1
|
Tang CL, Li YQ, Du XK, Fang XX, Guang YM, Li PZ, Chen S, Xue SY, Yu JM, Liu XY, Luo YP, Zhou LX, Luo C, Xiong H, Liang ZJ, Ding H. Identifying a non-conserved site for achieving allosteric covalent inhibition of CECR2. Acta Pharmacol Sin 2025:10.1038/s41401-024-01452-z. [PMID: 39833305 DOI: 10.1038/s41401-024-01452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
The bromodomain (BRD) represents a highly conserved structural module that provides BRD proteins with fundamental functionality in modulating protein-protein interactions involved in diverse biological processes such as chromatin-mediated gene transcription, DNA recombination, replication and repair. Consequently, dysregulation of BRD proteins has been implicated in the pathogenesis of numerous human diseases. In recent years, considerable scientific endeavors have focused on unraveling the molecular mechanisms underlying BRDs and developing inhibitors that target these domains. While these inhibitors compete for binding with the acetylated lysine binding site of BRDs, achieving inhibition of BRD proteins via competitive pocket binding has proven challenging due to the conserved nature of these pockets. To address this limitation, the present study employed dynamic simulations for a comprehensive analysis, leading to the identification of a non-conserved pocket in CECR2 for achieving BRD family inhibition through allosteric modulation. Subsequently, the compound BAY 11-7085 was proven capable of covalently binding to C494 of this pocket after covalent docking and biological verification in vitro. The allosteric inhibition strategy of CECR2 was further verified by the structurally optimized compound LC-CE-7, which is an allosteric covalent CECR2 inhibitor with anti-cancer effects in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Cai-Ling Tang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuan-Qing Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xi-Kun Du
- Center for Systems Biology, Department of Bioinformatics, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Xiao-Xia Fang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Yi-Man Guang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Pei-Zhuo Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shuang Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Sheng-Yu Xue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia-Min Yu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Yi Liu
- Center for Systems Biology, Department of Bioinformatics, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Yi-Pan Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Lan-Xin Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Cheng Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Huan Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Zhong-Jie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, 215123, China.
| | - Hong Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
2
|
Yan XY, Kang YY, Zhang ZY, Huang P, Yang C, Naranmandura H. Therapeutic approaches targeting oncogenic proteins in myeloid leukemia: challenges and perspectives. Expert Opin Ther Targets 2024; 28:1131-1148. [PMID: 39679536 DOI: 10.1080/14728222.2024.2443577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Leukemia is typically categorized into myeloid leukemia and lymphoblastic leukemia based on the origins of leukemic cells. Myeloid leukemia is a group of clonal malignancies characterized by the presence of increased immature myeloid cells in both the bone marrow and peripheral blood. Of note, the aberrant expression of specific proteins or the generation of fusion proteins due to chromosomal abnormalities are well established drivers in various forms of myeloid leukemia. Therefore, these oncoproteins represent promising targets for drug development. AREAS COVERED In this review, we comprehensively discussed the pathogenesis of typical leukemia oncoproteins and the current landscape of small molecule drugs targeting these oncogenic proteins. Additionally, we elucidated novel strategies, including proteolysis-targeting chimeras (PROTACs), hyperthermia, and genomic editing, which specifically degrade oncogenic proteins in myeloid malignancies. EXPERT OPINION Although small molecule drugs have significantly improved the prognosis of oncoprotein-driven myeloid leukemia patients, drug resistance due to the mutations in oncoproteins is still a great challenge in the clinic. New approaches such as PROTACs, hyperthermia, and genomic editing are considered promising approaches for the treatment of oncoprotein-driven leukemia, especially for drug-resistant mutants.
Collapse
Affiliation(s)
- Xing Yi Yan
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Yuan Kang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ze Yan Zhang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Chang Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Rhzali I, Storey KB. Histone Modifications in the Anoxic Northern Crayfish, Faxonius virilis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:5. [PMID: 39576345 DOI: 10.1007/s10126-024-10394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Northern Crayfish, Faxonius virilis, displays various strategies that allow them to survive extended periods of oxygen deprivation. However, certain epigenetic adaptations that these crayfish use have not been studied in detail, and the role of specific mechanisms used such as histone modifications remain unknown. Epigenetic studies offer a new perspective on how crayfish can regulate gene expression to redirect energy to essential functions needed for survival. This study investigates the regulation of histone modifications of proteins including acetylation and deacetylation in F. virilis in response to 20-h anoxia exposure. These histone modifications were studied via analysis of writer, reader, and eraser proteins such as lysine acetyltransferases (KATs), bromodomain proteins (BRDs), histone deacetylases (HDAC), and sirtuin proteins (SIRTs). Significant upregulation was seen in one histone protein and one lysine acetyltransferase: H3K14Ac and KAT2A. These proteins are known to be regulated by BRD2; a protein that specifically reads and targets H3K14Ac. In response to anoxia, a larger number of histone deacetylases and sirtuin proteins were upregulated in comparison to lysine acetyltransferases suggesting a focus on suppression of gene expression. The histone deacetylases and sirtuin proteins with significant upregulation were HDAC2, HDAC3, SIRT2, SIRT3, and SIRT6. These proteins have also all been implicated in DNA damage regulation which further suggests that crayfish focus limited energy on ensuring cell survival. This study provides an understanding of how histone acetylation and deacetylation are regulated in crayfish as a component of metabolic rate suppression under anoxia.
Collapse
Affiliation(s)
- Imane Rhzali
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
4
|
Sahafnejad Z, Ramazi S, Allahverdi A. An Update of Epigenetic Drugs for the Treatment of Cancers and Brain Diseases: A Comprehensive Review. Genes (Basel) 2023; 14:genes14040873. [PMID: 37107631 PMCID: PMC10137918 DOI: 10.3390/genes14040873] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/28/2022] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Epigenetics has long been recognized as a significant field in biology and is defined as the investigation of any alteration in gene expression patterns that is not attributed to changes in the DNA sequences. Epigenetic marks, including histone modifications, non-coding RNAs, and DNA methylation, play crucial roles in gene regulation. Numerous studies in humans have been carried out on single-nucleotide resolution of DNA methylation, the CpG island, new histone modifications, and genome-wide nucleosome positioning. These studies indicate that epigenetic mutations and aberrant placement of these epigenetic marks play a critical role in causing the disease. Consequently, significant development has occurred in biomedical research in identifying epigenetic mechanisms, their interactions, and changes in health and disease conditions. The purpose of this review article is to provide comprehensive information about the different types of diseases caused by alterations in epigenetic factors such as DNA methylation and histone acetylation or methylation. Recent studies reported that epigenetics could influence the evolution of human cancer via aberrant methylation of gene promoter regions, which is associated with reduced gene function. Furthermore, DNA methyltransferases (DNMTs) in the DNA methylation process as well as histone acetyltransferases (HATs)/histone deacetylases (HDACs) and histone methyltransferases (HMTs)/demethylases (HDMs) in histone modifications play important roles both in the catalysis and inhibition of target gene transcription and in many other DNA processes such as repair, replication, and recombination. Dysfunction in these enzymes leads to epigenetic disorders and, as a result, various diseases such as cancers and brain diseases. Consequently, the knowledge of how to modify aberrant DNA methylation as well as aberrant histone acetylation or methylation via inhibitors by using epigenetic drugs can be a suitable therapeutic approach for a number of diseases. Using the synergistic effects of DNA methylation and histone modification inhibitors, it is hoped that many epigenetic defects will be treated in the future. Numerous studies have demonstrated a link between epigenetic marks and their effects on brain and cancer diseases. Designing appropriate drugs could provide novel strategies for the management of these diseases in the near future.
