|
15
|
Abstract
Loss-of-function mutations in DNaseL13, the enzyme that restricts the amount of microparticle-associated DNA, cause SLE in humans and mice. In this issue of JEM, Hartl et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20201138) uncover a reduction in plasma DNASE1L3 enzymatic activity due to the presence of autoantibodies in patients with nonfamilial SLE.
Collapse
Affiliation(s)
- Zurong Wan
- Department of Pediatrics and Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY
| | - Virginia Pascual
- Department of Pediatrics and Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY
| |
Collapse
|
16
|
Gupta S, Banerjee A, Syed P, Srivastava S. Profiling Autoantibody Responses to Devise Novel Diagnostic and Prognostic Markers Using High-Density Protein Microarrays. Methods Mol Biol 2021; 2344:191-208. [PMID: 34115361 DOI: 10.1007/978-1-0716-1562-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Protein microarrays are a diverse and high-throughput platform for screening biomolecular interactions, autoantigens, and protein expression profiles across tissues, etc. Autoantibodies produced against aberrant protein expression are often observed in malignancies which makes protein microarrays a powerful platform to elucidate biomarkers of translational interest. Early diagnosis of malignancies is an enduring clinical problem that has a direct impact on disease prognosis. Here, we provide an overview of a method employed to screen autoantibodies using patient sera in brain tumors. In case of brain malignancies, early diagnosis is particularly challenging and often requires highly invasive brain biopsies as a confirmatory test. This chapter summarizes the various considerations for applying a serum-based autoantibody biomarker discovery pipeline that could provide a minimally invasive initial diagnostic screen, potentiating classical diagnostic approaches.
Collapse
Affiliation(s)
- Shabarni Gupta
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
17
|
Aibara N, Aizawa R, Nakashima M, Ohyama K. Optimization of pH Elution Conditions in Immune Complexome Analysis for Comprehensive Identification of Immune Complex Antigens. ANAL SCI 2020; 36:1423-1426. [PMID: 32507835 DOI: 10.2116/analsci.20p112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/28/2020] [Indexed: 08/09/2023]
Abstract
The identification of antigens incorporated into immune complexes (IC-antigens) is important for studying the pathophysiology of immunological diseases. Immune complexome analysis identifies IC-antigens by analyzing ICs collected from biological fluids by IC-capturing beads. In this study, we optimized the method to improve its comprehensiveness while maintaining selectivity for IC-antigens by comparing the number of identified peptides (model IC experiment) or proteins (human pooled serum) eluted from Protein G beads using different pH solutions (pH 2.0 - 11.0).
Collapse
Affiliation(s)
- Nozomi Aibara
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan
| | - Rika Aizawa
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan
| | - Mikiro Nakashima
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan
| | - Kaname Ohyama
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan.
| |
Collapse
|
18
|
Simoni L, Presumey J, van der Poel CE, Castrillon C, Chang SE, Utz PJ, Carroll MC. Complement C4A Regulates Autoreactive B Cells in Murine Lupus. Cell Rep 2020; 33:108330. [PMID: 33147456 PMCID: PMC7927756 DOI: 10.1016/j.celrep.2020.108330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/21/2020] [Accepted: 10/08/2020] [Indexed: 11/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a severe autoimmune disease mediated by pathogenic autoantibodies. While complement protein C4 is associated with SLE, its isoforms (C4A and C4B) are not equal in their impact. Despite being 99% homologous, genetic studies identified C4A as more protective than C4B. By generating gene-edited mouse strains expressing either human C4A or C4B and crossing these with the 564lgi lupus strain, we show that, overall, C4A-like 564Igi mice develop less humoral autoimmunity than C4B-like 564Igi mice. This includes a decrease in the number of GCs, autoreactive B cells, autoantibodies, and memory B cells. The higher efficiency of C4A in inducing self-antigen clearance is associated with the follicular exclusion of autoreactive B cells. These results explain how the C4A isoform is protective in lupus and suggest C4A as a possible replacement therapy in lupus. Simoni et al. address a long-standing question about how complement C4A and C4B isoforms differ in function in vivo in autoimmunity. They find that C4A leads to an increased protection in humoral autoimmunity relative to C4B. Autoantibody diversity is likewise dependent on the C4 protein isotype.
