1
|
Dias I, Bon L, Banas A, Chavarria D, Borges F, Guerreiro-Oliveira C, Cardoso SM, Sanna D, Garribba E, Chaves S, Santos MA. Exploiting the potential of rivastigmine-melatonin derivatives as multitarget metal-modulating drugs for neurodegenerative diseases. J Inorg Biochem 2025; 262:112734. [PMID: 39378762 DOI: 10.1016/j.jinorgbio.2024.112734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/08/2024] [Indexed: 10/10/2024]
Abstract
The multifaceted nature of the neurodegenerative diseases, as Alzheimer's disease (AD) and Parkinson's disease (PD) with several interconnected etiologies, and the absence of effective drugs, led herein to the development and study of a series of multi-target directed ligands (MTDLs). The developed RIV-IND hybrids, derived from the conjugation of an approved anti-AD drug, rivastigmine (RIV), with melatonin analogues, namely indole (IND) derivatives, revealed multifunctional properties, by associating the cholinesterase inhibition of the RIV drug with antioxidant activity, biometal (Cu(II), Zn(II), Fe(III)) chelation properties, inhibition of amyloid-β (Aβ) aggregation (self- and Cu-induced) and of monoamine oxidases (MAOs), as well as neuroprotection capacity in cell models of AD and PD. In particular, two hybrids with hydroxyl-substituted indoles (5a2 and 5a3) could be promising multifunctional compounds that inspire further development of novel anti-neurodegenerative drugs.
Collapse
Affiliation(s)
- Inês Dias
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Leo Bon
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Angelika Banas
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Daniel Chavarria
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Catarina Guerreiro-Oliveira
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine University of Coimbra (FMUC), 3004-504 Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine University of Coimbra (FMUC), 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), 3004-504 Coimbra, Portugal
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chimica e Farmacia, Università di Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Sílvia Chaves
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - M Amélia Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
2
|
Menéndez-Coto N, Garcia-Gonzalez C, Baena-Huerta FJ, Zapata-Pérez R, Rabadán-Ros R, Núñez-Delicado E, González-Llorente L, Caso-Peláez E, Coto-Montes A. Combining Cold Atmospheric Plasma and Environmental Nanoparticle Removal Device Reduces Neurodegenerative Markers. Int J Mol Sci 2024; 25:12986. [PMID: 39684696 DOI: 10.3390/ijms252312986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Ageing leads to a gradual deterioration of the organs, with the brain being particularly susceptible, often leading to neurodegeneration. This process includes well-known changes such as tau hyperphosphorylation and beta-amyloid deposition, which are commonly associated with neurodegenerative diseases but are also present in ageing. These structures are triggered by earlier cellular changes such as energy depletion and impaired protein synthesis, both of which are essential for cell function. These changes may in part be induced by environmental pollution, which has been shown to accelerate these processes. Cold Atmospheric Plasma (CAP) or atmospheric pressure gas discharge plasmas have shown promise in activating the immune system and improving cellular function in vitro, although their effects at the organ level remain poorly understood. Our aim in this work is to investigate the effect of a device that combines CAP treatment with the effective removal of environmental nanoparticles, typical products of pollution, on the activity of aged mouse brains. The results showed an increase in energy capacity, a reduction in reticulum stress and an activation of cellular autophagic clearance, minimising aggresomes in the brain. This leads to a reduction in key markers of neurodegeneration such as tau hyperphosphorylation and beta-amyloid deposition, demonstrating the efficacy of the tested product at the brain level.
Collapse
Affiliation(s)
- Nerea Menéndez-Coto
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain
- Research Group Oxidative Stress Knowledge and Advanced Research (OSKAR), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Claudia Garcia-Gonzalez
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain
- Research Group Oxidative Stress Knowledge and Advanced Research (OSKAR), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
| | | | - Rubén Zapata-Pérez
- UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Rubén Rabadán-Ros
- UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Estrella Núñez-Delicado
- Departamento de Ciencias de la Salud, Universidad Católica San Antonio de Murcia (UCAM), Avenida de los Jerónimos s/n, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Lucía González-Llorente
- UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, Guadalupe de Maciascoque, 30107 Murcia, Spain
- System and Precision Medicine, Hospital Covadonga, 33204 Gijón, Spain
| | - Enrique Caso-Peláez
- UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, Guadalupe de Maciascoque, 30107 Murcia, Spain
- System and Precision Medicine, Hospital Covadonga, 33204 Gijón, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain
- Research Group Oxidative Stress Knowledge and Advanced Research (OSKAR), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
| |
Collapse
|
3
|
Benramdane H, Benariba N, Silva CFM, Catarino MD, Bartolomeu M, Fekhikher Z, Pinto DCGA. Phytochemical Profile, Antioxidant, Anti-Alzheimer, And α-Glucosidase Inhibitory Effect Of Algerian Peganum harmala Seeds Extract. Chem Biodivers 2024; 21:e202401308. [PMID: 39072993 DOI: 10.1002/cbdv.202401308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 07/30/2024]
Abstract
Peganum harmala seeds crude hydro-methanolic extract and their fractions (obtained with ethyl acetate and butan-1-ol) were analyzed and compared for their chemical profiles of alkaloids and polyphenols content. Moreover, their antioxidant, α-glucosidase, acetylcholinesterase, and butyrylcholinesterase inhibitory activities were evaluated. The butan-1-ol fraction revealed the highest total phenolic content and exhibited the highest antioxidant capacity. From the inhibitory enzyme evaluations, it should be highlighted the butan-1-ol fraction inhibitory potential of ɑ-glucosidase (the IC50=141.18±4 μg/mL), which was better than the acarbose inhibitory effect (IC50=203.41±1.07 μg/mL). The extracts' chemical profile analysis revealed several compounds, in which quercetin dimethyl ether, harmine and harmaline emerged as the major compounds. The different solvents used impacted Peganum harmala seed contents and biological responses. Statistical analysis showed a significant correlation between bioactive compounds and biological activities. Thus, Peganum harmala seeds could be a promising natural source of bioactive compounds at the crossroads of many human diseases, and its cultivation may be encouraged.
Collapse
Affiliation(s)
- Hanane Benramdane
- LAPSAB, Department of Biology, University of Abou Bekr Belkaid, Tlemcen, 13000, Algeria
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Nabila Benariba
- LAPSAB, Department of Biology, University of Abou Bekr Belkaid, Tlemcen, 13000, Algeria
| | - Carlos F M Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Marcelo D Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Maria Bartolomeu
- CESAM, Department of Biology, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Zohra Fekhikher
- LAPSAB, Department of Biology, University of Abou Bekr Belkaid, Tlemcen, 13000, Algeria
| | - Diana C G A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
4
|
Yelamanda Rao K, Chandran R, Dileep KV, Gorantla SC, Jeelan Basha S, Mothukuru S, Siva Kumar I, Vamsi K, Kumar S, Reddy ABM, Subramanyam R, Damu AG. Quinazolinone-Hydrazine Cyanoacetamide Hybrids as Potent Multitarget-Directed Druggable Therapeutics against Alzheimer's Disease: Design, Synthesis, and Biochemical, In Silico, and Mechanistic Analyses. ACS Chem Neurosci 2024; 15:3401-3420. [PMID: 39235838 DOI: 10.1021/acschemneuro.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
The discovery of effective multitarget-directed ligands (MTDLs) against multifactorial Alzheimer's disease (AD) remnants has been focused in an incessant drug discovery pursuit. In this perception, the current study explores the rational design, synthesis, and evaluation of 26 quinazolinone-hydrazine cyanoacetamide hybrids 7(a-j), 8(a-j), and 9(a-f) as MTDLs against AD. These new compounds were synthesized in four-step processes using simple phthalimide as the starting material without any major workup procedures and were characterized by different spectroscopic techniques. In Ellman's assay, the most potent analogues 7i, 8j, and 9d were identified as selective and mixed-type inhibitors of hAChE. Furthermore, biophysical and computational assessments revealed that the analogues 7i, 8j, and 9d were bound to both the catalytic active site and peripheral anionic site of hAChE with high affinity. The molecular dynamics simulation analysis highlighted the conformational changes of hAChE upon binding of 7i, 8j, and 9d and also the stability of resulting biomolecular systems all over 100 ns simulations. In addition to antioxidant activity, the most active congeners were found to protect substantially SK-N-SH cells from oxidative damage. Decisively, the most active analogues 7i, 8j, and 9d were assessed as potent Aβ1-42 fibril modulators and protective agents against Aβ1-42-induced toxicity in SH-SY5Y cells. Additionally, glioblastoma C6 cell-based assays also demonstrated the use of the most active congeners 7i, 8j, and 9d as protective agents against Aβ1-42-induced toxicity. Overall, this multifunctional capacity of quinazolinone-hydrazine cyanoacetamide hybrids demonstrated the noteworthy potential of these hybrids to develop as effectual MTDLs against AD. However, further pharmacokinetics, toxicology, and behavioral studies are warranted.