Collapse
Affiliation(s)
- Zahra Sahafnejad
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| |
Collapse
|
5
|
Chen J, Tang P, Wang Y, Wang J, Yang C, Li Y, Yang G, Wu F, Zhang J, Ouyang L. Targeting Bromodomain-Selective Inhibitors of BET Proteins in Drug Discovery and Development. J Med Chem 2022; 65:5184-5211. [PMID: 35324195 DOI: 10.1021/acs.jmedchem.1c01835] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Blocking the interactions between bromodomain and extraterminal (BET) proteins and acetylated lysines of histones by small molecules has important implications for the treatment of cancers and other diseases. Many pan-BET inhibitors have shown satisfactory results in clinical trials, but their potential for poor tolerability and toxicity persist. However, recently reported studies illustrate that some BET bromodomain (BET-BD1 or BET-BD2)-selective inhibitors have advantage over pan-inhibitors, including reduced toxicity concerns. Furthermore, some selective BET inhibitors have similar or even better therapeutic efficacy in inflammatory diseases or cancers. Therefore, the development of selective BET inhibitors has become a hot spot for medicinal chemists. Here, we summarize the known selective BET-BD1 and BET-BD2 inhibitors and review the methods for enhancing the selectivity and potency of these inhibitors based on their different modes of interactions with BET-BD1 or BET-BD2. Finally, we discuss prospective strategies that selectively target the bromodomains of BET proteins.
Collapse
Affiliation(s)
- Juncheng Chen
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Pan Tang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Chengcan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Gaoxia Yang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fengbo Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
6
|
Piticchio SG, Martínez-Cartró M, Scaffidi S, Rachman M, Rodriguez-Arevalo S, Sanchez-Arfelis A, Escolano C, Picaud S, Krojer T, Filippakopoulos P, von Delft F, Galdeano C, Barril X. Discovery of Novel BRD4 Ligand Scaffolds by Automated Navigation of the Fragment Chemical Space. J Med Chem 2021; 64:17887-17900. [PMID: 34898210 DOI: 10.1021/acs.jmedchem.1c01108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fragment-based drug discovery (FBDD) is a very effective hit identification method. However, the evolution of fragment hits into suitable leads remains challenging and largely artisanal. Fragment evolution is often scaffold-centric, meaning that its outcome depends crucially on the chemical structure of the starting fragment. Considering that fragment screening libraries cover only a small proportion of the corresponding chemical space, hits should be seen as probes highlighting privileged areas of the chemical space rather than actual starting points. We have developed an automated computational pipeline to mine the chemical space around any specific fragment hit, rapidly finding analogues that share a common interaction motif but are structurally novel and diverse. On a prospective application on the bromodomain-containing protein 4 (BRD4), starting from a known fragment, the platform yields active molecules with nonobvious scaffold changes. The procedure is fast and inexpensive and has the potential to uncover many hidden opportunities in FBDD.
Collapse
Affiliation(s)
- Serena G Piticchio
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Míriam Martínez-Cartró
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Salvatore Scaffidi
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Moira Rachman
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Sergio Rodriguez-Arevalo
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Ainoa Sanchez-Arfelis
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Carmen Escolano
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Sarah Picaud
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Tobias Krojer
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Frank von Delft
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ Oxford, United Kingdom.,Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom.,Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom.,Centre for Medicines Discovery, University of Oxford, Oxford OX1 3QU, United Kingdom.,Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| | - Carles Galdeano
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Xavier Barril
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
7
|
Quinlan RBA, Brennan PE. Chemogenomics for drug discovery: clinical molecules from open access chemical probes. RSC Chem Biol 2021; 2:759-795. [PMID: 34458810 PMCID: PMC8341094 DOI: 10.1039/d1cb00016k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years chemical probes have proved valuable tools for the validation of disease-modifying targets, facilitating investigation of target function, safety, and translation. Whilst probes and drugs often differ in their properties, there is a belief that chemical probes are useful for translational studies and can accelerate the drug discovery process by providing a starting point for small molecule drugs. This review seeks to describe clinical candidates that have been inspired by, or derived from, chemical probes, and the process behind their development. By focusing primarily on examples of probes developed by the Structural Genomics Consortium, we examine a variety of epigenetic modulators along with other classes of probe.
Collapse
Affiliation(s)
- Robert B A Quinlan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
| | - Paul E Brennan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
- Alzheimer's Research (UK) Oxford Drug Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford OX3 7FZ UK
| |
Collapse
|
8
|
Muthengi A, Wimalasena VK, Yosief HO, Bikowitz MJ, Sigua LH, Wang T, Li D, Gaieb Z, Dhawan G, Liu S, Erickson J, Amaro RE, Schönbrunn E, Qi J, Zhang W. Development of Dimethylisoxazole-Attached Imidazo[1,2- a]pyridines as Potent and Selective CBP/P300 Inhibitors. J Med Chem 2021; 64:5787-5801. [PMID: 33872011 DOI: 10.1021/acs.jmedchem.0c02232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The use of epigenetic bromodomain inhibitors as anticancer therapeutics has transitioned from targeting bromodomain extraterminal domain (BET) proteins into targeting non-BET bromodomains. The two most relevant non-BET bromodomain oncology targets are cyclic AMP response element-binding protein (CBP) and E1A binding protein P300 (EP300). To explore the growing CBP/EP300 interest, we developed a highly efficient two-step synthetic route for dimethylisoxazole-attached imidazo[1,2-a]pyridine scaffold-containing inhibitors. Our efficient two-step reactions enabled high-throughput synthesis of compounds designed by molecular modeling, which together with structure-activity relationship (SAR) studies facilitated an overarching understanding of selective targeting of CBP/EP300 over non-BET bromodomains. This led to the identification of a new potent and selective CBP/EP300 bromodomain inhibitor, UMB298 (compound 23, CBP IC50 72 nM and bromodomain 4, BRD4 IC50 5193 nM). The SAR we established is in good agreement with literature-reported CBP inhibitors, such as CBP30, and demonstrates the advantage of utilizing our two-step approach for inhibitor development of other bromodomains.
Collapse
Affiliation(s)
- Alex Muthengi
- Center for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Virangika K Wimalasena
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Hailemichael O Yosief
- Center for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Melissa J Bikowitz
- Drug Discovery Department, Moffit Cancer Center, Tampa, Florida 33612, United States.,Department of Molecular Medicine, USF Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Logan H Sigua
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Tingjian Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Deyao Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Zied Gaieb
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Dr, LA Jolla, California 92093, United States
| | - Gagan Dhawan
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Delhi, New Delhi 110019, India
| | - Shuai Liu
- Center for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Jon Erickson
- Center for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Rommie E Amaro
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Dr, LA Jolla, California 92093, United States
| | - Ernst Schönbrunn
- Drug Discovery Department, Moffit Cancer Center, Tampa, Florida 33612, United States.,Department of Molecular Medicine, USF Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States.,Department of Medicine, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Wei Zhang
- Center for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| |
Collapse
|
9
|
Engelberg IA, Foley CA, James LI, Frye SV. Improved methods for targeting epigenetic reader domains of acetylated and methylated lysine. Curr Opin Chem Biol 2021; 63:132-144. [PMID: 33852996 DOI: 10.1016/j.cbpa.2021.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/20/2023]
Abstract
Responsible for interpreting histone post-translational modifications, epigenetic reader proteins have emerged as novel therapeutic targets for a wide range of diseases. Chemical probes have been critical in enabling target validation studies and have led to translational advances in cancer and inflammation-related pathologies. Here, we present the most recently reported probes of reader proteins that recognize acylated and methylated lysine. We will discuss challenges associated with achieving potent antagonism of reader domains and review ongoing efforts to overcome these hurdles, focusing on targeting strategies including the use of peptidomimetic ligands, allosteric modulators, and protein degraders.
Collapse
Affiliation(s)
- Isabelle A Engelberg
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Caroline A Foley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
10
|
Antolin AA, Workman P, Al-Lazikani B. Public resources for chemical probes: the journey so far and the road ahead. Future Med Chem 2021; 13:731-747. [PMID: 31778323 DOI: 10.4155/fmc-2019-0231] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
High-quality small molecule chemical probes are extremely valuable for biological research and target validation. However, frequent use of flawed small-molecule inhibitors produces misleading results and diminishes the robustness of biomedical research. Several public resources are available to facilitate assessment and selection of better chemical probes for specific protein targets. Here, we review chemical probe resources, discuss their current strengths and limitations, and make recommendations for further improvements. Expert review resources provide in-depth analysis but currently cover only a limited portion of the liganded proteome. Computational resources encompass more proteins and are regularly updated, but have limitations in data availability and curation. We show how biomedical scientists may use these resources to choose the best available chemical probes for their research.