Collapse
Affiliation(s)
- Léa Simoni
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jessy Presumey
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Cees E van der Poel
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Carlos Castrillon
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sarah E Chang
- Department of Medicine, Division of Immunology, and Institute for Immunity Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul J Utz
- Department of Medicine, Division of Immunology, and Institute for Immunity Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Abstract
Introduction Autoimmune retinopathy (AR) is a sight-threating retinal disorder that is mediated by autoantibodies (AAbs) against retinal proteins. The visual paraneoplastic syndromes, including cancer-associated retinopathy (CAR) and melanoma-associated retinopathy (MAR) are mediated by anti-retinal AAbs. A number of immunochemical techniques have been used to detect serum anti-retinal autoantibodies in patients to help with autoimmune diagnosis. Area covered We review techniques used for serum autoantibody evaluation in patients with suspected autoimmune retinopathy. Expert opinion Detection of serum AAbs have served as the standard diagnostic tool for autoimmune retinopathies and for management of retinal disorders. An identification of anti-retinal autoantibody or multiple autoantibodies can be useful for not only for diagnosis of autoimmune retinopathies but also for management of retinal disorders. We propose that the line-blotting technique used in conjunction with immunohistochemistry are the best and most reliable assays for detection of serum anti-retinal AAb in the context of clinical history and findings. Clinician should recognize that the majority of antigenic targets identified to date in retinal autoimmunity are ubiquitously expressed proteins (e.g. enolase), which may be difficult to reconcile with the specific patterns of retinal damage observed in CAR, MAR, or AR.
Collapse
Affiliation(s)
- Grazyna Adamus
- Ocular Immunology Laboratory, Casey Eye Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
20
|
Presence of Antibodies Binding to Negative Elongation Factor E in Sarcoidosis. J Clin Med 2020; 9:jcm9030715. [PMID: 32155774 PMCID: PMC7141344 DOI: 10.3390/jcm9030715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Sarcoidosis is characterized by multiorgan involvement and granulomatous inflammation. Its origin is unknown and the potential role of autoimmunity has not been sufficiently determined. We investigated the presence of autoantibodies in sarcoidosis using protein array technology. The derivation cohort consisted of patients with sarcoidosis (n = 25) and controls including autoimmune disease and blood donors (n = 246). In addition, we tested a validation cohort including pulmonary sarcoidosis patients (n = 58) and healthy controls (n = 13). Initially, sera of three patients with sarcoidosis were screened using a protein array with 28.000 proteins against controls. Thereby we identified the Negative Elongation Factor E (NELF-E) as an autoantigen. With confirmatory Enzyme-linked Immunosorbent Assay (ELISA)testing, 29/82 patients (35%) with sarcoidosis had antibodies against NELF-E of the Immunoglobulin (Ig) G type, whereas 18/253 (7%) sera of the controls were positive for NELF-E. Clinically, there was an association of the frequency of NELF-E antibody detection with lung parenchymal involvement and corresponding x-ray types. NELF-E autoantibodies are associated with sarcoidosis and should be further investigated.
Collapse
|
21
|
Longitudinal serum autoantibody repertoire profiling identifies surgery-associated biomarkers in lung adenocarcinoma. EBioMedicine 2020; 53:102674. [PMID: 32113159 PMCID: PMC7047177 DOI: 10.1016/j.ebiom.2020.102674] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
Longitudinal sera were globally analyzed for identification of surgery-associated serum biomarker for the first time. Autoantibody repertories are stable for a single individual at different time points but highly variable among individuals. Surgery-associated serum biomarkers are prevalent in lung adenocarcinoma patients.
Background Autoantibodies against tumor associated antigens are highly related to cancer progression. Autoantibodies could serve as indicators of tumor burden, and have the potential to monitor the response of treatment and tumor recurrence. However, how the autoantibody repertoire changes in response to cancer treatment are largely unknown. Methods Sera of five lung adenocarcinoma patients before and after surgery, were collected longitudinally. These sera were analyzed on a human proteome microarray of 20,240 recombinant proteins to acquire dynamic autoantibody repertoire in response to surgery, as well as to identify the antigens with decreased antibody response after tumor excision or surgery, named as surgery-associated antigens. The identified candidate antigens were then used to construct focused microarray and validated by longitudinal sera collected from a variety of time points of the same patient and a larger cohort of 45 sera from lung adenocarcinoma patients. Findings The autoantibody profiles are highly variable among patients. Meanwhile, the autoantibody profiles of the sera from the same patient were surprisingly stable for at least 3 months after surgery. Six surgery-associated antigens were identified and validated. All the five patients have at least one surgery-associated antigen, demonstrating this type of biomarkers is prevalent, while specific antigens are poorly shared among individuals. The prevalence of each antigen is 2%–14% according to the test with a larger cohort. Interpretation To our knowledge, this is the first study of dynamically profiling of autoantibody repertoires before/after surgery of cancer patients. The high prevalence of surgery-associated antigens implies the possible broad application for monitoring of tumor recurrence in population, while the low prevalence of specific antigens allows personalized medicine. After the accumulation and analysis of more longitudinal samples, the surgery-associated serum biomarkers, combined as a panel, may be applied to alarm the recurrence of tumor in a personalized manner. Funding Research supported by grants from National Key Research and Development Program of China Grant (No. 2016YFA0500600), National Natural Science Foundation of China (No. 31970130, 31600672, 31670831, and 31370813), Open Foundation of Key Laboratory of Systems Biomedicine (No. KLSB2017QN-01), Science and Technology Commission of Shanghai Municipality Medical Guidance Science &Technology Support Project (16411966100), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20172005), Shanghai Municipal Commission of Health and Family Planning Outstanding Academic Leaders Training Program (2017BR055) and National Natural Science Foundation of China (81871882).