Collapse
Affiliation(s)
- Kandrakonda Yelamanda Rao
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh 516005, India
| | - Remya Chandran
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - K V Dileep
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - Sri Charitha Gorantla
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Shaik Jeelan Basha
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh 516005, India
- Department of Chemistry, Santhiram Engineering College (Autonomous), Nandyal, Andhra Pradesh 518501, India
| | - Sreelakshmi Mothukuru
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh 516005, India
| | - Irla Siva Kumar
- Soft Condensed Matter, Raman Research Institute, CV Raman Avenue, Sadashiva Nagar, Bangalore 560080, India
| | - Katta Vamsi
- Department of Chemistry, Indian Institute of Science and Education Research (IISER), Tirupati, Andhra Pradesh 517507, India
| | - Sandeep Kumar
- Soft Condensed Matter, Raman Research Institute, CV Raman Avenue, Sadashiva Nagar, Bangalore 560080, India
- Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore 560064, India
| | - Aramati Bindu Madhava Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Amooru Gangaiah Damu
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh 516005, India
| |
Collapse
|
5
|
Stefan SM, Rafehi M. Medicinal polypharmacology-a scientific glossary of terminology and concepts. Front Pharmacol 2024; 15:1419110. [PMID: 39092220 PMCID: PMC11292611 DOI: 10.3389/fphar.2024.1419110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 08/04/2024] Open
Abstract
Medicinal polypharmacology is one answer to the complex reality of multifactorial human diseases that are often unresponsive to single-targeted treatment. It is an admittance that intrinsic feedback mechanisms, crosstalk, and disease networks necessitate drugs with broad modes-of-action and multitarget affinities. Medicinal polypharmacology grew to be an independent research field within the last two decades and stretches from basic drug development to clinical research. It has developed its own terminology embedded in general terms of pharmaceutical drug discovery and development at the intersection of medicinal chemistry, chemical biology, and clinical pharmacology. A clear and precise language of critical terms and a thorough understanding of underlying concepts is imperative; however, no comprehensive work exists to this date that could support researchers in this and adjacent research fields. In order to explore novel options, establish interdisciplinary collaborations, and generate high-quality research outputs, the present work provides a first-in-field glossary to clarify the numerous terms that have originated from various individual disciplines.
Collapse
Affiliation(s)
- Sven Marcel Stefan
- Medicinal Chemistry and Systems Polypharmacology, Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck and University Medical Center Schleswig-Holstein (UKSH), Lübeck, Germany
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Muhammad Rafehi
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
- Department of Medical Education, Augsburg University Medicine, Augsburg, Germany
| |
Collapse
|
6
|
Jevtić II, Suručić RV, Tovilović-Kovačević G, Zogović N, Kostić-Rajačić SV, Andrić DB, Penjišević JZ. Multi-target potential of newly designed tacrine-derived cholinesterase inhibitors: Synthesis, computational and pharmacological study. Bioorg Med Chem 2024; 101:117649. [PMID: 38401458 DOI: 10.1016/j.bmc.2024.117649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Simple and scalable synthetic approach was used for the preparation of thirteen novel tacrine derivatives consisting of tacrine and N-aryl-piperidine-4-carboxamide moiety connected by a five-methylene group linker. An anti-Alzheimer disease (AD) potential of newly designed tacrine derivatives was evaluated against two important AD targets, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). In vitro pharmacological evaluation showed strong ChE inhibitory activity of all compounds, with IC50 values ranging from 117.5 to 455 nM for AChE and 34 to 324 nM for BuChE. As a representative of the series with the best cytotoxicity / ChE inhibitory activity ratio, expressed as the selectivity index (SI), 2-chlorobenzoyl derivative demonstrated mixed-type inhibition on AChE and BuChE, suggesting binding to both CAS and PAS of the enzymes. It also exhibited antioxidant capacity and neuroprotective potential against amyloid-β (Aβ) toxicity in the culture of neuron-like cells. In-depth computational analysis corroborated well with in vitro ChE inhibition, illuminating that all compounds exhibit significant potential in targeting both enzymes. Molecular dynamics (MD) simulations revealed that 2-chlorobenzoyl derivative, created complexes with AChE and BuChE that demonstrated sufficient stability throughout the observed MD simulation. Computationally predicted ADME properties indicated that these compounds should have good blood-brain barrier (BBB) permeability, an important factor for CNS-targeting drugs. Overall, all tested compounds showed promising pharmacological behavior, highlighting the multi-target potential of 2-chlorobenzoyl derivative which should be further investigated as a new lead in the drug development process.
Collapse
Affiliation(s)
- Ivana I Jevtić
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia.
| | - Relja V Suručić
- University of Banja Luka, Faculty of Medicine, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina.
| | - Gordana Tovilović-Kovačević
- University of Belgrade-Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, Bulevar despota Stefana 142, 11108 Belgrade, Serbia.
| | - Nevena Zogović
- University of Belgrade-Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, Bulevar despota Stefana 142, 11108 Belgrade, Serbia.
| | - Slađana V Kostić-Rajačić
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia.
| | - Deana B Andrić
- University of Belgrade, Faculty of Chemistry, Department of Organic chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia.
| | - Jelena Z Penjišević
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia.
| |
Collapse
|
7
|
Chakkittukandiyil A, Chakraborty S, Kothandan R, Rymbai E, Muthu SK, Vasu S, Sajini DV, Sugumar D, Mohammad ZB, Jayaram S, Rajagopal K, Ramachandran V, Selvaraj D. Side effects based network construction and drug repositioning of ropinirole as a potential molecule for Alzheimer's disease: an in-silico, in-vitro, and in-vivo study. J Biomol Struct Dyn 2023; 42:10785-10799. [PMID: 37723871 DOI: 10.1080/07391102.2023.2258968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults. Drug repositioning is a process of finding new therapeutic applications for existing drugs. One of the methods in drug repositioning is to use the side-effect profile of a drug to identify a new therapeutic indication. The drugs with similar side-effects may act on similar biological targets and could affect the same biochemical process. In this study, we explored the Food and Drug Administration-approved drugs using PROMISCUOUS database to find those that have adverse effects profile comparable with the ligands being studied or used to treat AD. Here, we found that the ropinirole, a dopamine receptor agonist, shared a maximum number of side-effects with the drugs proven beneficial for treating AD. Furthermore, molecular modelling demonstrated that ropinirole exhibited strong binding affinity (-9.313 kcal/mol) and best ligand efficiency (0.49) with sigma-1 receptor. Here, we observed that the quaternary amino group of ropinirole is essential for binding with sigma-1 receptor. Molecular dynamic simulation indicated that the movement of the carboxy-terminal helices (α4/α5) could play a major role in the receptor's physiological functions. The neurotoxicity induced by Aβ25-35 in SH-SY5Y cells was reduced by ropinirole at concentrations 10, 30, and 50 µM. The effect on spatial learning and memory was examined in mice with Aβ25-35 induced memory deficit using the radial arm maze. Ropinirole (10 and 20 mg/kg) significantly improved the short and long-term memories in the radial arm maze test. Our results suggest that ropinirole has the potential to be repositioned for AD treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Saurav Chakraborty
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ram Kothandan
- Bioinformatics Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Santhosh Kumar Muthu
- Department of Biochemistry, Kongunadu Arts and Science College, GN Mills, Coimbatore, Tamil Nadu, India
| | - Soumya Vasu
- Department of Pharmaceutical Chemistry, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai, Tamil Nadu, India
| | - Deepak Vasudevan Sajini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Zubair Baba Mohammad
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Saravanan Jayaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
8
|
Vicente-Zurdo D, Brunetti L, Piemontese L, Guedes B, Cardoso SM, Chavarria D, Borges F, Madrid Y, Chaves S, Santos MA. Rivastigmine-Benzimidazole Hybrids as Promising Multitarget Metal-Modulating Compounds for Potential Treatment of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24098312. [PMID: 37176018 PMCID: PMC10179505 DOI: 10.3390/ijms24098312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
With the goal of combating the multi-faceted Alzheimer's disease (AD), a series of Rivastigmine-Benzimidazole (RIV-BIM) hybrids was recently reported by us as multitarget-directed ligands, thanks to their capacity to tackle important hallmarks of AD. In particular, they exhibited antioxidant activity, acted as cholinesterase inhibitors, and inhibited amyloid-β (Aβ) aggregation. Herein, we moved forward in this project, studying their ability to chelate redox-active biometal ions, Cu(II) and Fe(III), with widely recognized roles in the generation of oxidative reactive species and in protein misfolding and aggregation in both AD and Parkinson's disease (PD). Although Cu(II) chelation showed higher efficiency for the positional isomers of series 5 than those of series 4 of the hybrids, the Aβ-aggregation inhibition appears more dependent on their capacity for fibril intercalation than on copper chelation. Since monoamine oxidases (MAOs) are also important targets for the treatment of AD and PD, the capacity of these hybrids to inhibit MAO-A and MAO-B was evaluated, and they showed higher activity and selectivity for MAO-A. The rationalization of the experimental evaluations (metal chelation and MAO inhibition) was supported by computational molecular modeling studies. Finally, some compounds showed also neuroprotective effects in human neuroblastoma (SH-SY5Y cells) upon treatment with 1-methyl-4-phenylpyridinium (MPP+), a neurotoxic metabolite of a Parkinsonian-inducing agent.
Collapse
Affiliation(s)
- David Vicente-Zurdo
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Leonardo Brunetti
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Luca Piemontese
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Beatriz Guedes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-370 Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Daniel Chavarria
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Yolanda Madrid
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Sílvia Chaves
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - M Amélia Santos
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
9
|
Eissa KI, Kamel MM, Mohamed LW, Kassab AE. Development of new Alzheimer's disease drug candidates using donepezil as a key model. Arch Pharm (Weinheim) 2023; 356:e2200398. [PMID: 36149034 DOI: 10.1002/ardp.202200398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent geriatric diseases and a significant cause of high mortality. This crippling disorder is becoming more prevalent at an unprecedented rate, which has led to an increase in the financial cost of caring. It is a pathologically complicated, multifactorial disease characterized by β-amyloid precipitation, β-amyloid oligomer production, decrease in cholinergic function, and dysregulation of other neurotransmitter systems. Due to the pathogenic complexity of AD, multitarget drugs that can simultaneously alternate multiple biological targets may enhance the therapeutic efficacy. Donepezil (DNP) is the most potent approved drug for the treatment of AD. It has a remarkable effect on a number of AD-related processes, including cholinesterase activity, anti-Aβ aggregation, oxidative stress, and more. DNP resembles an excellent scaffold to be hybridized with other pharmacophoric moieties having biological activity against AD pathological factors. There have been significant attempts made to modify the structure of DNP to create new bioactive chemical entities with novel structural patterns. In this review, we highlight recent advances in the development of multiple-target DNP-hybridized models for the treatment of AD that can be used in the future in the rational design of new potential AD therapeutics. The design and development of new drug candidates for the treatment of AD using DNP as a molecular scaffold have also been reviewed and summarized.