Collapse
Affiliation(s)
- Albert A Antolin
- The Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK
- CRUK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
- CRUK ICR/Imperial Convergence Science Centre, London, SM2 5NG, UK
| | - Paul Workman
- CRUK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
- CRUK ICR/Imperial Convergence Science Centre, London, SM2 5NG, UK
| | - Bissan Al-Lazikani
- The Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK
- CRUK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
- CRUK ICR/Imperial Convergence Science Centre, London, SM2 5NG, UK
| |
Collapse
|
11
|
Xiong Y, Zhang M, Li Y. Recent Advances in the Development of CBP/p300 Bromodomain Inhibitors. Curr Med Chem 2020; 27:5583-5598. [DOI: 10.2174/0929867326666190731141055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
CBP and p300 are two closely related Histone Acetyltransferases (HATs) that interact
with numerous transcription factors and act to increase the expression of their target genes. Both
proteins contain a bromodomain flanking the HAT catalytic domain that is important in binding of
CBP/p300 to chromatin, which offers an opportunity to develop protein-protein interaction inhibitors.
Since their discovery in 2006, CBP/p300 bromodomains have attracted much interest as promising
new epigenetic targets for diverse human diseases, including inflammation, cancer, autoimmune
disorders, and cardiovascular disease. Herein, we present a comprehensive review of the
structure, function, and inhibitors of CBP/p300 bromodomains developed in the last several years,
which is expected to be beneficial to relevant studies.
Collapse
Affiliation(s)
- Ying Xiong
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Mingming Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yingxia Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
12
|
Bond AG, Testa A, Ciulli A. Stereoselective synthesis of allele-specific BET inhibitors. Org Biomol Chem 2020; 18:7533-7539. [PMID: 32756710 DOI: 10.1039/d0ob01165g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Developing stereoselective synthetic routes that are efficient and cost-effective allows easy access to biologically active molecules. Our previous syntheses of allele-selective bumped inhibitors of the Bromo and Extra-Terminal (BET) domain proteins, Brd2, Brd3, Brd4 and BrdT, required a wasteful, late-stage alkylation step and expensive chiral separation. To circumvent these limitations, we developed a route based on stereocontrolled alkylation of an N-Pf protected aspartic acid derivative that was used in a divergent, racemisation-free protocol to yield structurally diverse and enantiopure triazolodiazepines. With this approach, we synthesized bumped thienodiazepine-based BET inhibitor, ET-JQ1-OMe, in five steps and 99% ee without the need for chiral chromatography. Exquisite selectivity of ET-JQ1-OMe for Leu-Ala and Leu-Val mutants over wild-type bromodomain was established by isothermal titration calorimetry and X-ray crystallography. Our new approach provides unambiguous chemical evidence for the absolute stereochemistry of the active, allele-specific BET inhibitors and a viable route that will open wider access to this compound class.
Collapse
Affiliation(s)
- Adam G Bond
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, UK.
| | | | | |
Collapse
|
13
|
Prieto-Martínez FD, Medina-Franco JL. Current advances on the development of BET inhibitors: insights from computational methods. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:127-180. [PMID: 32951810 DOI: 10.1016/bs.apcsb.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Epigenetics was coined almost 70 years ago for the description of heritable phenotype without altering DNA sequences. Research on the field has uncovered significant roles of such mechanisms, that account for the biogenesis of several diseases. Further studies have led the way for drug development which targets epi-enzymes, mainly for cancer treatment. Of the numerous epi-targets involved with histone acetylation, bromodomains have captured the spotlight of drug discovery focused on novel therapies. However, due to high sequence identity, the development of potent and selective inhibitors poses a significant challenge. Herein, we discuss recent computational developments on BET inhibitors and other methods that may be applied for drug discovery in general. As a proof-of-concept, we discuss a virtual screening to identify novel BET inhibitors based on coumarin derivatives. From public data, we identified putative structure-activity relationships of coumarin scaffold and propose R-group modifications for BET selectivity. Results showed that the optimization and design of novel coumarins could be further explored.
Collapse
Affiliation(s)
- Fernando D Prieto-Martínez
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - José L Medina-Franco
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
14
|
Cipriano A, Sbardella G, Ciulli A. Targeting epigenetic reader domains by chemical biology. Curr Opin Chem Biol 2020; 57:82-94. [DOI: 10.1016/j.cbpa.2020.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022]
|
15
|
Wellaway CR, Amans D, Bamborough P, Barnett H, Bit RA, Brown JA, Carlson NR, Chung CW, Cooper AWJ, Craggs PD, Davis RP, Dean TW, Evans JP, Gordon L, Harada IL, Hirst DJ, Humphreys PG, Jones KL, Lewis AJ, Lindon MJ, Lugo D, Mahmood M, McCleary S, Medeiros P, Mitchell DJ, O’Sullivan M, Le Gall A, Patel VK, Patten C, Poole DL, Shah RR, Smith JE, Stafford KAJ, Thomas PJ, Vimal M, Wall ID, Watson RJ, Wellaway N, Yao G, Prinjha RK. Discovery of a Bromodomain and Extraterminal Inhibitor with a Low Predicted Human Dose through Synergistic Use of Encoded Library Technology and Fragment Screening. J Med Chem 2020; 63:714-746. [DOI: 10.1021/acs.jmedchem.9b01670] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Dominique Amans
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul Bamborough
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Heather Barnett
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rino A. Bit
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jack A. Brown
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Neil R. Carlson
- GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Chun-wa Chung
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Peter D. Craggs
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Robert P. Davis
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Tony W. Dean
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - John P. Evans
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Laurie Gordon
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - David J. Hirst
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | | | | | - Dave Lugo
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Mahnoor Mahmood
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Scott McCleary
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Patricia Medeiros
- GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | | | | | - Armelle Le Gall
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Chris Patten
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Darren L. Poole
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rishi R. Shah
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jane E. Smith
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | - Mythily Vimal
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D. Wall
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | - Gang Yao
- GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Rab K. Prinjha
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
16
|
Nguyen HHT, Yeoh LM, Chisholm SA, Duffy MF. Developments in drug design strategies for bromodomain protein inhibitors to target Plasmodium falciparum parasites. Expert Opin Drug Discov 2019; 15:415-425. [PMID: 31870185 DOI: 10.1080/17460441.2020.1704251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Bromodomains (BRDs) bind to acetylated lysine residues, often on histones. The BRD proteins can contribute to gene regulation either directly through enzymatic activity or indirectly through recruitment of chromatin-modifying complexes or transcription factors. There is no evidence of direct orthologues of the Plasmodium falciparum BRD proteins (PfBDPs) outside the apicomplexans. PfBDPs are expressed during the parasite's life cycle in both the human host's blood and in the mosquito. PfBDPs could also prove to be promising targets for novel antimalarials, which are urgently required to address increasing drug resistance.Areas covered: This review discusses recent studies of the biology of PfBDPs, current target-based strategies for PfBDP inhibitor discovery, and different approaches to the important step of validating the specificity of hit compounds for PfBDPs.Expert opinion: The novelty of Plasmodium BRDs suggests that they could be targeted by selective compounds. Chemical series that showed promise in screens against human BRDs could be leveraged to create targeted compound libraries, as could hits from P. falciparum phenotypic screens. These targeted libraries and hits could be screened in target-based strategies aimed at discovery and optimization of novel inhibitors of PfBDPs. A key task for the field is to generate parasite assays to validate the hit compounds' specificity for PfBDPs.
Collapse
Affiliation(s)
- Hanh H T Nguyen
- The School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia.,The Dept of Medicine and Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Lee M Yeoh
- The School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Scott A Chisholm
- The School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Michael F Duffy
- The School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia.,The Dept of Medicine and Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| |
Collapse
|
17
|
Chen P, Guo Z, Chen C, Tian S, Bai X, Zhai G, Ma Z, Wu H, Zhang K. Identification of dual histone modification-binding protein interaction by combining mass spectrometry and isothermal titration calorimetric analysis. J Adv Res 2019; 22:35-46. [PMID: 31956440 PMCID: PMC6961217 DOI: 10.1016/j.jare.2019.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 12/13/2022] Open
Abstract
The interaction between combinatorial histone modifications and tandem-domain reader proteins was identified. Four tandem-domain proteins (BPTF-PB, CBP-BP, TRIM24-PB, TAF1-BB) could read the peptides with dual-modifications. The binding affinities were detected by isothermal titration calorimetry. The interaction between BPTF-PB and peptides with PTMs is the strongest. The binding proteins to the tandem-domains were quantified. 78 enriched proteins were further characterized. The molecule network of “histone modification-reader-binding proteins” was analyzed.