Collapse
|
22
|
Moritz CP, Paul S, Stoevesandt O, Tholance Y, Camdessanché JP, Antoine JC. Autoantigenomics: Holistic characterization of autoantigen repertoires for a better understanding of autoimmune diseases. Autoimmun Rev 2020; 19:102450. [PMID: 31838165 DOI: 10.1016/j.autrev.2019.102450] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
|
23
|
Kopniczky MB, Canavan C, McClymont DW, Crone MA, Suckling L, Goetzmann B, Siciliano V, MacDonald JT, Jensen K, Freemont PS. Cell-Free Protein Synthesis as a Prototyping Platform for Mammalian Synthetic Biology. ACS Synth Biol 2020; 9:144-156. [PMID: 31899623 DOI: 10.1021/acssynbio.9b00437] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The field of mammalian synthetic biology is expanding quickly, and technologies for engineering large synthetic gene circuits are increasingly accessible. However, for mammalian cell engineering, traditional tissue culture methods are slow and cumbersome, and are not suited for high-throughput characterization measurements. Here we have utilized mammalian cell-free protein synthesis (CFPS) assays using HeLa cell extracts and liquid handling automation as an alternative to tissue culture and flow cytometry-based measurements. Our CFPS assays take a few hours, and we have established optimized protocols for small-volume reactions using automated acoustic liquid handling technology. As a proof-of-concept, we characterized diverse types of genetic regulation in CFPS, including T7 constitutive promoter variants, internal ribosomal entry sites (IRES) constitutive translation-initiation sequence variants, CRISPR/dCas9-mediated transcription repression, and L7Ae-mediated translation repression. Our data shows simple regulatory elements for use in mammalian cells can be quickly prototyped in a CFPS model system.
Collapse
Affiliation(s)
- Margarita B. Kopniczky
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
| | - Caoimhe Canavan
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
| | - David W. McClymont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
- London Biofoundry, Imperial College Translation & Innovation Hub, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Michael A. Crone
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, U.K
| | - Lorna Suckling
- London Biofoundry, Imperial College Translation & Innovation Hub, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Bruno Goetzmann
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
| | - Velia Siciliano
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
| | - James T. MacDonald
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
| | - Kirsten Jensen
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
- London Biofoundry, Imperial College Translation & Innovation Hub, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, U.K
| | - Paul S. Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, U.K
- London Biofoundry, Imperial College Translation & Innovation Hub, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, U.K
| |
Collapse
|
24
|
Abstract
Immune complexes (ICs) formed by foreign or self-antigens and antibodies in biological fluids affect various tissues and are thought to cause several diseases. Biological and physical properties of IC, abnormal IC amounts, IC deposition and their relationships with disease pathogenesis had been studied. However, the relationship between ICs and each disease is not well understood and little is known of what determined ICs deposition in particular organ and why different organs are affected in different diseases. Recent technological advance enables identification of ICs in particular its antigens in tissues and body fluids, which may provide a key to discover an important trigger for immunological abnormality occurrence. Further identification of their epitopes, that are the exact origin of antigenicity, is developing and may be useful for diagnosis, elucidation of pathogenesis and treatment against IC-induced diseases. Here, we first make an overview of clearance of ICs, IC-induced pathogenesis and biological properties of ICs. Then, we introduce various methods developed to recover ICs from biological fluids or to identify antigens incorporated into ICs. Furthermore, several methods that can be used in epitope mapping for IC antigens are also documented.