Collapse
Affiliation(s)
- Kholoud I Eissa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona M Kamel
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lamia W Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Design, synthesis and evaluation of fused hybrids with acetylcholinesterase inhibiting and Nrf2 activating functions for Alzheimer's disease. Eur J Med Chem 2022; 244:114806. [DOI: 10.1016/j.ejmech.2022.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022]
|
11
|
Biological Characterization of Natural Peptide BcI-1003 from Boana cordobae (anura): Role in Alzheimer’s Disease and Microbial Infections. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Development of new donepezil analogs: synthesis, biological screening and in silico study rational. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractFifteen new benzothiophene-based compounds were designed, synthesized, and evaluated as potential anti-Alzheimer agents. Most of the synthesized compounds exhibited remarkable AChE inhibitory activity and effectively inhibited self-mediated β-amyloid protein in vitro. Compound 3g (IC50 = 72.488 ± 3.69 μM) showed a significant β-amyloid inhibitory effect exceeding that of donepezil (IC50 = 87.414 ± 4.46 μM). Furthermore, compound 3j (IC50 = 0.498 ± 0.02 μM) showed the best inhibitory activity comparable to that of donepezil (IC50 = 0.404 ± 0.03 μM). The in vivo evaluation of the promising compounds (3g and 3j) confirmed a significant memory improvement in scopolamine-induced memory impairment model in mice. The molecular docking simulation of compounds 3g and 3j in Torpedo californica-AChE (TcAChE) active site showed a good agreement with the obtained screening results. The in silico ADMET and other physicochemical parameters were also reported.
Collapse
|
13
|
Novel Rivastigmine Derivatives as Promising Multi-Target Compounds for Potential Treatment of Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10071510. [PMID: 35884815 PMCID: PMC9313321 DOI: 10.3390/biomedicines10071510] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is the most serious and prevalent neurodegenerative disorder still without cure. Since its aetiology is diverse, recent research on anti-AD drugs has been focused on multi-target compounds. In this work, seven novel hybrids (RIV–BIM) conjugating the active moiety of the drug rivastigmine (RIV) with 2 isomeric hydroxyphenylbenzimidazole (BIM) units were developed and studied. While RIV assures the inhibition of cholinesterases, BIM provides further appropriate properties, such as inhibition of amyloid β-peptide (Aβ) aggregation, antioxidation and metal chelation. The evaluated biological properties of these hybrids included antioxidant activity; inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and Aβ42 aggregation; as well as promotion of cell viability and neuroprotection. All the compounds are better inhibitors of AChE than rivastigmine (IC50 = 32.1 µM), but compounds of series 5 are better inhibitors of BChE (IC50 = 0.9−1.7 µM) than those of series 4. Series 5 also showed good capacity to inhibit self- (42.1−58.7%) and Cu(II)-induced (40.3−60.8%) Aβ aggregation and also to narrow (22.4−42.6%) amyloid fibrils, the relevant compounds being 5b and 5d. Some of these compounds can also prevent the toxicity induced in SH-SY5Y cells by Aβ42 and oxidative stress. Therefore, RIV–BIM hybrids seem to be potential drug candidates for AD with multi-target abilities.
Collapse
|
14
|
Eissa KI, Kamel MM, Mohamed LW, Galal MA, Kassab AE. Design, synthesis, and biological evaluation of thienopyrimidine and thienotriazine derivatives as multitarget anti-Alzheimer agents. Drug Dev Res 2022; 83:1394-1407. [PMID: 35749685 DOI: 10.1002/ddr.21968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 06/12/2022] [Indexed: 01/21/2023]
Abstract
A series of tetrahydrobenzothienopyrimidines and tetrahydrobenzothienotriazines incorporating a pharmacophore from donepezil molecule were designed and synthesized. The 12 newly synthesized compounds were screened for their inhibition activity against acetylcholinesterase enzyme (AChE). Compounds that exerted the most potent AChE inhibitory action were further evaluated for their BChE inhibitory activity. In addition, the inhibitory effects of all newly synthesized compounds on Aβ and reactive oxygen species were assessed. Compounds 4d, 10b, and 10c showed potent inhibitory activity on AChE comparable to donepezil. Compound 10b (IC50 = 0.124 ± 0.006 nM) showed the greatest AChE inhibitory action and the most potent BChE inhibitory action (IC50 = 0.379 ± 0.02 nM). These three compounds showed more inhibitory action on Aβ accumulation than donepezil. Moreover, they showed potent antioxidant activity. The binding pattern of compounds 4d and 10b into AChE active site rationalized their remarkable AChE inhibitory activity. Taken together, these results indicated that these derivatives could be promising multifunctional agents for Alzheimer's disease management.
Collapse
Affiliation(s)
- Kholoud I Eissa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona M Kamel
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lamia W Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mai A Galal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Eshraghi M, Ahmadi M, Afshar S, Lorzadeh S, Adlimoghaddam A, Rezvani Jalal N, West R, Dastghaib S, Igder S, Torshizi SRN, Mahmoodzadeh A, Mokarram P, Madrakian T, Albensi BC, Łos MJ, Ghavami S, Pecic S. Enhancing autophagy in Alzheimer's disease through drug repositioning. Pharmacol Ther 2022; 237:108171. [PMID: 35304223 DOI: 10.1016/j.pharmthera.2022.108171] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the biggest human health threats due to increases in aging of the global population. Unfortunately, drugs for treating AD have been largely ineffective. Interestingly, downregulation of macroautophagy (autophagy) plays an essential role in AD pathogenesis. Therefore, targeting autophagy has drawn considerable attention as a therapeutic approach for the treatment of AD. However, developing new therapeutics is time-consuming and requires huge investments. One of the strategies currently under consideration for many diseases is "drug repositioning" or "drug repurposing". In this comprehensive review, we have provided an overview of the impact of autophagy on AD pathophysiology, reviewed the therapeutics that upregulate autophagy and are currently used in the treatment of other diseases, including cancers, and evaluated their repurposing as a possible treatment option for AD. In addition, we discussed the potential of applying nano-drug delivery to neurodegenerative diseases, such as AD, to overcome the challenge of crossing the blood brain barrier and specifically target molecules/pathways of interest with minimal side effects.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Aida Adlimoghaddam
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada
| | | | - Ryan West
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benedict C Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; Nova Southeastern Univ. College of Pharmacy, Davie, FL, United States of America; University of Manitoba, College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America.
| |
Collapse
|
16
|
Mechanistic Insights of Chelator Complexes with Essential Transition Metals: Antioxidant/Pro-Oxidant Activity and Applications in Medicine. Int J Mol Sci 2022; 23:ijms23031247. [PMID: 35163169 PMCID: PMC8835618 DOI: 10.3390/ijms23031247] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
The antioxidant/pro-oxidant activity of drugs and dietary molecules and their role in the maintenance of redox homeostasis, as well as the implications in health and different diseases, have not yet been fully evaluated. In particular, the redox activity and other interactions of drugs with essential redox metal ions, such as iron and copper, need further investigation. These metal ions are ubiquitous in human nutrition but also widely found in dietary supplements and appear to exert major effects on redox homeostasis in health, but also on many diseases of free radical pathology. In this context, the redox mechanistic insights of mainly three prototype groups of drugs, namely alpha-ketohydroxypyridines (alpha-hydroxypyridones), e.g., deferiprone, anthraquinones, e.g., doxorubicin and thiosemicarbazones, e.g., triapine and their metal complexes were examined; details of the mechanisms of their redox activity were reviewed, with emphasis on the biological implications and potential clinical applications, including anticancer activity. Furthermore, the redox properties of these three classes of chelators were compared to those of the iron chelating drugs and also to vitamin C, with an emphasis on their potential clinical interactions and future clinical application prospects in cancer, neurodegenerative and other diseases.
Collapse
|
17
|
Kaushik AC, Sahi S, Wei DQ. Computational Methods for Structure-Based Drug Design Through System Biology. Methods Mol Biol 2022; 2385:161-174. [PMID: 34888721 DOI: 10.1007/978-1-0716-1767-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The advances in computational chemistry and biology, computer science, structural biology, and molecular biology go in parallel with the rapid progress in target-based systems. This technique has become a powerful tool in medicinal chemistry for the identification of hit molecules. The recent developments in target-based systems have played a major role in the creation of libraries of compounds, and it has also been widely applied for the design of molecular docking methods. The main advantage of this method is that it hits the fragment that has the strongest binding, has relatively small size, and leads to better compounds in terms of pharmacokinetic properties when compared with virtual screening (VS) and high-throughput screening (HTS) hits. De novo design is an essential aspect of target-based systems and requires the synthesis of chemical to allow the design of promising compound.
Collapse
Affiliation(s)
| | - Shakti Sahi
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
- Peng Cheng Laboratory, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
18
|
Krishnendu P R, Koyiparambath VP, Bhaskar V, Arjun B, Zachariah SM. Formulating The Structural Aspects Of Various Benzimidazole Cognates. Curr Top Med Chem 2021; 22:473-492. [PMID: 34852738 DOI: 10.2174/1568026621666211201122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzimidazole derivatives are widely used in clinical practice as potential beneficial specialists. Recently, the neuroprotective effect of derivatives of benzimidazole moiety has also shown positive outcomes. OBJECTIVE To develop favourable molecules for various neurodegenerative disorders using the versatile chemical behaviour of the benzimidazole scaffold. METHODS About 25 articles were collected that discussed various benzimidazole derivatives and categorized them under various subheadings based on the targets such as BACE 1, JNK, MAO, choline esterase enzyme, oxidative stress, mitochondrial dysfunction in which they act. The structural aspects of various benzimidazole derivatives were also studied. CONCLUSION To manage various neurodegenerative disorders, a multitargeted approach will be the most hopeful stratagem. Some benzimidazole derivatives can be considered for future studies, which are mentioned in the discussed articles.