Histone posttranslational modifications (HPTMs) play important roles in eukaryotic transcriptional regulation. Recently, it has been suggested that combinatorial modification codes that comprise two or more HPTMs can recruit readers of HPTMs, performing complex regulation of gene expression. However, the characterization of the multiplex interactions remains challenging, especially for the molecular network of histone PTMs, readers and binding complexes. Here, we developed an integrated method that combines a peptide library, affinity enrichment, mass spectrometry (MS) and bioinformatics analysis for the identification of the interaction between HPTMs and their binding proteins. Five tandem-domain-reader proteins (BPTF, CBP, TAF1, TRIM24 and TRIM33) were designed and prepared as the enriched probes, and a group of histone peptides with multiple PTMs were synthesized as the target peptide library. First, the domain probes were used to pull down the PTM peptides from the library, and then the resulting product was characterized by MS. The binding interactions between PTM peptides and domains were further validated and measured by isothermal titration calorimetry analysis (ITC). Meanwhile, the binding proteins were enriched by domain probes and identified by HPLC-MS/MS. The interaction network of histone PTMs-readers-binding complexes was finally analyzed via informatics tools. Our results showed that the integrated approach combining MS analysis with ITC assay enables us to understand the interaction between the combinatorial HPTMs and reading domains. The identified network of “HPTMs-reader proteins-binding complexes” provided potential clues to reveal HPTM functions and their regulatory mechanisms.
Collapse
Affiliation(s)
- Pu Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zhenchang Guo
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Cong Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Shanshan Tian
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Xue Bai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Guijin Zhai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zhenyi Ma
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Huiyuan Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
18
|
Sanders YY, Thannickal VJ. BETting on Novel Treatments for Asthma: Bromodomain 4 Inhibitors. Am J Respir Cell Mol Biol 2019; 60:7-8. [PMID: 30157386 DOI: 10.1165/rcmb.2018-0271ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Yan Y Sanders
- 1 Department of Medicine University of Alabama at Birmingham Birmingham, Alabama
| | - Victor J Thannickal
- 1 Department of Medicine University of Alabama at Birmingham Birmingham, Alabama
| |
Collapse
|
19
|
Pullamsetti SS, de Jesus Perez VA. EpiHope for the Treatment of Pulmonary Arterial Hypertension: Selective versus Nonselective BET Inhibition. Am J Respir Crit Care Med 2019; 200:1188-1190. [PMID: 31419389 PMCID: PMC6888659 DOI: 10.1164/rccm.201906-1235le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, member of the German Center for Lung ResearchBad Nauheim, Germany.,Justus Liebig UniversityGiessen, Germanyand
| | | |
Collapse
|
20
|
Maniaci C, Ciulli A. Bifunctional chemical probes inducing protein-protein interactions. Curr Opin Chem Biol 2019; 52:145-156. [PMID: 31419624 DOI: 10.1016/j.cbpa.2019.07.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/23/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022]
Abstract
Inducing biomolecular interactions with synthetic molecules to impact biological function is a concept of enormous appeal. Recent years have seen a resurgence of interest in designing bispecific molecules that serve as bridging agents to bring proteins together. Pioneering structural and biophysical investigation of ternary complexes formed by mono-functional and bifunctional ligands highlights that proximity-induced stabilization or de novo formation of protein-protein interactions is a common feature of their molecular recognition. In this review, we illustrate these concepts and advances with representative case studies, and highlight progress over the past three years, with particular focus on recruitment to E3 ubiquitin ligases by 'molecular glues' and chimeric dimerizers (PROTACs) for targeted protein degradation. This approach promises to significantly expand the range of tractable targets for chemical biology and therapeutic intervention.
Collapse
Affiliation(s)
- Chiara Maniaci
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, Scotland, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, Scotland, UK.
| |
Collapse
|
21
|
Wang W, Tan J. Co‐inhibition of BET proteins and PD‐L1 as a potential therapy for OSCC through synergistic inhibition of FOXM1 and PD‐L1 expressions. J Oral Pathol Med 2019; 48:817-825. [PMID: 31177574 DOI: 10.1111/jop.12906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Wei Wang
- Qingdao Oral Hospital Qingdao City China
| | - Junyan Tan
- Qingdao Oral Hospital Qingdao City China
| |
Collapse
|
22
|
Khoueiry P, Ward Gahlawat A, Petretich M, Michon AM, Simola D, Lam E, Furlong EE, Benes V, Dawson MA, Prinjha RK, Drewes G, Grandi P. BRD4 bimodal binding at promoters and drug-induced displacement at Pol II pause sites associates with I-BET sensitivity. Epigenetics Chromatin 2019; 12:39. [PMID: 31266503 PMCID: PMC6604197 DOI: 10.1186/s13072-019-0286-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Deregulated transcription is a major driver of diseases such as cancer. Bromodomain and extra-terminal (BET) proteins (BRD2, BRD3, BRD4 and BRDT) are chromatin readers essential for maintaining proper gene transcription by specifically binding acetylated lysine residues. Targeted displacement of BET proteins from chromatin, using BET inhibitors (I-BETs), is a promising therapy, especially for acute myeloid leukemia (AML), and evaluation of resistance mechanisms is necessary to optimize the clinical efficacy of these drugs. Results To uncover mechanisms of intrinsic I-BET resistance, we quantified chromatin binding and displacement for BRD2, BRD3 and BRD4 after dose response treatment with I-BET151, in sensitive and resistant in vitro models of leukemia, and mapped BET proteins/I-BET interactions genome wide using antibody- and compound-affinity capture methods followed by deep sequencing. The genome-wide map of BET proteins sensitivity to I-BET revealed a bimodal pattern of binding flanking transcription start sites (TSSs), in which drug-mediated displacement from chromatin primarily affects BRD4 downstream of the TSS and prolongs the pausing of RNA Pol II. Correlation of BRD4 binding and drug-mediated displacement at RNA Pol II pause sites with gene expression revealed a differential behavior of sensitive and resistant tumor cells to I-BET and identified a BRD4 signature at promoters of sensitive coding and non-coding genes. Conclusions We provide evidence that I-BET-induced shift of Pol II pausing at promoters via displacement of BRD4 is a determinant of intrinsic I-BET sensitivity. This finding may guide pharmacological treatment to enhance the clinical utility of such targeted therapies in AML and potentially other BET proteins-driven diseases. Electronic supplementary material The online version of this article (10.1186/s13072-019-0286-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Khoueiry
- Cellzome GmbH, a GSK Company, Heidelberg, Germany. .,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | | | - M Petretich
- Cellzome GmbH, a GSK Company, Heidelberg, Germany
| | - A M Michon
- Cellzome GmbH, a GSK Company, Heidelberg, Germany
| | - D Simola
- Target Science Computational Biology, GSK Medicines Research Centre, Upper Providence, USA
| | - E Lam
- Peter MacCallum Cancer Center, Melbourne, Australia
| | - E E Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - V Benes
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - M A Dawson
- Peter MacCallum Cancer Center, Melbourne, Australia
| | - R K Prinjha
- Epigenetics DPU, GSK Medicines Research Centre, Stevenage, UK
| | - G Drewes
- Cellzome GmbH, a GSK Company, Heidelberg, Germany
| | - P Grandi
- Cellzome GmbH, a GSK Company, Heidelberg, Germany.
| |
Collapse
|
23
|
Ma J, Chen H, Yang J, Yu Z, Huang P, Yang H, Zheng B, Liu R, Li Q, Hu G, Chen Z. Binding pocket-based design, synthesis and biological evaluation of novel selective BRD4-BD1 inhibitors. Bioorg Med Chem 2019; 27:1871-1881. [DOI: 10.1016/j.bmc.2019.03.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 01/09/2023]
|
24
|
BET bromodomain inhibitors: fragment-based in silico design using multi-target QSAR models. Mol Divers 2018; 23:555-572. [PMID: 30421269 DOI: 10.1007/s11030-018-9890-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022]
Abstract
Epigenetics has become a focus of interest in drug discovery. In this sense, bromodomain-containing proteins have emerged as potential epigenetic targets in cancer research and other therapeutic areas. Several computational approaches have been applied to the prediction of bromodomain inhibitors. Nevertheless, such approaches have several drawbacks such as the fact that they predict activity against only one bromodomain-containing protein, using structurally related compounds. Also, there are no reports focused on meaningfully analyzing the physicochemical/structural features that are necessary for the design of a bromodomain inhibitor. This work describes the development of two different multi-target models based on quantitative structure-activity relationships (mt-QSAR) for the prediction and in silico design of multi-target bromodomain inhibitors against the proteins BRD2, BRD3, and BRD4. The first model relied on linear discriminant analysis (LDA) while the second focused on artificial neural networks. Both models exhibited accuracies higher than 85% in the dataset. Several molecular fragments were extracted, and their contributions to the inhibitory activity against the three BET proteins were calculated by the LDA model. Six molecules were designed by assembling the fragments with positive contributions, and they were predicted as multi-target BET bromodomain inhibitors by the two mt-QSAR models. Molecular docking calculations converged with the predictions performed by the mt-QSAR models, suggesting that the designed molecules can exhibit potent activity against the three BET proteins. These molecules complied with the Lipinski's rule of five.