Collapse
Affiliation(s)
- Nozomi Aibara
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kaname Ohyama
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
25
|
Ignjatovic V, Geyer PE, Palaniappan KK, Chaaban JE, Omenn GS, Baker MS, Deutsch EW, Schwenk JM. Mass Spectrometry-Based Plasma Proteomics: Considerations from Sample Collection to Achieving Translational Data. J Proteome Res 2019; 18:4085-4097. [PMID: 31573204 DOI: 10.1021/acs.jproteome.9b00503] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The proteomic analysis of human blood and blood-derived products (e.g., plasma) offers an attractive avenue to translate research progress from the laboratory into the clinic. However, due to its unique protein composition, performing proteomics assays with plasma is challenging. Plasma proteomics has regained interest due to recent technological advances, but challenges imposed by both complications inherent to studying human biology (e.g., interindividual variability) and analysis of biospecimens (e.g., sample variability), as well as technological limitations remain. As part of the Human Proteome Project (HPP), the Human Plasma Proteome Project (HPPP) brings together key aspects of the plasma proteomics pipeline. Here, we provide considerations and recommendations concerning study design, plasma collection, quality metrics, plasma processing workflows, mass spectrometry (MS) data acquisition, data processing, and bioinformatic analysis. With exciting opportunities in studying human health and disease though this plasma proteomics pipeline, a more informed analysis of human plasma will accelerate interest while enhancing possibilities for the incorporation of proteomics-scaled assays into clinical practice.
Collapse
Affiliation(s)
- Vera Ignjatovic
- Haematology Research , Murdoch Children's Research Institute , Parkville , VIC 3052 , Australia.,Department of Paediatrics , The University of Melbourne , Parkville , VIC 3052 , Australia
| | - Philipp E Geyer
- NNF Center for Protein Research, Faculty of Health Sciences , University of Copenhagen , 2200 Copenhagen , Denmark.,Department of Proteomics and Signal Transduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Krishnan K Palaniappan
- Freenome , 259 East Grand Avenue , South San Francisco , California 94080 , United States
| | - Jessica E Chaaban
- Haematology Research , Murdoch Children's Research Institute , Parkville , VIC 3052 , Australia
| | - Gilbert S Omenn
- Departments of Computational Medicine & Bioinformatics, Human Genetics, and Internal Medicine and School of Public Health , University of Michigan , 100 Washtenaw Avenue , Ann Arbor , Michigan 48109-2218 , United States
| | - Mark S Baker
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences , Macquarie University , 75 Talavera Road , North Ryde , NSW 2109 , Australia
| | - Eric W Deutsch
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109 , United States
| | - Jochen M Schwenk
- Affinity Proteomics, SciLifeLab , KTH Royal Institute of Technology , 171 65 Stockholm , Sweden
| |
Collapse
|
26
|
Neagu M, Bostan M, Constantin C. Protein microarray technology: Assisting personalized medicine in oncology (Review). WORLD ACADEMY OF SCIENCES JOURNAL 2019. [DOI: 10.3892/wasj.2019.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Monica Neagu
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Marinela Bostan
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Carolina Constantin
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
27
|
San Segundo-Acosta P, Montero-Calle A, Fuentes M, Rábano A, Villalba M, Barderas R. Identification of Alzheimer's Disease Autoantibodies and Their Target Biomarkers by Phage Microarrays. J Proteome Res 2019; 18:2940-2953. [PMID: 31136180 DOI: 10.1021/acs.jproteome.9b00258] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The characterization of the humoral response in Alzheimer's disease (AD) patients might aid in detecting the disease at early stages. We have combined phage display and protein microarrays to identify AD autoantibodies and their target biomarkers. After enrichment of the T7 phage display libraries from AD and healthy brain tissue mRNA in AD-specific phages, 1536 monoclonal phages were printed on microarrays to probe them with 8 AD and 8 healthy control sera. A total of 57 phages showed higher seroreactivity in AD. In total, 13 out of the 44 unique sequences displayed on the phages were selected for validation using 68 AD and 52 healthy control sera. Peptides from Anthrax toxin receptor 1, Nuclear protein 1, Glycogen phosphorylase, and Olfactory receptor 8J1 expressed in bacteria as HaloTag fusion proteins showed a statistically significant ability to discriminate between AD patients and controls. The identified panel of AD autoantibodies might provide new insights into the blood-based diagnosis of the disease.