Collapse
Affiliation(s)
- Krishnendu P R
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - Vaishnav Bhaskar
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - B Arjun
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - Subin Mary Zachariah
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| |
Collapse
|
19
|
Bukhari SNA. Nanotherapeutics for Alzheimer's Disease with Preclinical Evaluation and Clinical Trials: Challenges, Promises and Limitations. Curr Drug Deliv 2021; 19:17-31. [PMID: 34514990 DOI: 10.2174/1567201818666210910162750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD), a progressive and irreversible neurodegenerative disorder, is the most common form of dementia worldwide. Currently, there is no disease-modifying AD drug, and the development of effective treatments is made even harder by the highly selective nature of the blood-brain barrier (BBB) that allows the passage only of molecules with specific chemical-physical properties. In this context, nanomedicine and its nanoparticles (NPs) offer potential solutions to the challenge of AD therapy, in particular, the requirements for i) BBB crossing, ii) multitarget therapy iii) enhancement of pharmacokinetics; and iv) more precise delivery. In addition, the possibility to optimize NP biophysical and biological (i.e. target-specific ligands) properties allows for highly tailored delivery platforms. Preclinical studies have demonstrated that nanotherapeutics provide superior pharmacokinetics and brain uptake than free drugs and, on the other hand, these are also able to mitigate the side-effects of the symptomatic treatments approved by the FDA. Among the plethora of potential AD nanodrugs, multitarget nanotherapeutics are considered the most promising strategy due to their ability to hit simultaneously multiple pathogenic factors, while nano-nutraceuticals are emerging as interesting tools in the treatment/prevention of AD. This review provides a comprehensive overview of nanomedicine in AD therapy, focusing on key optimization of NPs properties, most promising nanotherapeutics in preclinical studies and difficulties that are limiting the efficient translation from bench to bedside.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf, Sakaka, 2014. Saudi Arabia
| |
Collapse
|
20
|
Oh SY, Jang MJ, Choi YH, Hwang H, Rhim H, Lee B, Choi CW, Kim MS. Central administration of afzelin extracted from Ribes fasciculatum improves cognitive and memory function in a mouse model of dementia. Sci Rep 2021; 11:9182. [PMID: 33911138 PMCID: PMC8080596 DOI: 10.1038/s41598-021-88463-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative disorders are characterized by the decline of cognitive function and the progressive loss of memory. The dysfunctions of the cognitive and memory system are closely related to the decreases in brain-derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB) signalings. Ribes fasciculatum, a medicinal plant grown in diverse countries, has been reported to pharmacological effects for autoimmune diseases and aging recently. Here we found that afzelin is a major compound in Ribes fasciculatum. To further examine its neuroprotective effect, the afzelin (100 ng/µl, three times a week) was administered into the third ventricle of the hypothalamus of C57BL/6 mice for one month and scopolamine was injected (i.p.) to these mice to impair cognition and memory before each behavior experiment. The electrophysiology to measure long-term potentiation and behavior tests for cognitive and memory functions were performed followed by investigating related molecular signaling pathways. Chronic administration of afzelin into the brain ameliorated synaptic plasticity and cognitive/memory behaviors in mice given scopolamine. Studies of mice's hippocampi revealed that the response of afzelin was accountable for the restoration of the cholinergic systems and molecular signal transduction via CREB-BDNF pathways. In conclusion, the central administration of afzelin leads to improved neurocognitive and neuroprotective effects on synaptic plasticity and behaviors partly through the increase in CREB-BDNF signaling.
Collapse
Affiliation(s)
- So-Young Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Infectious Disease Research Center, Citizen's Health Bureau, Seoul Metropolitan Government, 110, Sejong-daero, Jung-gu, Seoul, 04524, Republic of Korea
| | - Min Jun Jang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yun-Hyeok Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Gyeonggi-Do, Republic of Korea
| | - Hongik Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyewhon Rhim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology KIST School, Seoul, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Chun Whan Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Gyeonggi-Do, Republic of Korea.
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
- Division of Bio-Medical Science & Technology, University of Science and Technology KIST School, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Novel Donepezil-Arylsulfonamide Hybrids as Multitarget-Directed Ligands for Potential Treatment of Alzheimer's Disease. Molecules 2021; 26:molecules26061658. [PMID: 33809771 PMCID: PMC8002323 DOI: 10.3390/molecules26061658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most devastating neurodegenerative disorders, characterized by multiple pathological features. Therefore, multi-target drug discovery has been one of the most active fields searching for new effective anti-AD therapies. Herein, a series of hybrid compounds are reported which were designed and developed by combining an aryl-sulfonamide function with a benzyl-piperidine moiety, the pharmacophore of donepezil (a current anti-AD acetylcholinesterase AChE inhibitor drug) or its benzyl-piperazine analogue. The in vitro results indicate that some of these hybrids achieve optimized activity towards two main AD targets, by displaying excellent AChE inhibitory potencies, as well as the capability to prevent amyloid-β (Aβ) aggregation. Some of these hybrids also prevented Aβ-induced cell toxicity. Significantly, drug-like properties were predicted, including for blood-brain permeability. Compound 9 emerged as a promising multi-target lead compound (AChE inhibition (IC50 1.6 μM); Aβ aggregation inhibition 60.7%). Overall, this family of hybrids is worthy of further exploration, due to the wide biological activity of sulfonamides.
Collapse
|
22
|
Vasefi M, Ghaboolian-Zare E, Abedelwahab H, Osu A. Environmental toxins and Alzheimer's disease progression. Neurochem Int 2020; 141:104852. [PMID: 33010393 DOI: 10.1016/j.neuint.2020.104852] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/05/2020] [Accepted: 09/18/2020] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, which causes progressive memory loss and cognitive decline. Effective strategies to treat or prevent remains one of the most challenging undertakings in the medical field. AD is a complex and multifactorial disease that involves several risk factors. Aging and genetic factors both play important roles in the onset of the AD, however; certain environmental factors have been reported to increase the risk of AD. Chronic exposure to toxins has been seen as an environmental factor that may increase the risk of developing a neurodegenerative disease such as AD. Exposure to metals and biotoxins produced by bacteria, molds, and viruses may contribute to the cognitive decline and pathophysiology associated with AD. Toxins may contribute to the pathology of the disease through various mechanisms such as deposition of amyloid-beta (Aβ) plaques and tangles in the brain, induction of apoptosis, inflammation, or oxidative damage. Here, we will review how toxins affect brain physiology with a focus on mechanisms by which toxins may contribute to the development and progression of AD. A better understanding of these mechanisms may help contribute towards the development of an effective strategy to slow the progression of AD.
Collapse
Affiliation(s)
- Maryam Vasefi
- Department Biology, Lamar University, Beaumont, TX, United States.
| | | | | | - Anthony Osu
- Department Biology, Lamar University, Beaumont, TX, United States
| |
Collapse
|
23
|
Zhang Z, Fan F, Luo W, Zhao Y, Wang C. Molecular Dynamics Revealing a Detour-Forward Release Mechanism of Tacrine: Implication for the Specific Binding Characteristics in Butyrylcholinesterase. Front Chem 2020; 8:730. [PMID: 33195011 PMCID: PMC7477934 DOI: 10.3389/fchem.2020.00730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/14/2020] [Indexed: 01/29/2023] Open
Abstract
Butyrylcholinesterase (BChE) is a non-specific enzyme with clinical pharmacological and toxicological significance, which was a renewed interest as therapeutic target in Alzheimer's disease (AD) nowadays. Here, all-atom molecular dynamics simulations of butyrylcholinesterase with tacrine complex were designed to characterize inhibitor binding modes, strengths, and the hydrogen-bond dependent non-covalent release mechanism. Four possible release channels were identified, and the most favorable channel was determined by random acceleration molecular dynamics molecular dynamics (RAMD MD) simulations. The thermodynamic and dynamic properties as well as the corresponding Detour-forward delivery mechanism were determined according to the classical molecular dynamics (MD) simulations accompanied with umbrella sampling. The free energy barrier of the tacrine release process for the most beneficial pathway is about 10.95 kcal/mol, which is related to the non-covalent interactions from the surrounding residues, revealing the specific binding characteristics in the active site. The residues including Asp70, Ser79, Trp82, Gly116, Thr120, Tyr332, and His438 were identified to play major roles in the stabilization of tacrine in the pocket of BChE, where hydrogen bonding and π-π interactions are significant factors. Tyr332 and Asp70, which act as gate keepers, play crucial roles in the substrate delivery. The present results provide a basic understanding for the ligand transport mechanism depending on the BChE enzymatic environment, which is useful for the design of BChE inhibitors in the future.
Collapse
Affiliation(s)
- Zhiyang Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Fangfang Fan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wen Luo
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| |
Collapse
|
24
|
Neuroprotection by curcumin: A review on brain delivery strategies. Int J Pharm 2020; 585:119476. [DOI: 10.1016/j.ijpharm.2020.119476] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/05/2020] [Accepted: 05/24/2020] [Indexed: 12/26/2022]
|
25
|
Xu Y, Zhao M, Han Y, Zhang H. GABAergic Inhibitory Interneuron Deficits in Alzheimer's Disease: Implications for Treatment. Front Neurosci 2020; 14:660. [PMID: 32714136 PMCID: PMC7344222 DOI: 10.3389/fnins.2020.00660] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized clinically by severe cognitive deficits and pathologically by amyloid plaques, neuronal loss, and neurofibrillary tangles. Abnormal amyloid β-protein (Aβ) deposition in the brain is often thought of as a major initiating factor in AD neuropathology. However, gamma-aminobutyric acid (GABA) inhibitory interneurons are resistant to Aβ deposition, and Aβ decreases synaptic glutamatergic transmission to decrease neural network activity. Furthermore, there is now evidence suggesting that neural network activity is aberrantly increased in AD patients and animal models due to functional deficits in and decreased activity of GABA inhibitory interneurons, contributing to cognitive deficits. Here we describe the roles played by excitatory neurons and GABA inhibitory interneurons in Aβ-induced cognitive deficits and how altered GABA interneurons regulate AD neuropathology. We also comprehensively review recent studies on how GABA interneurons and GABA receptors can be exploited for therapeutic benefit. GABA interneurons are an emerging therapeutic target in AD, with further clinical trials urgently warranted.