Collapse
|
25
|
Hansson P, Boyd H, Dale IL, Dahl G, Nicolaus F, Bowen W, Doering K, Dunsmore C, Cotton G, Lindmark H. A Comparative Study of Fluorescence Assays in Screening for BRD4. Assay Drug Dev Technol 2018; 16:372-383. [PMID: 30307314 DOI: 10.1089/adt.2018.850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fluorescence assay technologies are commonly used in high-throughput screening because of their sensitivity and ease of use. Different technologies have their characteristics and the rationale for choosing one over the other can differ between projects because of factors such as availability of reagents, assay performance, and cost. Another important factor to consider is the assay susceptibility to artifacts, which is almost as important as the ability of the assay to pick up active compounds. Spending time and money on false positives or missing the opportunity to build chemistry around false negatives is something that every drug project tries to avoid. We used a BET family Bromodomain, BRD4(1), to explore the outcome of a screening campaign using three fluorescent assay technologies as primary assays. A diverse 7,038 compound set was screened in fluorescence lifetime, fluorescence polarization, and homogeneous time-resolved fluorescence to look at primary hit rates, compound overlap, and hit confirmation rates. The results show a difference between the fluorescence assay technologies with three separate hit lists and some overlap. The confirmed hits from each assay were further evaluated for translation into cells (NanoBRET™). Most of the actives confirmed in cells originated from compounds that overlapped between the assays. In addition, a well-annotated set of compounds with undesirable mechanism of inhibition was screened against BRD4(1) to compare the ability to discriminate true hits from artifact compounds. The results indicate a difference between the assays in their ability to generate false positives and negatives.
Collapse
Affiliation(s)
- Pia Hansson
- 1 AstraZeneca R&D, Discovery Biology , Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Helen Boyd
- 1 AstraZeneca R&D, Discovery Biology , Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ian L Dale
- 2 AstraZeneca R&D, Discovery Biology , Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Göran Dahl
- 3 AstraZeneca R&D, Structure and Biophysics , Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Felix Nicolaus
- 4 Department of Biochemistry and Biophysics, Stockholm University , Stockholm, Sweden
| | | | | | | | | | - Helena Lindmark
- 1 AstraZeneca R&D, Discovery Biology , Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
26
|
Giblin KA, Hughes SJ, Boyd H, Hansson P, Bender A. Prospectively Validated Proteochemometric Models for the Prediction of Small-Molecule Binding to Bromodomain Proteins. J Chem Inf Model 2018; 58:1870-1888. [DOI: 10.1021/acs.jcim.8b00400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kathryn A. Giblin
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Samantha J. Hughes
- Computational Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge CB10 1XL, U.K
| | - Helen Boyd
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg 431 50 SE, Sweden
| | - Pia Hansson
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg 431 50 SE, Sweden
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
27
|
Flavonoids as Putative Epi-Modulators: Insight into Their Binding Mode with BRD4 Bromodomains Using Molecular Docking and Dynamics. Biomolecules 2018; 8:biom8030061. [PMID: 30041464 PMCID: PMC6164663 DOI: 10.3390/biom8030061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023] Open
Abstract
Flavonoids are widely recognized as natural polydrugs, given their anti-inflammatory, antioxidant, sedative, and antineoplastic activities. Recently, different studies showed that flavonoids have the potential to inhibit bromodomain and extraterminal (BET) bromodomains. Previous reports suggested that flavonoids bind between the Z and A loops of the bromodomain (ZA channel) due to their orientation and interactions with P86, V87, L92, L94, and N140. Herein, a comprehensive characterization of the binding modes of fisetin and the biflavonoid, amentoflavone, is discussed. To this end, both compounds were docked with BET bromodomain 4 (BRD4) using four docking programs. The results were post-processed with protein–ligand interaction fingerprints. To gain further insight into the binding mode of the two natural products, the docking results were further analyzed with molecular dynamics simulations. The results showed that amentoflavone makes numerous contacts in the ZA channel, as previously described for flavonoids and kinase inhibitors. It was also found that amentoflavone can potentially make contacts with non-canonical residues for BET inhibition. Most of these contacts were not observed with fisetin. Based on these results, amentoflavone was experimentally tested for BRD4 inhibition, showing activity in the micromolar range. This work may serve as the basis for scaffold optimization and the further characterization of flavonoids as BET inhibitors.
Collapse
|
28
|
Runcie AC, Zengerle M, Chan KH, Testa A, van Beurden L, Baud MGJ, Epemolu O, Ellis LCJ, Read KD, Coulthard V, Brien A, Ciulli A. Optimization of a "bump-and-hole" approach to allele-selective BET bromodomain inhibition. Chem Sci 2018; 9:2452-2468. [PMID: 29732121 PMCID: PMC5909127 DOI: 10.1039/c7sc02536j] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/23/2018] [Indexed: 12/27/2022] Open
Abstract
Allele-specific chemical genetics enables selective inhibition within families of highly-conserved proteins.
Allele-specific chemical genetics enables selective inhibition within families of highly-conserved proteins. The four BET (bromodomain & extra-terminal domain) proteins – BRD2, BRD3, BRD4 and BRDT bind acetylated chromatin via their bromodomains and regulate processes such as cell proliferation and inflammation. BET bromodomains are of particular interest, as they are attractive therapeutic targets but existing inhibitors are pan-selective. We previously established a bump-&-hole system for the BET bromodomains, pairing a leucine/alanine mutation with an ethyl-derived analogue of an established benzodiazepine scaffold. Here we optimize upon this system with the introduction of a more conservative and less disruptive leucine/valine mutation. Extensive structure–activity-relationships of diverse benzodiazepine analogues guided the development of potent, mutant-selective inhibitors with desirable physiochemical properties. The active enantiomer of our best compound – 9-ME-1 – shows ∼200 nM potency, >100-fold selectivity for the L/V mutant over wild-type and excellent DMPK properties. Through a variety of in vitro and cellular assays we validate the capabilities of our optimized system, and then utilize it to compare the relative importance of the first and second bromodomains to chromatin binding. These experiments confirm the primacy of the first bromodomain in all BET proteins, but also significant variation in the importance of the second bromodomain. We also show that, despite having a minor role in chromatin recognition, BRD4 BD2 is still essential for gene expression, likely through the recruitment of non-histone proteins. The disclosed inhibitor:mutant pair provides a powerful tool for future cellular and in vivo target validation studies.