Collapse
Affiliation(s)
- Pablo San Segundo-Acosta
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain.,Chronic Disease Programme (UFIEC) , Instituto de Salud Carlos III , Majadahonda, E-28220 , Madrid , Spain
| | - Ana Montero-Calle
- Chronic Disease Programme (UFIEC) , Instituto de Salud Carlos III , Majadahonda, E-28220 , Madrid , Spain
| | - Manuel Fuentes
- Proteomics Unit , Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL) , 37007 Salamanca , Spain.,Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400 , Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL) , 37007 Salamanca , Spain
| | - Alberto Rábano
- Alzheimer Disease Research Unit, CIEN Foundation , Queen Sofia Foundation Alzheimer Center , 28031 Madrid , Spain
| | - Mayte Villalba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC) , Instituto de Salud Carlos III , Majadahonda, E-28220 , Madrid , Spain
| |
Collapse
|
28
|
Sun S, Zhong B, Li W, Jin X, Yao Y, Wang J, Liu J, Dan H, Chen Q, Zeng X. Immunological methods for the diagnosis of oral mucosal diseases. Br J Dermatol 2019; 181:23-36. [PMID: 30585301 DOI: 10.1111/bjd.17589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2018] [Indexed: 02/05/2023]
Abstract
Immunological methods, which have been widely used in autoimmune blistering diseases (AIBDs) of the oral mucosa, can also be adopted as auxiliary diagnostic tools in oral lichen planus (OLP) and discoid lupus erythematosus (DLE). AIBDs, characterized by autoantibodies against structural proteins of keratinocytes or the basement membrane zone, clinically present as blisters and erosions of the oral mucosa. When atypical lesions occur, OLP or DLE may be confused with AIBDs. The improvement of diagnostic accuracy is necessary due to the significant differences in treatment and prognosis among these diseases. A variety of immunological methods are used for qualitative and quantitative detection of target antigens and autoantibodies. These methods can evaluate efficacy of treatment, monitor diseases and guide treatment decisions. In this review, we discuss the application of immunofluorescence, biochemical tests, and protein microarrays for AIBDs, OLP and DLE, as well as the differential diagnostic methods using immunological tests.
Collapse
Affiliation(s)
- S Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - B Zhong
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - W Li
- Department of Dermatovenereology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - X Jin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences and College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Y Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - J Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - J Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - H Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Q Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - X Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
29
|
Mikus M, Johansson C, Acevedo N, Nilsson P, Scheynius A. The antimicrobial protein S100A12 identified as a potential autoantigen in a subgroup of atopic dermatitis patients. Clin Transl Allergy 2019; 9:6. [PMID: 30728947 PMCID: PMC6354350 DOI: 10.1186/s13601-019-0240-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/04/2019] [Indexed: 01/01/2023] Open
Abstract
Background Atopic dermatitis (AD) is a complex heterogeneous chronic inflammatory skin disease. Specific IgE antibodies against autoantigens have been observed in a subgroup of AD patients, however, little is known about IgG-auto-reactivity in AD. To investigate the presence of autoreactive IgG antibodies, we performed autoantibody profiling of IgG in patients with AD of different severities and in healthy controls (HC). Methods First, we performed an untargeted screening in plasma samples from 40 severe AD (sAD) patients and 40 HC towards 1152 protein fragments on planar antigen microarrays. Next, based on the findings and addition of more fragments, a targeted antigen suspension bead array was designed to profile a cohort of 50 sAD patients, 123 patients with moderate AD (mAD), and 84 HC against 148 protein fragments representing 96 unique proteins. Results Forty-nine percent of the AD patients showed increased IgG-reactivity to any of the four antigens representing keratin associated protein 17-1 (KRTAP17-1), heat shock protein family A (Hsp70) member 4 (HSPA4), S100 calcium binding proteins A12 (S100A12), and Z (S100Z). The reactivity was more frequent in the sAD patients (66%) than in those with mAD (41%), whereas only present in 25% of the HC. IgG-reactivity to S100A12, a protein including an antimicrobial peptide, was only observed in AD patients (13/173). Conclusions Autoantibody profiling of IgG-reactivity using microarray technology revealed an autoantibody-based subgroup in patients with AD. The four identified autoantigens and especially S100A12 could, if characterized further, increase the understanding of different pathogenic mechanisms behind AD and thereby enable better treatment. Electronic supplementary material The online version of this article (10.1186/s13601-019-0240-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Mikus
- 1Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Catharina Johansson
- 2Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Nathalie Acevedo
- 2Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden.,3Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Peter Nilsson
- 1Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Annika Scheynius
- 2Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden.,4Clinical Genomics, SciLifeLab, Stockholm, Sweden
| |
Collapse
|
30
|
Abstract
The varied landscape of the adaptive immune response is determined by the peptides presented by immune cells, derived from viral or microbial pathogens or cancerous cells. The study of immune biomarkers or antigens is not new, and classical methods such as agglutination, enzyme-linked immunosorbent assay, or Western blotting have been used for many years to study the immune response to vaccination or disease. However, in many of these traditional techniques, protein or peptide identification has often been the bottleneck. Recent progress in genomics and mass spectrometry have led to many of the rapid advances in proteomics approaches. Immunoproteomics describes a rapidly growing collection of approaches that have the common goal of identifying and measuring antigenic peptides or proteins. This includes gel-based, array-based, mass spectrometry-based, DNA-based, or in silico approaches. Immunoproteomics is yielding an understanding of disease and disease progression, vaccine candidates, and biomarkers. This review gives an overview of immunoproteomics and closely related technologies that are used to define the full set of protein antigens targeted by the immune system during disease.