Collapse
Affiliation(s)
- Yilan Xu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Manna Zhao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yuying Han
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
26
|
Kabir MT, Uddin MS, Begum MM, Thangapandiyan S, Rahman MS, Aleya L, Mathew B, Ahmed M, Barreto GE, Ashraf GM. Cholinesterase Inhibitors for Alzheimer's Disease: Multitargeting Strategy Based on Anti-Alzheimer's Drugs Repositioning. Curr Pharm Des 2020; 25:3519-3535. [PMID: 31593530 DOI: 10.2174/1381612825666191008103141] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
In the brain, acetylcholine (ACh) is regarded as one of the major neurotransmitters. During the advancement of Alzheimer's disease (AD) cholinergic deficits occur and this can lead to extensive cognitive dysfunction and decline. Acetylcholinesterase (AChE) remains a highly feasible target for the symptomatic improvement of AD. Acetylcholinesterase (AChE) remains a highly viable target for the symptomatic improvement in AD because cholinergic deficit is a consistent and early finding in AD. The treatment approach of inhibiting peripheral AChE for myasthenia gravis had effectively proven that AChE inhibition was a reachable therapeutic target. Subsequently tacrine, donepezil, rivastigmine, and galantamine were developed and approved for the symptomatic treatment of AD. Since then, multiple cholinesterase inhibitors (ChEIs) have been continued to be developed. These include newer ChEIs, naturally derived ChEIs, hybrids, and synthetic analogues. In this paper, we summarize the different types of ChEIs which are under development and their respective mechanisms of actions.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | | | - Md Sohanur Rahman
- Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Muniruddin Ahmed
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - George E Barreto
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Chaves S, Resta S, Rinaldo F, Costa M, Josselin R, Gwizdala K, Piemontese L, Capriati V, Pereira-Santos AR, Cardoso SM, Santos MA. Design, Synthesis, and In Vitro Evaluation of Hydroxybenzimidazole-Donepezil Analogues as Multitarget-Directed Ligands for the Treatment of Alzheimer's Disease. Molecules 2020; 25:E985. [PMID: 32098407 PMCID: PMC7070709 DOI: 10.3390/molecules25040985] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/09/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
A series of multi-target-directed ligands (MTDLs), obtained by attachment of a hydroxyphenylbenzimidazole (BIM) unit to donepezil (DNP) active mimetic moiety (benzyl-piperidine/-piperazine) was designed, synthesized, and evaluated as potential anti-Alzheimer's disease (AD) drugs in terms of biological activity (inhibition of acetylcholinesterase (AChE) and β-amyloid (Aβ) aggregation), metal chelation, and neuroprotection capacity. Among the DNP-BIM hybrids studied herein, the structural isomerization did not significantly improve the biological properties, while some substitutions, namely fluorine atom in each moiety or the methoxy group in the benzyl ring, evidenced higher cholinergic AChE activity. All the compounds are able to chelate Cu and Zn metal ions through their bidentate BIM moieties, but compound 5, containing a three-dentate chelating unit, is the strongest Cu(II) chelator. Concerning the viability on neuroblastoma cells, compounds 9 and 10 displayed the highest reduction of Aβ-induced cell toxicity. In silico calculations of some pharmacokinetic descriptors indicate that all the compounds but the nitro derivatives have good potential oral-bioavailability. Overall, it can be concluded that most of the studied DNP-BIM conjugates showed quite good anti-AD properties, therefore deserving to be considered in further studies with the aim of understanding and treating AD.
Collapse
Affiliation(s)
- Sílvia Chaves
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.C.); (S.R.); (F.R.); (M.C.); (R.J.); (K.G.)
| | - Simonetta Resta
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.C.); (S.R.); (F.R.); (M.C.); (R.J.); (K.G.)
- Dipartimento di Farmacia–Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy; (L.P.); (V.C.)
| | - Federica Rinaldo
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.C.); (S.R.); (F.R.); (M.C.); (R.J.); (K.G.)
- Dipartimento di Farmacia–Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy; (L.P.); (V.C.)
| | - Marina Costa
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.C.); (S.R.); (F.R.); (M.C.); (R.J.); (K.G.)
| | - Romane Josselin
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.C.); (S.R.); (F.R.); (M.C.); (R.J.); (K.G.)
| | - Karolina Gwizdala
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.C.); (S.R.); (F.R.); (M.C.); (R.J.); (K.G.)
| | - Luca Piemontese
- Dipartimento di Farmacia–Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy; (L.P.); (V.C.)
| | - Vito Capriati
- Dipartimento di Farmacia–Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy; (L.P.); (V.C.)
- Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy
| | - A. Raquel Pereira-Santos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.R.P.-S.); (S.M.C.)
- Institute of Molecular and Cell Biology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sandra M. Cardoso
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.R.P.-S.); (S.M.C.)
- Institute of Molecular and Cell Biology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - M. Amélia Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.C.); (S.R.); (F.R.); (M.C.); (R.J.); (K.G.)
| |
Collapse
|
28
|
Costa M, Josselin R, Silva DF, Cardoso SM, May NV, Chaves S, Santos MA. Donepezil-based hybrids as multifunctional anti-Alzheimer's disease chelating agents: Effect of positional isomerization. J Inorg Biochem 2020; 206:111039. [PMID: 32171933 DOI: 10.1016/j.jinorgbio.2020.111039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023]
Abstract
The intricate and multifactorial nature of Alzheimer's disease (AD) requires the development of compounds able to hit different pathophysiological targets, such as cholinergic dysfunction, deposits of amyloid beta (Aβ) peptide and metal dyshomeostasis. In order to continue the search for new anti-AD drugs, a design strategy was once more followed based on repositioning donepezil (DNP) drug, by ortho-attaching a benzylpiperidine mimetic of DNP moiety to a hydroxyphenyl-benzimidazole (BIM) chelating unit (compound 1). Herein, compound 1 and a positional isomer 2 are compared in terms of their potential multiple properties: both present good acetylcholinesterase (AChE) inhibition (low μmolar range) and are moderate/good inhibitors of Aβ self- and Cu-mediated aggregation, the inhibition process being mainly due to ligand intercalation between the β-sheets of the fibrils; compound 1 has a higher chelating capacity towards Cu2+ and Zn2+ (pCu = 14.3, pZn = 6.4, pH 7.4, CL/CM = 10, CM = 10-6 M) than 2 (pCu = 10.7, pZn = 6.3), attributed to its ability to establish a tridentate (N,O,O) coordination to the metal ion. Both compounds are eligible as drug candidates for oral administration but compound 1 shows improved neuroprotective role by completely preventing Aβ-induced cell toxicity.
Collapse
Affiliation(s)
- Marina Costa
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av, Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Romane Josselin
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av, Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Diana F Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute of Molecular and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nóra V May
- Research Centre for Natural Sciences, 1117 Magyar tudósok körútja 2, Budapest, Hungary
| | - Sílvia Chaves
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av, Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - M Amélia Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av, Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| |
Collapse
|
29
|
Iraji A, Khoshneviszadeh M, Firuzi O, Khoshneviszadeh M, Edraki N. Novel small molecule therapeutic agents for Alzheimer disease: Focusing on BACE1 and multi-target directed ligands. Bioorg Chem 2020; 97:103649. [PMID: 32101780 DOI: 10.1016/j.bioorg.2020.103649] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/05/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that effects 50 million people worldwide. In this review, AD pathology and the development of novel therapeutic agents targeting AD were fully discussed. In particular, common approaches to prevent Aβ production and/or accumulation in the brain including α-secretase activators, specific γ-secretase modulators and small molecules BACE1 inhibitors were reviewed. Additionally, natural-origin bioactive compounds that provide AD therapeutic advances have been introduced. Considering AD is a multifactorial disease, the therapeutic potential of diverse multi target-directed ligands (MTDLs) that combine the efficacy of cholinesterase (ChE) inhibitors, MAO (monoamine oxidase) inhibitors, BACE1 inhibitors, phosphodiesterase 4D (PDE4D) inhibitors, for the treatment of AD are also reviewed. This article also highlights descriptions on the regulator of serotonin receptor (5-HT), metal chelators, anti-aggregants, antioxidants and neuroprotective agents targeting AD. Finally, current computational methods for evaluating the structure-activity relationships (SAR) and virtual screening (VS) of AD drugs are discussed and evaluated.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
30
|
Li YH, Jin Y, Wang XS, Chen XL, Chen HB, Xu J, Duan LH, Wang YL, Luo X, Wang QM, Wu ZZ. Neuroprotective Effect of Fructus broussonetiae on APP/PS1 Mice via Upregulation of AKT/β-Catenin Signaling. Chin J Integr Med 2020; 27:115-124. [PMID: 31903532 DOI: 10.1007/s11655-019-3178-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the mechanisms underlying the protective effect of Chinese herbal medicine Fructus broussonetiae (FB) in both mouse and cell models of Alzheimer's disease (AD). METHODS APP/PS1 mice treated with FB for 2 months and vehicle-treated controls were run through the Morris water maze and object recognition test to evaluate learning and memory capacity. RNA-Seq, Western blotting, and immunofluorescence staining were also conducted to evaluate the effects of FB treatment on various signaling pathways altered in APP/PS1 mice. To further explore the mechanisms underlying FB's protective effect, PC-12 cells were treated with Aβ25-35 in order to establish an in vitro model of AD. RESULTS FB-treated mice showed improved learning and memory capacity on both the Morris water maze and object recognition tests. RNA-seq of hippocampal tissue from APP/PS1 mice showed that FB had effects on multiple signaling pathways, specifically decreasing cell apoptotic signaling and increasing AKT and β-catenin signaling. Similarly, FB up-regulated both AKT and β-catenin signaling in PC-12 cells pre-treated with Aβ25-35, in which AKT positively regulated β-catenin signaling. Further study showed that AKT promoted β-catenin signaling via enhancing β-catenin (Ser552) phosphorylation. Moreover, AKT and β-catenin signaling inhibition both resulted in the attenuated survival of FB-treated cells, indicating the AKT/β-catenin signaling is a crucial mediator in FB promoted cell survival. CONCLUSIONS FB exerted neuroprotective effects on hippocampal cells of APP/PS1 mice, as well as improved cell viability in an in vitro model of AD. The protective actions of FB occurred via the upregulation of AKT/β-catenin signaling.