Collapse
Affiliation(s)
- A C Runcie
- Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee , Scotland , UK .
| | - M Zengerle
- Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee , Scotland , UK .
| | - K-H Chan
- Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee , Scotland , UK .
| | - A Testa
- Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee , Scotland , UK .
| | - L van Beurden
- Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee , Scotland , UK .
| | - M G J Baud
- Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee , Scotland , UK .
| | - O Epemolu
- Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee , Scotland , UK .
| | - L C J Ellis
- Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee , Scotland , UK .
| | - K D Read
- Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee , Scotland , UK .
| | - V Coulthard
- Reach Separations Ltd , BioCity Nottingham , Nottingham , UK
| | - A Brien
- Reach Separations Ltd , BioCity Nottingham , Nottingham , UK
| | - A Ciulli
- Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee , Scotland , UK .
| |
Collapse
|
29
|
|
30
|
Yue P, Dong C, Zhang M, Xu D, Parkin S, Li T, Li C, Yu F, Long S. Zwitterion formation and subsequent carboxylate–pyridinium NH synthon generation through isomerization of 2-anilinonicotinic acid. CrystEngComm 2018. [DOI: 10.1039/c8ce01255e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Structural isomerization of 2-anilinonicotinic acids to 4-anilinonicotinic acids leads to an increase of ΔpKa, thus leading to the formation of a carboxylate–pyridinium NH dimer in the solid state.
Collapse
Affiliation(s)
- Pengyun Yue
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
| | - Caiqiao Dong
- Department of Chemistry
- Nankai University
- Tianjin
- China
| | - Mingtao Zhang
- Department of Chemistry
- Nankai University
- Tianjin
- China
| | - Danrui Xu
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
| | - Sean Parkin
- Department of Chemistry
- University of Kentucky
- Lexington
- USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy
- Purdue University
- West Lafayette
- USA
| | - Conggang Li
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
- Wuhan
- China
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
| |
Collapse
|
31
|
Welcome to Future Medicinal Chemistry volume 10. Future Med Chem 2017; 10:1-4. [PMID: 29251116 DOI: 10.4155/fmc-2017-9000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Wang Q, Li Y, Xu J, Wang Y, Leung ELH, Liu L, Yao X. Selective inhibition mechanism of RVX-208 to the second bromodomain of bromo and extraterminal proteins: insight from microsecond molecular dynamics simulations. Sci Rep 2017; 7:8857. [PMID: 28821780 PMCID: PMC5562737 DOI: 10.1038/s41598-017-08909-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/14/2017] [Indexed: 11/09/2022] Open
Abstract
RVX-208 is a recently reported inhibitor of bromo and extraterminal (BET) family proteins (including BRD2-4 and BRDT) with selectivity for the second bromodomain (BD2), currently in phase III clinical trials. Despite of its promising antitumor activity, due to the conserved folds of the first and second bromodomains (BD1 and BD2), the detailed selectivity mechanism of RVX-208 towards BD2 over BD1 is still unknown. To elucidate selective inhibition mechanism of RVX-208 to BD2, microsecond molecular dynamics simulations were performed in this study for BRD2-BD1, BRD2-BD2 and BRD4-BD1 with and without RVX-208, respectively. Binding free energy calculations show that there exists strongest interaction between RVX-208 and BRD2-BD2. Leu383 and Asn429 are two most important residues of BRD2-BD2 for binding to RVX-208. Structural network analysis reveals that RVX-208 can shorten the communication path of ZA and BC loops in BRD2-BD2 pocket, making pocket more suitable to accommodate RVX-208. Additionally, different behaviors of His433 (Asp160 in BRD2-BD1) and Val435 (Ile162 in BRD2-BD1) in BRD2-BD2 are key factors responsible for selective binding of RVX-208 to BRD2-BD2. The proposed selective inhibition mechanism of RVX-208 to BRD2-BD2 can be helpful for rational design of novel selective inhibitors of the second bromodomain of BET family proteins.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Jiahui Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Yuwei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
33
|
Igoe N, Bayle ED, Tallant C, Fedorov O, Meier JC, Savitsky P, Rogers C, Morias Y, Scholze S, Boyd H, Cunoosamy D, Andrews DM, Cheasty A, Brennan PE, Müller S, Knapp S, Fish PV. Design of a Chemical Probe for the Bromodomain and Plant Homeodomain Finger-Containing (BRPF) Family of Proteins. J Med Chem 2017; 60:6998-7011. [PMID: 28714688 DOI: 10.1021/acs.jmedchem.7b00611] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bromodomain and plant homeodomain finger-containing (BRPF) family are scaffolding proteins important for the recruitment of histone acetyltransferases of the MYST family to chromatin. Here, we describe NI-57 (16) as new pan-BRPF chemical probe of the bromodomain (BRD) of the BRPFs. Inhibitor 16 preferentially bound the BRD of BRPF1 and BRPF2 over BRPF3, whereas binding to BRD9 was weaker. Compound 16 has excellent selectivity over nonclass IV BRD proteins. Target engagement of BRPF1B and BRPF2 with 16 was demonstrated in nanoBRET and FRAP assays. The binding of 16 to BRPF1B was rationalized through an X-ray cocrystal structure determination, which showed a flipped binding orientation when compared to previous structures. We report studies that show 16 has functional activity in cellular assays by modulation of the phenotype at low micromolar concentrations in both cancer and inflammatory models. Pharmacokinetic data for 16 was generated in mouse with single dose administration showing favorable oral bioavailability.
Collapse
Affiliation(s)
- Niall Igoe
- UCL School of Pharmacy, University College London , 29/39 Brunswick Square, London WC1N 1AX, U.K
| | - Elliott D Bayle
- UCL School of Pharmacy, University College London , 29/39 Brunswick Square, London WC1N 1AX, U.K
| | - Cynthia Tallant
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Oleg Fedorov
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Julia C Meier
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Pavel Savitsky
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Catherine Rogers
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Yannick Morias
- AstraZeneca , Innovative Medicines & Early Development, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Sarah Scholze
- AstraZeneca , Innovative Medicines & Early Development, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Helen Boyd
- AstraZeneca , Innovative Medicines & Early Development, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Danen Cunoosamy
- AstraZeneca , Innovative Medicines & Early Development, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - David M Andrews
- AstraZeneca Discovery Sciences , Darwin Building, Cambridge Science Park, Cambridge CB4 0FZ, U.K
| | - Anne Cheasty
- CRT Discovery Laboratories , Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Paul E Brennan
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Susanne Müller
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.,Buchmann Institute for Molecular Life Sciences , Max-von-Laue-Strasse 15, D-60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.,Buchmann Institute for Molecular Life Sciences , Max-von-Laue-Strasse 15, D-60438 Frankfurt am Main, Germany.,Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Paul V Fish
- UCL School of Pharmacy, University College London , 29/39 Brunswick Square, London WC1N 1AX, U.K
| |
Collapse
|
34
|
Chemical modulators for epigenome reader domains as emerging epigenetic therapies for cancer and inflammation. Curr Opin Chem Biol 2017; 39:116-125. [PMID: 28689146 DOI: 10.1016/j.cbpa.2017.06.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 12/12/2022]
Abstract
Site-specific lysine acetylation and methylation on histones are critical post-translational modifications (PTMs) that govern ordered gene transcription in chromatin. Mis-regulation of these histone PTM-mediated processes has been shown to be associated with human diseases. Since the 2010 landmark reports of small molecules (+)-JQ1 and I-BET762 that target the acetyl-lysine 'reader' Bromodomain and Extra Terminal domain (BET) proteins, there have been relentless efforts to develop epigenetic therapy with small molecules to modulate molecular interactions of epigenome reader domain proteins with PTMs. In addition to BET, the other emerging targets include non-BET acetyl-lysine and methyl-lysine reader domains. This review covers the key chemical modulators of the aforementioned epigenome reader proteins.
Collapse
|
35
|
Chan KH, Zengerle M, Testa A, Ciulli A. Impact of Target Warhead and Linkage Vector on Inducing Protein Degradation: Comparison of Bromodomain and Extra-Terminal (BET) Degraders Derived from Triazolodiazepine (JQ1) and Tetrahydroquinoline (I-BET726) BET Inhibitor Scaffolds. J Med Chem 2017; 61:504-513. [PMID: 28595007 PMCID: PMC5788402 DOI: 10.1021/acs.jmedchem.6b01912] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The
design of proteolysis-targeting chimeras (PROTACs) is a powerful
small-molecule approach for inducing protein degradation. PROTACs
conjugate a target warhead to an E3 ubiquitin ligase ligand via a
linker. Here we examined the impact of derivatizing two different
BET bromodomain inhibitors, triazolodiazepine JQ1 and the more potent
tetrahydroquinoline I-BET726, via distinct exit vectors, using different
polyethylene glycol linkers to VHL ligand VH032. Triazolodiazepine
PROTACs exhibited positive cooperativities of ternary complex formation
and were more potent degraders than tetrahydroquinoline compounds,
which showed negative cooperativities instead. Marked dependency on
linker length was observed for BET-degrading and cMyc-driven antiproliferative
activities in acute myeloid leukemia cell lines. This work exemplifies
as a cautionary tale how a more potent inhibitor does not necessarily
generate more potent PROTACs and underscores the key roles played
by the conjugation. The provided insights and framework for structure–activity
relationships of bivalent degraders are anticipated to have wide future
applicability.