Collapse
Affiliation(s)
- Kelly M Fulton
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Isabel Baltat
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada.
| |
Collapse
|
31
|
Schelpe AS, Roose E, Joly BS, Pareyn I, Mancini I, Biganzoli M, Deckmyn H, Voorberg J, Fijnheer R, Peyvandi F, De Meyer SF, Coppo P, Veyradier A, Vanhoorelbeke K. Generation of anti-idiotypic antibodies to detect anti-spacer antibody idiotopes in acute thrombotic thrombocytopenic purpura patients. Haematologica 2018; 104:1268-1276. [PMID: 30523052 PMCID: PMC6545854 DOI: 10.3324/haematol.2018.205666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
Abstract
In autoantibody-mediated autoimmune diseases, autoantibody profiling allows patients to be stratified and links autoantibodies with disease severity and outcome. However, in immune-mediated thrombotic thrombocytopenic purpura (iTTP) patients, stratification according to antibody profiles and their clinical relevance has not been fully explored. We aimed to develop a new type of autoantibody profiling assay for iTTP based on the use of anti-idiotypic antibodies. Anti-idiotypic antibodies against 3 anti-spacer autoantibodies were generated in mice and were used to capture the respective anti-spacer idiotopes from 151 acute iTTP plasma samples. We next deciphered these anti-spacer idiotope profiles in iTTP patients and investigated whether these limited idiotope profiles could be linked with disease severity. We developed 3 anti-idiotypic antibodies that recognized particular idiotopes in the anti-spacer autoantibodies II-1, TTP73 or I-9, that are involved in ADAMTS13 binding; 35%, 24% and 42% of patients were positive for antibodies with the II-1, TTP73 and I-9 idiotopes, respectively. Stratifying patients according to the corresponding 8 anti-spacer idiotope profiles provided a new insight into the anti-spacer II-1, TTP73 and I-9 idiotope profiles in these patients. Finally, these limited idiotope profiles showed no association with disease severity. We successfully developed 3 anti-idiotypic antibodies that allowed us to determine the profiles of the anti-spacer II-1, TTP73 and I-9 idiotopes in iTTP patients. Increasing the number of patients and/or future development of additional anti-idiotypic antibodies against other anti-ADAMTS13 autoantibodies might allow idiotope profiles of clinical, prognostic value to be identified.