Collapse
Affiliation(s)
- Ying-Hong Li
- The First Affiliated Hospital of Shenzhen University (the Second People's Hospital of Shenzhen), Shenzhen, Guangdong Province, 518035, China.
| | - Yu Jin
- The First Affiliated Hospital of Shenzhen University (the Second People's Hospital of Shenzhen), Shenzhen, Guangdong Province, 518035, China
| | - Xu-Sheng Wang
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Beijing, 518055, China
| | - Xiao-Ling Chen
- Graduate School, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Hong-Bo Chen
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Beijing, 518055, China
| | - Ji Xu
- The First Affiliated Hospital of Shenzhen University (the Second People's Hospital of Shenzhen), Shenzhen, Guangdong Province, 518035, China
| | - Li-Hong Duan
- The First Affiliated Hospital of Shenzhen University (the Second People's Hospital of Shenzhen), Shenzhen, Guangdong Province, 518035, China.,Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, Boston, Massachusetts, 02129, USA
| | - Yu-Long Wang
- The First Affiliated Hospital of Shenzhen University (the Second People's Hospital of Shenzhen), Shenzhen, Guangdong Province, 518035, China
| | - Xun Luo
- Shenzhen Sanming Group, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, Boston, Massachusetts, 02129, USA.,Kerry Rehabilitation Medicine Research Institute, Shenzhen, Guangdong Province, 518048, China
| | - Qing-Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, Boston, Massachusetts, 02129, USA.,Shenzhen Sanming Group, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, Boston, Massachusetts, 02129, USA
| | - Zheng-Zhi Wu
- The First Affiliated Hospital of Shenzhen University (the Second People's Hospital of Shenzhen), Shenzhen, Guangdong Province, 518035, China
| |
Collapse
|
31
|
Qian C, Yuan C, Li C, Liu H, Wang X. Multifunctional nano-enabled delivery systems in Alzheimer's disease management. Biomater Sci 2020; 8:5538-5554. [DOI: 10.1039/d0bm00756k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review discusses the recent advances in multifunctional nano-enabled delivery systems (NDS) for Alzheimer's disease management, including multitherapeutics, multimodal imaging-guided diagnostics, and theranostics.
Collapse
Affiliation(s)
- Chengyuan Qian
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Chengyi Yuan
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Changhong Li
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Hao Liu
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- State Key Laboratory of Coordination Chemistry
| |
Collapse
|
32
|
Silva-Reis SC, V. D. dos Santos AC, García-Mera X, Rodríguez-Borges JE, Sampaio-Dias IE. Bioinspired design for the assembly of Glypromate® neuropeptide conjugates with active pharmaceutical ingredients. NEW J CHEM 2020. [DOI: 10.1039/d0nj04851h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A robust and bioinspired methodology for the efficient conjugation of Glypromate® with active pharmaceutical ingredients for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara C. Silva-Reis
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| | | | - Xerardo García-Mera
- Department of Organic Chemistry
- Faculty of Pharmacy
- University of Santiago de Compostela
- E-15782 Santiago de Compostela
- Spain
| | - José E. Rodríguez-Borges
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| | - Ivo E. Sampaio-Dias
- LAQV/REQUIMTE
- Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
| |
Collapse
|
33
|
Fancellu G, Chand K, Tomás D, Orlandini E, Piemontese L, Silva DF, Cardoso SM, Chaves S, Santos MA. Novel tacrine-benzofuran hybrids as potential multi-target drug candidates for the treatment of Alzheimer's Disease. J Enzyme Inhib Med Chem 2019; 35:211-226. [PMID: 31760822 PMCID: PMC7567501 DOI: 10.1080/14756366.2019.1689237] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pursuing the widespread interest on multi-target drugs to combat Alzheimer´s disease (AD), a new series of hybrids was designed and developed based on the repositioning of the well-known acetylcholinesterase (AChE) inhibitor, tacrine (TAC), by its coupling to benzofuran (BF) derivatives. The BF framework aims to endow the conjugate molecules with ability for inhibition of AChE (bimodal way) and of amyloid-beta peptide aggregation, besides providing metal (Fe, Cu) chelating ability and concomitant extra anti-oxidant activity, for the hybrids with hydroxyl substitution. The new TAC-BF conjugates showed very good activity for AChE inhibition (sub-micromolar range) and good capacity for the inhibition of self- and Cu-mediated Aβ aggregation, with dependence on the linker size and substituent groups of each main moiety. Neuroprotective effects were also found for the compounds through viability assays of neuroblastoma cells, after Aβ1-42 induced toxicity. Structure-activity relationship analysis provides insights on the best structural parameters, to take in consideration for future studies in view of potential applications in AD therapy.
Collapse
Affiliation(s)
- Gaia Fancellu
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Department of Earth Sciences, University of Pisa, Pisa, Italy
| | - Karam Chand
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Daniel Tomás
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | | | - Luca Piemontese
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Diana F Silva
- CNC-Center for Neuroscience and Cell Biology, Universidade de Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, Universidade de Coimbra, Coimbra, Portugal.,Institute of Molecular and Cell Biology, Faculty of Medicine, Universidade de Coimbra, Coimbra, Portugal
| | - Sílvia Chaves
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - M Amélia Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
34
|
A Prospective Repurposing of Dantrolene as a Multitarget Agent for Alzheimer's Disease. Molecules 2019; 24:molecules24234298. [PMID: 31775359 PMCID: PMC6930524 DOI: 10.3390/molecules24234298] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023] Open
Abstract
The orphan drug dantrolene (DAN) is the only therapeutic treatment for malignant hyperthermia (MH), a pharmacogenetic pathology affecting 0.2 over 10,000 people in the EU. It acts by inhibiting ryanodine receptors, which are responsible for calcium recruitment in striatal muscles and brain. Because of its involvement in calcium homeostasis, DAN has been successfully investigated for its potential as neuroprotecting small molecule in several animal models of Alzheimer’s disease (AD). Nevertheless, its effects at a molecular level, namely on putative targets involved in neurodegeneration, are still scarcely known. Herein, we present a prospective study on repurposing of DAN involving, besides the well-known calcium antagonism, inhibition of monoamine oxidase B and acetylcholinesterase, cytoprotection from oxidative insult, and activation of carnitine/acylcarnitine carrier, as concurring biological activities responsible for neuroprotection.
Collapse
|
35
|
Ivasiv V, Albertini C, Gonçalves AE, Rossi M, Bolognesi ML. Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases. Curr Top Med Chem 2019; 19:1694-1711. [DOI: 10.2174/1568026619666190619115735] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
Abstract
Molecular hybridization is a well-exploited medicinal chemistry strategy that aims to combine
two molecules (or parts of them) in a new, single chemical entity. Recently, it has been recognized
as an effective approach to design ligands able to modulate multiple targets of interest. Hybrid compounds
can be obtained by linking (presence of a linker) or framework integration (merging or fusing)
strategies. Although very promising to combat the multifactorial nature of complex diseases, the development
of molecular hybrids faces the critical issues of selecting the right target combination and the
achievement of a balanced activity towards them, while maintaining drug-like-properties. In this review,
we present recent case histories from our own research group that demonstrate why and how molecular
hybridization can be carried out to address the challenges of multitarget drug discovery in two therapeutic
areas that are Alzheimer’s and parasitic diseases. Selected examples spanning from linker- to fragment-
based hybrids will allow to discuss issues and consequences relevant to drug design.
Collapse
Affiliation(s)
- Viktoriya Ivasiv
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Claudia Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Ana E. Gonçalves
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Michele Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Maria L. Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| |
Collapse
|
36
|
Gulcan HO, Mavideniz A, Sahin MF, Orhan IE. Benzimidazole-derived Compounds Designed for Different Targets of Alzheimer’s Disease. Curr Med Chem 2019; 26:3260-3278. [DOI: 10.2174/0929867326666190124123208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/22/2018] [Accepted: 01/01/2019] [Indexed: 12/21/2022]
Abstract
Benzimidazole scaffold has been efficiently used for the design of various pharmacologically active molecules. Indeed, there are various benzimidazole drugs, available today, employed for the treatment of different diseases. Although there is no benzimidazole moiety containing a drug used in clinic today for the treatment of Alzheimer’s Disease (AD), there have been many benzimidazole derivative compounds designed and synthesized to act on some of the validated and non-validated targets of AD. This paper aims to review the literature to describe these benzimidazole containing molecules designed to target some of the biochemical cascades shown to be involved in the development of AD.