Collapse
Affiliation(s)
- Kwok-Ho Chan
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dow Street, Dundee, DD1 5EH, Scotland, U.K
| | - Michael Zengerle
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dow Street, Dundee, DD1 5EH, Scotland, U.K
| | - Andrea Testa
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dow Street, Dundee, DD1 5EH, Scotland, U.K
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dow Street, Dundee, DD1 5EH, Scotland, U.K
| |
Collapse
|
36
|
Bromodomain Histone Readers and Cancer. J Mol Biol 2017; 429:2003-2010. [DOI: 10.1016/j.jmb.2016.11.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/15/2016] [Accepted: 11/19/2016] [Indexed: 12/29/2022]
|
37
|
Structural basis of molecular recognition of helical histone H3 tail by PHD finger domains. Biochem J 2017; 474:1633-1651. [PMID: 28341809 PMCID: PMC5415848 DOI: 10.1042/bcj20161053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/20/2022]
Abstract
The plant homeodomain (PHD) fingers are among the largest family of epigenetic domains, first characterized as readers of methylated H3K4. Readout of histone post-translational modifications by PHDs has been the subject of intense investigation; however, less is known about the recognition of secondary structure features within the histone tail itself. We solved the crystal structure of the PHD finger of the bromodomain adjacent to zinc finger 2A [BAZ2A, also known as TIP5 (TTF-I/interacting protein 5)] in complex with unmodified N-terminal histone H3 tail. The peptide is bound in a helical folded-back conformation after K4, induced by an acidic patch on the protein surface that prevents peptide binding in an extended conformation. Structural bioinformatics analyses identify a conserved Asp/Glu residue that we name ‘acidic wall’, found to be mutually exclusive with the conserved Trp for K4Me recognition. Neutralization or inversion of the charges at the acidic wall patch in BAZ2A, and homologous BAZ2B, weakened H3 binding. We identify simple mutations on H3 that strikingly enhance or reduce binding, as a result of their stabilization or destabilization of H3 helicity. Our work unravels the structural basis for binding of the helical H3 tail by PHD fingers and suggests that molecular recognition of secondary structure motifs within histone tails could represent an additional layer of regulation in epigenetic processes.
Collapse
|
38
|
Liu Z, Wang P, Chen H, Wold EA, Tian B, Brasier AR, Zhou J. Drug Discovery Targeting Bromodomain-Containing Protein 4. J Med Chem 2017; 60:4533-4558. [PMID: 28195723 PMCID: PMC5464988 DOI: 10.1021/acs.jmedchem.6b01761] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
BRD4,
the most extensively studied member of the BET family, is
an epigenetic regulator that localizes to DNA via binding to acetylated
histones and controls the expression of therapeutically important
gene regulatory networks through the recruitment of transcription
factors to form mediator complexes, phosphorylating RNA polymerase
II, and by its intrinsic histone acetyltransferase activity. Disrupting
the protein–protein interactions between BRD4 and acetyl-lysine
has been shown to effectively block cell proliferation in cancer,
cytokine production in acute inflammation, and so forth. To date,
significant efforts have been devoted to the development of BRD4 inhibitors,
and consequently, a dozen have progressed to human clinical trials.
Herein, we summarize the advances in drug discovery and development
of BRD4 inhibitors by focusing on their chemotypes, in vitro and in
vivo activity, selectivity, relevant mechanisms of action, and therapeutic
potential. Opportunities and challenges to achieve selective and efficacious
BRD4 inhibitors as a viable therapeutic strategy for human diseases
are also highlighted.
Collapse
Affiliation(s)
- Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, ‡Department of Internal Medicine, §Sealy Center for Molecular Medicine, ξInstitute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, ‡Department of Internal Medicine, §Sealy Center for Molecular Medicine, ξInstitute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, ‡Department of Internal Medicine, §Sealy Center for Molecular Medicine, ξInstitute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Eric A Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, ‡Department of Internal Medicine, §Sealy Center for Molecular Medicine, ξInstitute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Bing Tian
- Chemical Biology Program, Department of Pharmacology and Toxicology, ‡Department of Internal Medicine, §Sealy Center for Molecular Medicine, ξInstitute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Allan R Brasier
- Chemical Biology Program, Department of Pharmacology and Toxicology, ‡Department of Internal Medicine, §Sealy Center for Molecular Medicine, ξInstitute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, ‡Department of Internal Medicine, §Sealy Center for Molecular Medicine, ξInstitute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| |
Collapse
|
39
|
Prachayasittikul V, Prathipati P, Pratiwi R, Phanus-Umporn C, Malik AA, Schaduangrat N, Seenprachawong K, Wongchitrat P, Supokawej A, Prachayasittikul V, Wikberg JES, Nantasenamat C. Exploring the epigenetic drug discovery landscape. Expert Opin Drug Discov 2017; 12:345-362. [PMID: 28276705 DOI: 10.1080/17460441.2017.1295954] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Epigenetic modification has been implicated in a wide range of diseases and the ability to modulate such systems is a lucrative therapeutic strategy in drug discovery. Areas covered: This article focuses on the concepts and drug discovery aspects of epigenomics. This is achieved by providing a survey of the following concepts: (i) factors influencing epigenetics, (ii) diseases arising from epigenetics, (iii) epigenetic enzymes as druggable targets along with coverage of existing FDA-approved drugs and pharmacological agents, and (iv) drug repurposing/repositioning as a means for rapid discovery of pharmacological agents targeting epigenetics. Expert opinion: Despite significant interests in targeting epigenetic modifiers as a therapeutic route, certain classes of target proteins are heavily studied while some are less characterized. Thus, such orphan target proteins are not yet druggable with limited report of active modulators. Current research points towards a great future with novel drugs directed to the many complex multifactorial diseases of humans, which are still often poorly understood and difficult to treat.
Collapse
Affiliation(s)
- Veda Prachayasittikul
- a Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Philip Prathipati
- b National Institutes of Biomedical Innovation, Health and Nutrition , Osaka , Japan
| | - Reny Pratiwi
- a Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Chuleeporn Phanus-Umporn
- a Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Aijaz Ahmad Malik
- a Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Nalini Schaduangrat
- a Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Kanokwan Seenprachawong
- c Department of Clinical Microscopy, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Prapimpun Wongchitrat
- d Center for Research and Innovation, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Aungkura Supokawej
- c Department of Clinical Microscopy, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Virapong Prachayasittikul
- e Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Jarl E S Wikberg
- f Department of Pharmaceutical Biosciences , Uppsala University , Uppsala , Sweden
| | - Chanin Nantasenamat
- a Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| |
Collapse
|
40
|
Igoe N, Bayle ED, Fedorov O, Tallant C, Savitsky P, Rogers C, Owen DR, Deb G, Somervaille TCP, Andrews DM, Jones N, Cheasty A, Ryder H, Brennan PE, Müller S, Knapp S, Fish PV. Design of a Biased Potent Small Molecule Inhibitor of the Bromodomain and PHD Finger-Containing (BRPF) Proteins Suitable for Cellular and in Vivo Studies. J Med Chem 2017; 60:668-680. [PMID: 28068087 DOI: 10.1021/acs.jmedchem.6b01583] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The BRPF (bromodomain and PHD finger-containing) family are scaffolding proteins important for the recruitment of histone acetyltransferases of the MYST family to chromatin. Evaluation of the BRPF family as a potential drug target is at an early stage although there is an emerging understanding of a role in acute myeloid leukemia (AML). We report the optimization of fragment hit 5b to 13-d as a biased, potent inhibitor of the BRD of the BRPFs with excellent selectivity over nonclass IV BRD proteins. Evaluation of 13-d in a panel of cancer cell lines showed a selective inhibition of proliferation of a subset of AML lines. Pharmacokinetic studies established that 13-d had properties compatible with oral dosing in mouse models of disease (Fpo 49%). We propose that NI-42 (13-d) is a new chemical probe for the BRPFs suitable for cellular and in vivo studies to explore the fundamental biology of these proteins.