Collapse
Affiliation(s)
- An-Sofie Schelpe
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Belgium
| | - Elien Roose
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Belgium
| | - Bérangère S Joly
- Service d'Hématologie Biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, France.,EA3518, Institut Universitaire d'Hématologie Saint-Louis, Université Paris Diderot, France
| | - Inge Pareyn
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Belgium
| | - Ilaria Mancini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Università degli Studi di Milano, Italy.,Department of Pathophysiology and Transplantation, Fondazione Luigi Villa, Milan, Italy
| | - Marina Biganzoli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Università degli Studi di Milano, Italy.,Department of Pathophysiology and Transplantation, Fondazione Luigi Villa, Milan, Italy
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Belgium
| | - Jan Voorberg
- Department of Molecular and Cellular Hemostasis, Sanquin-AMC Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Rob Fijnheer
- Department of Internal Medicine, Meander Medical Center, Amersfoort, the Netherlands
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Università degli Studi di Milano, Italy.,Department of Pathophysiology and Transplantation, Fondazione Luigi Villa, Milan, Italy
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Belgium
| | - Paul Coppo
- Sorbonne Universités, Service d'Hématologie et Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT), Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, France
| | - Agnès Veyradier
- Service d'Hématologie Biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, France.,EA3518, Institut Universitaire d'Hématologie Saint-Louis, Université Paris Diderot, France
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Belgium
| |
Collapse
|
32
|
Sadam H, Pihlak A, Kivil A, Pihelgas S, Jaago M, Adler P, Vilo J, Vapalahti O, Neuman T, Lindholm D, Partinen M, Vaheri A, Palm K. Prostaglandin D2 Receptor DP1 Antibodies Predict Vaccine-induced and Spontaneous Narcolepsy Type 1: Large-scale Study of Antibody Profiling. EBioMedicine 2018; 29:47-59. [PMID: 29449194 PMCID: PMC5925455 DOI: 10.1016/j.ebiom.2018.01.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuropathological findings support an autoimmune etiology as an underlying factor for loss of orexin-producing neurons in spontaneous narcolepsy type 1 (narcolepsy with cataplexy; sNT1) as well as in Pandemrix influenza vaccine-induced narcolepsy type 1 (Pdmx-NT1). The precise molecular target or antigens for the immune response have, however, remained elusive. METHODS Here we have performed a comprehensive antigenic repertoire analysis of sera using the next-generation phage display method - mimotope variation analysis (MVA). Samples from 64 children and adolescents were analyzed: 10 with Pdmx-NT1, 6 with sNT1, 16 Pandemrix-vaccinated, 16 H1N1 infected, and 16 unvaccinated healthy individuals. The diagnosis of NT1 was defined by the American Academy of Sleep Medicine international criteria of sleep disorders v3. FINDINGS Our data showed that although the immunoprofiles toward vaccination were generally similar in study groups, there were also striking differences in immunoprofiles between sNT1 and Pdmx-NT1 groups as compared with controls. Prominent immune response was observed to a peptide epitope derived from prostaglandin D2 receptor (DP1), as well as peptides homologous to B cell lymphoma 6 protein. Further validation confirmed that these can act as true antigenic targets in discriminating NT1 diseased along with a novel epitope of hemagglutinin of H1N1 to delineate exposure to H1N1. INTERPRETATION We propose that DP1 is a novel molecular target of autoimmune response and presents a potential diagnostic biomarker for NT1. DP1 is involved in the regulation of non-rapid eye movement (NREM) sleep and thus alterations in its functions could contribute to the disturbed sleep regulation in NT1 that warrants further studies. Together our results also show that MVA is a helpful method for finding novel peptide antigens to classify human autoimmune diseases, possibly facilitating the design of better therapies.
Collapse
Affiliation(s)
- Helle Sadam
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Arno Pihlak
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Anri Kivil
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia
| | | | | | - Priit Adler
- Institute of Computer Science, University of Tartu, Liivi 2-314, 50409 Tartu, Estonia; Quretec LLC, Ülikooli 6a, 51003 Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Liivi 2-314, 50409 Tartu, Estonia; Quretec LLC, Ülikooli 6a, 51003 Tartu, Estonia
| | - Olli Vapalahti
- Department of Virology, Medicum, Haartmaninkatu 3, 00014 University of Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin Katu 2, 00014 University of Helsinki, Finland; Virology and Immunology, HUSLAB, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Toomas Neuman
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; IPDx Immunoprofiling Diagnostics GmbH, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Medicum, Haartmaninkatu 8, 00014 University of Helsinki, Finland; Minerva Foundation Medical Research Institute, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Markku Partinen
- Finnish Narcolepsy Research Center, Helsinki Sleep Clinic, Vitalmed Research Center, Valimotie 21, 00380, Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, Haartmaninkatu 3, 00014 University of Helsinki, Finland
| | - Kaia Palm
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
33
|
Bozekowski JD, Graham AJ, Daugherty PS. High-titer antibody depletion enhances discovery of diverse serum antibody specificities. J Immunol Methods 2018; 455:1-9. [PMID: 29360471 DOI: 10.1016/j.jim.2018.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/26/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
The human antibody repertoire is a unique repository of information regarding infection, inflammation, and autoimmunity of the past, present, and future. However, antibodies can span vast ranges of concentrations with varying affinities and the repertoire is often heavily polarized by a few species. These complexities lead to difficulties detecting and characterizing low abundance antibody species that may be relevant to disease. We therefore developed a method to selectively remove antibodies from a sample in proportion to the titer of the species prior to analysis, referred to as high-titer depletion (HTD). Peptides from a large random peptide display library were enriched towards binding high-titer antibody species and utilized as binding reagents to deplete the corresponding species from the specimen. HTD enabled the discovery of antibody binding specificities using random peptide library screening with reduced cross-reactivity and background signal and improved coverage of low abundance species. With HTD, three monoclonal antibody species were detected at concentrations at least an order of magnitude lower than without HTD. Additionally, 92 serum antibody specificities were readily discovered from an individual specimen using HTD compared to only 25 specificities without HTD. Parameters affecting the extent of depletion such as the concentration of depleted serum were also adjusted to reproducibly improve the coverage of antibody specificities. These results demonstrate that HTD could be employed for the discovery of rare specificities related to disease and enable extensive characterization of the antibody repertoire. Moreover, the strategy of depletion in proportion to titer could be extended to other applications with complex biological samples to improve discovery.