Collapse
Affiliation(s)
- Hayrettin Ozan Gulcan
- Eastern Mediterranean University, Faculty of Pharmacy, Division of Pharmaceutical Chemistry, Famagusta, TRNC, via Mersin 10, Turkey
| | - Açelya Mavideniz
- Eastern Mediterranean University, Faculty of Pharmacy, Division of Pharmaceutical Chemistry, Famagusta, TRNC, via Mersin 10, Turkey
| | - Mustafa Fethi Sahin
- Eastern Mediterranean University, Faculty of Pharmacy, Division of Pharmaceutical Chemistry, Famagusta, TRNC, via Mersin 10, Turkey
| | - Ilkay Erdogan Orhan
- Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, Etiler, Ankara, Turkey
| |
Collapse
|
37
|
Umar T, Shalini S, Raza MK, Gusain S, Kumar J, Seth P, Tiwari M, Hoda N. A multifunctional therapeutic approach: Synthesis, biological evaluation, crystal structure and molecular docking of diversified 1H-pyrazolo[3,4-b]pyridine derivatives against Alzheimer's disease. Eur J Med Chem 2019; 175:2-19. [DOI: 10.1016/j.ejmech.2019.04.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/03/2019] [Accepted: 04/13/2019] [Indexed: 11/26/2022]
|
38
|
Spinelli R, Aimaretti FM, López JA, Siano AS. Amphibian skin extracts as source of bioactive multi-target agents against different pathways of Alzheimer's disease. Nat Prod Res 2019; 35:686-689. [PMID: 30931620 DOI: 10.1080/14786419.2019.1591396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Natural products represent a rich source of bioactive compounds that have been historically used to obtain substances with great medicinal potential. The skin of anuran amphibians is a rich source of compounds with a wide range of biological activity. Alzheimer's disease (AD) is a complex disease associated with all kind of different pathways, making their simultaneous modulation necessary. Nowadays anti-AD treatments are focused on enzymatic inhibitors. Here in we report the activity of skin extracts from nine species from Argentina, belonging to three anuran families, as inhibitors of AChE, BChE and MAO-B enzymes. The extracts also showed antioxidant activities, acting as multi-target on four important pathways of AD.
Collapse
Affiliation(s)
- Roque Spinelli
- Departamento de Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Florencia María Aimaretti
- Departamento de Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Javier Alejandro López
- CONICET-UNL, Instituto Nacional de Limnología, Santa Fe, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alvaro Sebastián Siano
- Departamento de Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
39
|
Rajeshwari R, Chand K, Candeias E, Cardoso SM, Chaves S, Santos MA. New Multitarget Hybrids Bearing Tacrine and Phenylbenzothiazole Motifs as Potential Drug Candidates for Alzheimer's Disease. Molecules 2019; 24:molecules24030587. [PMID: 30736397 PMCID: PMC6385087 DOI: 10.3390/molecules24030587] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 11/16/2022] Open
Abstract
Research on neurodegenerative brain disorders, namely the age-dependent Alzheimer's disease (AD), has been intensified in the last decade due to the absence of a cure and the recognized increasing of life expectancy for populations. To address the multifactorial nature and complexity of AD, a multi-target-directed ligand approach was herein employed, by designing a set of six selected hybrids (14⁻19) that combine in the same entity two pharmacophores: tacrine (TAC) and 2-phenylbenzothiazole (PhBTA). The compounds contain a methoxy substituent at the PhBTA moiety and have a variable length linker between that and the TAC moiety. The docking studies showed that all the compounds assure a dual-binding mode of acetylcholinesterase (AChE) inhibition, establishing π-stacking and H-bond interactions with aminoacid residues at both active binding sites of the enzyme (CAS and PAS). The bioassays revealed that the designed compounds display excellent AChE inhibitory activity in the sub-micromolar range (0.06⁻0.27 μM) and moderate inhibition values for amyloid-β (Aβ) self-aggregation (27⁻44.6%), compounds 14 and 15 being the lead compounds. Regarding neuroprotective effects in neuroblastoma cells, compounds 15, 16 and 19 revealed the capacity to prevent Aβ-induced toxicity, but compound 16 showed the highest neuroprotective effect. Overall these hybrid compounds, in particular 15 and 16, with promising multitarget anti-AD ability, encourage further pursuing studies on this type of TAC-PhBTA derivatives for potential AD therapy.
Collapse
Affiliation(s)
- Rajeshwari Rajeshwari
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Karam Chand
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.
- Institute of Molecular and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Sílvia Chaves
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - M Amélia Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| |
Collapse
|
40
|
de Oliveira JS, Abdalla FH, Dornelles GL, Palma TV, Signor C, da Silva Bernardi J, Baldissarelli J, Lenz LS, de Oliveira VA, Chitolina Schetinger MR, Melchiors Morsch VM, Rubin MA, de Andrade CM. Neuroprotective effects of berberine on recognition memory impairment, oxidative stress, and damage to the purinergic system in rats submitted to intracerebroventricular injection of streptozotocin. Psychopharmacology (Berl) 2019; 236:641-655. [PMID: 30377748 DOI: 10.1007/s00213-018-5090-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/21/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease. The present study investigated the effects of 50 and 100 mg/kg berberine (BRB) on recognition memory, oxidative stress, and purinergic neurotransmission, in a model of sporadic dementia of the Alzheimer's type induced by intracerebroventricular (ICV) injection of streptozotocin (STZ) in rats. Rats were submitted to ICV-STZ 3 mg/kg or saline, and 3 days later, were started on a treatment of BRB or saline for 21 days. The results demonstrated that BRB was effective in protecting against memory impairment, increased reactive oxygen species, and the subsequent increase in protein and lipid oxidation in the cerebral cortex and hippocampus, as well as δ-aminolevulinate dehydratase inhibition in the cerebral cortex. Moreover, the decrease in total thiols, and the reduced glutathione and glutathione S-transferase activity in the cerebral cortex and hippocampus of ICV-STZ rats, was prevented by BRB treatment. Besides an antioxidant effect, BRB treatment was capable of preventing decreases in ecto-nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase (EC-5'-Nt), and adenosine deaminase (ADA) activities in synaptosomes of the cerebral cortex and hippocampus. Thus, our data suggest that BRB exerts a neuroprotective effect on recognition memory, as well as on oxidative stress and oxidative stress-related damage, such as dysfunction of the purinergic system. This suggests that BRB may act as a promising multipotent agent for the treatment of AD.
Collapse
Affiliation(s)
- Juliana Sorraila de Oliveira
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Setor de Bioquímica e Estresse Oxidativo do Laboratório de Terapia Celular, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil. .,Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Fátima Husein Abdalla
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Guilherme Lopes Dornelles
- Programa de Pós graduação em Medicina Veterinária, Centro de Ciência Rurais/Departamento de Clínica de Pequenos Animais, Laboratório de Patologia Clínica Veternária/Hospital Veterinário, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Taís Vidal Palma
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Setor de Bioquímica e Estresse Oxidativo do Laboratório de Terapia Celular, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cristiane Signor
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Laboratório de Neuropsicofarmacologia Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Jamile da Silva Bernardi
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jucimara Baldissarelli
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luana Suéling Lenz
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Setor de Bioquímica e Estresse Oxidativo do Laboratório de Terapia Celular, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vitor Antunes de Oliveira
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maribel Antonello Rubin
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Laboratório de Neuropsicofarmacologia Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cinthia Melazzo de Andrade
- Programa de Pós graduação em Medicina Veterinária, Centro de Ciência Rurais/Departamento de Clínica de Pequenos Animais, Laboratório de Patologia Clínica Veternária/Hospital Veterinário, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Department of Small Animal Clinic, Center of Rural Sciences Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
41
|
Alachkar A, Khan N, Łażewska D, Kieć-Kononowicz K, Sadek B. Histamine H3 receptor antagonist E177 attenuates amnesia induced by dizocilpine without modulation of anxiety-like behaviors in rats. Neuropsychiatr Dis Treat 2019; 15:531-542. [PMID: 30863075 PMCID: PMC6388968 DOI: 10.2147/ndt.s193125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Alzheimer disease (AD) is the main cause of dementia in elderly people. The potential of histamine H3 receptor (H3R) antagonists as a pharmacological treatment of several neuropsychiatric diseases is well established. METHODS The novel non-imidazole-based H3R antagonist E177 was screened for its pro-cognitive effects on the inhibitory avoidance paradigm (IAP) and novel object recognition (NOR) task in a dizocilpine (DIZ)-induced model of amnesia in male Wistar rats. Donepezil, an acetylcholine esterase inhibitor, was used as the reference drug. RESULTS Acute systemic treatment with E177 (1.25, 2.5, 5, and 10 mg/kg intraperitoneally [i.p.]) significantly attenuated the cognitive impairments induced by DIZ in the IAP (all P-values <0.05, n=7), and the protective effect of the most promising dose of E177 (5 mg/kg) was abrogated when H3R agonist R-(α)-methylhistamine (RAMH; 10 mg/kg i.p.) was co-administered (P=0.281 for DIZ-amnesia group vs DIZ + E177 + RAMH group, n=7). The discrimination index calculated for E177 (5 mg/kg, i.p.) showed a significant memory-enhancing effect on DIZ-induced short-term memory impairment in the NOR task (P<0.05, n=6), with the enhancement nullified when animals were co-administered RAMH (10 mg/kg). Moreover, the results revealed that E177 (5 and 10 mg/kg, i.p.) did not alter the anxiety levels and locomotor activity of animals naïve to the open-field test (all P-values >0.05, n=8) or the elevated plus maze test (all P-values >0.05, n=6-8), which indicated that the E177-induced enhancement of memory performance in the IAP or NOR task was unrelated to changes in emotional response or in spontaneous locomotor activity. CONCLUSION The observed results suggested a possible contribution of H3Rs in the alteration of brain neurotransmitters that accompany neurodegenerative diseases, such as AD.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,
| | - Nadia Khan
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,
| |
Collapse
|
42
|
Reza-Zaldivar EE, Hernández-Sapiéns MA, Gutiérrez-Mercado YK, Sandoval-Ávila S, Gomez-Pinedo U, Márquez-Aguirre AL, Vázquez-Méndez E, Padilla-Camberos E, Canales-Aguirre AA. Mesenchymal stem cell-derived exosomes promote neurogenesis and cognitive function recovery in a mouse model of Alzheimer's disease. Neural Regen Res 2019; 14:1626-1634. [PMID: 31089063 PMCID: PMC6557105 DOI: 10.4103/1673-5374.255978] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies have shown that mesenchymal stem cell-derived exosomes can enhance neural plasticity and improve cognitive impairment. The purpose of this study was to investigate the effects of mesenchymal stem cell-derived exosomes on neurogenesis and cognitive capacity in a mouse model of Alzheimer’s disease. Alzheimer’s disease mouse models were established by injection of beta amyloid 1−42 aggregates into dentate gyrus bilaterally. Morris water maze and novel object recognition tests were performed to evaluate mouse cognitive deficits at 14 and 28 days after administration. Afterwards, neurogenesis in the subventricular zone was determined by immunofluorescence using doublecortin and PSA-NCAM antibodies. Results showed that mesenchymal stem cells-derived exosomes stimulated neurogenesis in the subventricular zone and alleviated beta amyloid 1−42-induced cognitive impairment, and these effects are similar to those shown in the mesenchymal stem cells. These findings provide evidence to validate the possibility of developing cell-free therapeutic strategies for Alzheimer’s disease. All procedures and experiments were approved by Institutional Animal Care and Use Committee (CICUAL) (approval No. CICUAL 2016-011) on April 25, 2016.