Collapse
Affiliation(s)
- Niall Igoe
- UCL School of Pharmacy, University College London , 29/39 Brunswick Square, London WC1N 1AX, U.K
| | - Elliott D Bayle
- UCL School of Pharmacy, University College London , 29/39 Brunswick Square, London WC1N 1AX, U.K
| | - Oleg Fedorov
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Cynthia Tallant
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Pavel Savitsky
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Catherine Rogers
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Dafydd R Owen
- Pfizer Worldwide Medicinal Chemistry , 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Gauri Deb
- Leukemia Biology Laboratory, Cancer Research UK Manchester Institute , Manchester M20 4BX, U.K
| | - Tim C P Somervaille
- Leukemia Biology Laboratory, Cancer Research UK Manchester Institute , Manchester M20 4BX, U.K
| | - David M Andrews
- AstraZeneca Discovery Sciences , Darwin Building, Cambridge Science Park, Cambridge CB4 0FZ, U.K
| | - Neil Jones
- CRT Discovery Laboratories , Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Anne Cheasty
- CRT Discovery Laboratories , Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Hamish Ryder
- CRT Discovery Laboratories , Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Paul E Brennan
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Susanne Müller
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
- Buchmann Institute for Molecular Life Sciences , Max-von-Laue-Strasse 15, D-60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
- Buchmann Institute for Molecular Life Sciences , Max-von-Laue-Strasse 15, D-60438 Frankfurt am Main, Germany
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Paul V Fish
- UCL School of Pharmacy, University College London , 29/39 Brunswick Square, London WC1N 1AX, U.K
| |
Collapse
|
41
|
Humphreys PG, Bamborough P, Chung CW, Craggs PD, Gordon L, Grandi P, Hayhow TG, Hussain J, Jones KL, Lindon M, Michon AM, Renaux JF, Suckling CJ, Tough DF, Prinjha RK. Discovery of a Potent, Cell Penetrant, and Selective p300/CBP-Associated Factor (PCAF)/General Control Nonderepressible 5 (GCN5) Bromodomain Chemical Probe. J Med Chem 2017; 60:695-709. [DOI: 10.1021/acs.jmedchem.6b01566] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | | | - Paola Grandi
- Cellzome
GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | - Anne-Marie Michon
- Cellzome
GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Colin J. Suckling
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom
| | | | | |
Collapse
|
42
|
Shu S, Polyak K. BET Bromodomain Proteins as Cancer Therapeutic Targets. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:123-129. [PMID: 28062533 DOI: 10.1101/sqb.2016.81.030908] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Epigenetic regulators are emerging therapeutic targets in a wide variety of human cancers. BET bromodomain proteins have been identified as key regulators of oncogenic transcription factors including MYC; therefore, their inhibition might provide a way to block these "undruggable" targets. Several BET bromodomain inhibitors are in clinical development with promising preliminary findings. However, tumors acquire resistance to these agents in several different ways. In this review, we summarize the role that BET bromodomain proteins play in tumorigenesis as well as the molecular mechanisms underlying therapeutic responses and resistance to their inhibition with emphasis on BRD4 and breast cancer.
Collapse
Affiliation(s)
- Shaokun Shu
- Department of Medical Oncology, Dana-Farber Cancer Institute; Department of Medicine, Brigham and Women's Hospital; and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute; Department of Medicine, Brigham and Women's Hospital; and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
43
|
Teuscher KB, Zhang M, Ji H. A Versatile Method to Determine the Cellular Bioavailability of Small-Molecule Inhibitors. J Med Chem 2017; 60:157-169. [PMID: 27935314 PMCID: PMC7771553 DOI: 10.1021/acs.jmedchem.6b00923] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The determination of the cellular bioavailability of small-molecule inhibitors is a critical step for interpreting cell-based data and guiding inhibitor optimization. Herein, a HPLC-MS based protocol was developed to determine inhibitor cellular bioavailability. This generalizable protocol allows determination of the accurate intracellular concentrations and characterization of various properties of inhibitors including the extra- and intracellular stability, the dose- and time-dependence of the intracellular concentrations, the cell permeability, and the nonspecific binding with the cell culture plates, the extracellular matrices, and the cell membrane. The inhibitors of the protein-protein interactions, bromodomains, and the β-catenin/B-cell lymphoma 9 (BCL9) interaction were used to examine the protocol, and the cellular bioavailability of the inhibitors in cancer cells was determined. High nonspecific binding and low cellular uptake were observed for two bromodomain inhibitors. The two β-catenin/BCL9 inhibitors had low nonspecific binding but different cellular uptake. These inhibitors exhibited different stability kinetics in cells.
Collapse
Affiliation(s)
- Kevin B Teuscher
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute , 12902 Magnolia Drive, Tampa, Florida 33612-9416, United States.,Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute , 12902 Magnolia Drive, Tampa, Florida 33612-9416, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute , 12902 Magnolia Drive, Tampa, Florida 33612-9416, United States.,Department of Oncologic Sciences, University of South Florida College of Medicine , Tampa, Florida 33612, United States.,Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| |
Collapse
|
44
|
García-Sánchez MO, Cruz-Monteagudo M, Medina-Franco JL. Quantitative Structure-Epigenetic Activity Relationships. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2017. [DOI: 10.1007/978-3-319-56850-8_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Runcie AC, Chan KH, Zengerle M, Ciulli A. Chemical genetics approaches for selective intervention in epigenetics. Curr Opin Chem Biol 2016; 33:186-94. [PMID: 27423045 PMCID: PMC5061558 DOI: 10.1016/j.cbpa.2016.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/01/2016] [Accepted: 06/23/2016] [Indexed: 11/21/2022]
Abstract
Chemical genetics offers tools and opportunities to investigate epigenetic processes. Chemical probes targeting epigenetic proteins are increasingly being developed. Epigenetic targets pose distinct challenges to chemical genetics approaches. The ‘bump-and-hole’ approach allows for highly selective single-target inhibition. PROTACS can degrade target proteins to enhance efficacy and selectivity.
Chemical genetics is the use of biologically active small molecules (chemical probes) to investigate the functions of gene products, through the modulation of protein activity. Recent years have seen significant progress in the application of chemical genetics to study epigenetics, following the development of new chemical probes, a growing appreciation of the role of epigenetics in disease and a recognition of the need and utility of high-quality, cell-active chemical probes. In this review, we single out the bromodomain reader domains as a prime example of both the success, and challenges facing chemical genetics. The difficulty in generating single-target selectivity has long been a thorn in the side of chemical genetics, however, recent developments in advanced forms of chemical genetics promise to bypass this, and other, limitations. The ‘bump-and-hole’ approach has now been used to probe — for the first time — the BET bromodomain subfamily with single-target selectivity and may be applicable to other epigenetic domains. Meanwhile, PROTAC compounds have been shown to be significantly more efficacious than standard domain inhibitors, and have the potential to enhance target selectivity.
Collapse
Affiliation(s)
- Andrew C Runcie
- School of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, James Black Centre, Dow Street, Dundee DD1 5EH, UK
| | - Kwok-Ho Chan
- School of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, James Black Centre, Dow Street, Dundee DD1 5EH, UK
| | - Michael Zengerle
- School of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, James Black Centre, Dow Street, Dundee DD1 5EH, UK
| | - Alessio Ciulli
- School of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, James Black Centre, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
46
|
Cortopassi WA, Kumar K, Paton RS. Cation–π interactions in CREBBP bromodomain inhibition: an electrostatic model for small-molecule binding affinity and selectivity. Org Biomol Chem 2016; 14:10926-10938. [DOI: 10.1039/c6ob02234k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new model is presented to explain and predict binding affinity of aromatic and heteroaromatic ligands for the CREBBP bromodomain based on cation–π interaction strength.
Collapse
Affiliation(s)
| | - Kiran Kumar
- Chemistry Research Laboratory
- University of Oxford
- Oxford OX1 3TA
- UK
| | - Robert S. Paton
- Chemistry Research Laboratory
- University of Oxford
- Oxford OX1 3TA
- UK
| |
Collapse
|