Collapse
Affiliation(s)
- Joel D Bozekowski
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Austin J Graham
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Patrick S Daugherty
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA..
| |
Collapse
|
34
|
Zandian A, Forsström B, Häggmark-Månberg A, Schwenk JM, Uhlén M, Nilsson P, Ayoglu B. Whole-Proteome Peptide Microarrays for Profiling Autoantibody Repertoires within Multiple Sclerosis and Narcolepsy. J Proteome Res 2017; 16:1300-1314. [DOI: 10.1021/acs.jproteome.6b00916] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Arash Zandian
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Björn Forsström
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Anna Häggmark-Månberg
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Jochen M. Schwenk
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Mathias Uhlén
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Peter Nilsson
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Burcu Ayoglu
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| |
Collapse
|
35
|
Welcome to volume 9 of Bioanalysis. Bioanalysis 2016; 9:151-154. [PMID: 27960542 DOI: 10.4155/bio-2016-4983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Welcome to volume 9 of Bioanalysis and Happy New Year to all of our readers. We would like to take the opportunity to look back 2016, which was another great year for us. We thank all our authors, readers and reviewers, as well as our Editorial Board members for their continued support. We very much look forward to working with everyone in 2017.
Collapse
|
36
|
ten Berge JC, van Rosmalen J, Vermeer J, Hellström C, Lindskog C, Nilsson P, Qundos U, Rothova A, Schreurs MWJ. Serum Autoantibody Profiling of Patients with Paraneoplastic and Non-Paraneoplastic Autoimmune Retinopathy. PLoS One 2016; 11:e0167909. [PMID: 27930731 PMCID: PMC5145218 DOI: 10.1371/journal.pone.0167909] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/22/2016] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Although multiple serum antiretinal autoantibodies (ARAs) have been reported in patients with paraneoplastic and non-paraneoplastic autoimmune retinopathy ((n)pAIR), not all retinal antigens involved in (n)pAIR are specified. This study aims to serologically identify patients with presumed (n)pAIR through determination of both known and unknown ARAs by autoantibody profiling. METHODS An antigen suspension bead array using 188 different antigens representing 97 ocular proteins was performed to detect ARAs in serum samples of patients with presumed (n)pAIR (n = 24), uveitis (n = 151) and cataract (n = 21). Logistic regressions were used to estimate the associations between ocular antigens and diagnosis. Validation of interphotoreceptor matrix proteoglycan 2 (IMPG2) and recoverin antigens was performed by immunohistochemistry and immunoblot, respectively. RESULTS Samples of patients with presumed (n)pAIR exhibited a broad spectrum of ARAs. We identified retinal antigens that have already been described previously (e.g. recoverin), but also identified novel ARA targets. Most ARAs were not specific for (n)pAIR since their presence was also observed in patients with cataract or uveitis. High titers of autoantibodies directed against photoreceptor-specific nuclear receptor and retinol-binding protein 3 were more common in patients with presumed (n)pAIR compared to uveitis (p = 0.015 and p = 0.018, respectively). The presence of all other ARAs did not significantly differ between groups. In patients with presumed (n)pAIR, anti-recoverin autoantibodies were the most prevalent ARAs. Validation of bead array results by immunohistochemistry (anti-IMPG2) and immunoblot (anti-recoverin) showed concordant results in (n)pAIR patients. CONCLUSIONS Patients with (n)pAIR are characterized by the presence of a broad spectrum of ARAs. The diagnosis of (n)pAIR cannot be based on the mere presence of serum ARAs, as these are also commonly present in uveitis as well as in age-related cataract patients.
Collapse
Affiliation(s)
- Josianne C. ten Berge
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| | - Joost van Rosmalen
- Department of Biostatistics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jacolien Vermeer
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cecilia Hellström
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Cecilia Lindskog
- SciLifeLab, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peter Nilsson
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ulrika Qundos
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Aniki Rothova
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marco W. J. Schreurs
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|