Collapse
Affiliation(s)
- Edwin E Reza-Zaldivar
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Mercedes A Hernández-Sapiéns
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Yanet K Gutiérrez-Mercado
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Sergio Sandoval-Ávila
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Ulises Gomez-Pinedo
- Regenerative Medicine Unit, Neuroscience Institute, Department of Neurosurgery and Neurology, IdISSC Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Ana L Márquez-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Estefanía Vázquez-Méndez
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Eduardo Padilla-Camberos
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Alejandro A Canales-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| |
Collapse
|
43
|
Lascano S, Lopez M, Arimondo PB. Natural Products and Chemical Biology Tools: Alternatives to Target Epigenetic Mechanisms in Cancers. CHEM REC 2018; 18:1854-1876. [PMID: 30537358 DOI: 10.1002/tcr.201800133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
DNA methylation and histone acetylation are widely studied epigenetic modifications. They are involved in numerous pathologies such as cancer, neurological disease, inflammation, obesity, etc. Since the discovery of the epigenome, numerous compounds have been developed to reverse DNA methylation and histone acetylation aberrant profile in diseases. Among them several were inspired by Nature and have a great interest as therapeutic molecules. In the quest of finding new ways to target epigenetic mechanisms, the use of chemical tools is a powerful strategy to better understand epigenetic mechanisms in biological systems. In this review we will present natural products reported as DNMT or HDAC inhibitors for anticancer treatments. We will then discuss the use of chemical tools that have been used in order to explore the epigenome.
Collapse
Affiliation(s)
- Santiago Lascano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier-ENSCM, 240 avenue du Prof. E. Jeanbrau, 34296, Montpellier cedex 5, France
| | - Marie Lopez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier-ENSCM, 240 avenue du Prof. E. Jeanbrau, 34296, Montpellier cedex 5, France
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR3523, 28 rue du Docteur Roux, 75724, Paris cedex 15, France
| |
Collapse
|
44
|
Piemontese L, Tomás D, Hiremathad A, Capriati V, Candeias E, Cardoso SM, Chaves S, Santos MA. Donepezil structure-based hybrids as potential multifunctional anti-Alzheimer's drug candidates. J Enzyme Inhib Med Chem 2018; 33:1212-1224. [PMID: 30160188 PMCID: PMC6127844 DOI: 10.1080/14756366.2018.1491564] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/16/2018] [Accepted: 06/17/2018] [Indexed: 02/08/2023] Open
Abstract
A new series of multifunctional hybrids, based on the structure of the donepezil (DNP) drug, have been developed and evaluated as potential anti Alzheimer's disease (AD) agents. The rationale of this study was the conjugation of a benzylpiperidine/benzylpiperazine moiety with derivatives of bioactive heterocyclics (benzimidazole or benzofuran), to mimic the main structure of DNP and to endow the hybrids with additional relevant properties such as inhibition of amyloid beta (Aβ) peptide aggregation, antioxidant activity and metal chelation. Overall, they showed good activity for AChE inhibition (IC50=4.0-30.0 μΜ) and moderate ability for inhibition of Aβ1-42 self-mediated aggregation. The hybrids containing chelating groups showed improvement in the inhibition of Cu-induced Aβ42 aggregation and the antioxidant capacity. Moreover, neuroprotective effects of these compounds were evidenced in neuroblastoma cells after Aβ1-42 induced toxicity. Structure-activity relationship allowed the identification of some promising compounds and the main determinant structural features for the targeted properties.
Collapse
Affiliation(s)
- Luca Piemontese
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Dipartimento di Farmacia–Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Consortium C.I.N.M.P.I.S, Bari, Italy
| | - Daniel Tomás
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Asha Hiremathad
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Vito Capriati
- Dipartimento di Farmacia–Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Consortium C.I.N.M.P.I.S, Bari, Italy
| | - Emanuel Candeias
- CNC–Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sandra M. Cardoso
- CNC–Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Molecular and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sílvia Chaves
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - M. Amélia Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
45
|
Raval N, Barai P, Acharya N, Acharya S. Fabrication of peptide-linked albumin nanoconstructs for receptor-mediated delivery of asiatic acid to the brain as a preventive measure in cognitive impairment: optimization, in-vitro and in-vivo evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S832-S846. [PMID: 30449164 DOI: 10.1080/21691401.2018.1513942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The aim of the study was to evaluate the neuroprotective activity of glutathione (GU)-conjugated asiatic acid (AA) loaded albumin nanoparticles and establishing the drug targeting efficiency (DTE) of GU as a selective ligand for brain-targeted delivery. Albumin nanoparticles were prepared by desolvation technique and optimized using quality by design (QbD) approach. GU was conjugated with nanoparticles by carbodiimide reaction and characterized by its size and zeta potential using dynamic light scattering phenomenon. Dialysis bag technique was employed for in-vitro release study and in-vivo brain targeting efficiency was evaluated in Sprague-Dawley rats (75 mg/kg, i.p.). Neuroprotective activity was evaluated against scopolamine-induced dementia in rats. Resultant brain bioavailability of nanoparticles with 100.2 nm size and 71.59% entrapment efficiency (EE), was found 7-fold higher than AA dispersion with 293% DTE for the brain. Conjugated nanoparticles showed significantly high percentage correct alternation (p < .05), low escape latency time (p < .01), cholinesterase inhibition (p < .01) and ameliorated GU levels (p < .01) as compared to diseased animals. GU showed potential to enhance the brain delivery of AA with ameliorated neuroprotective activity due to enhanced bioavailability. This concept can serve as a platform technology for similar potential neurotherapeutics, whose clinical efficacy is still challenging owing to poor bioavailability.
Collapse
Affiliation(s)
- Nisith Raval
- a Institute of Pharmacy, Nirma University , Ahmedabad , India
| | - Priyal Barai
- a Institute of Pharmacy, Nirma University , Ahmedabad , India
| | - Niyati Acharya
- a Institute of Pharmacy, Nirma University , Ahmedabad , India
| | - Sanjeev Acharya
- a Institute of Pharmacy, Nirma University , Ahmedabad , India.,b SSR College of Pharmacy , Silvassa , India
| |
Collapse
|
46
|
Chand K, Rajeshwari, Candeias E, Cardoso SM, Chaves S, Santos MA. Tacrine-deferiprone hybrids as multi-target-directed metal chelators against Alzheimer's disease: a two-in-one drug. Metallomics 2018; 10:1460-1475. [PMID: 30183790 DOI: 10.1039/c8mt00143j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease (AD) is a severe age-dependent neurodegenerative disorder affecting several million people worldwide. So far, there is no adequate medication to prevent or slow down the progression of the disease, only medication with palliative effects allowing temporary symptomatic reliefs. As part of our continuing efforts into the development of innovative drugs following a polypharmacological strategy, we decided to use a former anti-AD palliative drug (tacrine) and to reposition it by hybridization with a metal chelating drug (deferiprone, DFP). This combination endows the hybrids with good capacity to inhibit acetylcholinesterase (low micromolar range) and self-/Cu-induced Aβ aggregation (up to ca. 90%) as well as a good radical scavenging ability (micromolar range) and metal (M) chelating capacity, with pM (pM = -log[M], CL/CM = 10, CM = 10-6 M at pH = 7.4, M = Fe, Cu, Zn) values close to those of DFP. The most promising compounds have 2-hydroxypropyl linkers, and a selection of compounds have demonstrated neuroprotective roles in neuroblastoma cells treated with Aβ1-42 and ascorbate/iron stressors. Consequently, these hybrids can be considered as attractive multipotent therapeutic molecules that will eventually play key roles against AD progression, namely in the control of cholinergic dysfunction, amyloid peptide aggregation, oxidative stress, and metal modulation, besides presenting a good pharmacokinetic profile.
Collapse
Affiliation(s)
- Karam Chand
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal.
| | - Rajeshwari
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal.
| | - Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal and Institute of Molecular and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sílvia Chaves
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal.
| | - M Amélia Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal.
| |
Collapse
|
47
|
Wang X, Wang X, Guo Z. Metal-involved theranostics: An emerging strategy for fighting Alzheimer’s disease. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Amyloid β-targeted metal complexes for potential applications in Alzheimer's disease. Future Med Chem 2018; 10:679-701. [DOI: 10.4155/fmc-2017-0248] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is currently an incurable neurodegenerative disorder that affects millions of people around the world. The aggregation of amyloid-β peptides (Aβ), one of the primary pathological hallmarks of AD, plays a key role in the AD pathogenesis. In this regard, Aβ aggregates have been considered as both biomarkers and drug targets for the diagnosis and therapy of AD. Various Aβ-targeted metal complexes have exhibited promising potential as anti-AD agents due to their fascinating physicochemical properties over the past two decades. This review classifies the complexes into three groups based on their potential applications in AD including therapy, diagnosis and theranosis. The recent representative examples are highlighted in terms of design rationale, working mechanism and potential applications.
Collapse
|
49
|
Novel Tacrine-Hydroxyphenylbenzimidazole hybrids as potential multitarget drug candidates for Alzheimer's disease. Eur J Med Chem 2018; 148:255-267. [PMID: 29466775 DOI: 10.1016/j.ejmech.2018.02.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 01/30/2023]
Abstract
Alzheimer's disease (AD) is a severe age-dependent neurodegenerative disorder affecting millions of people, with no cure so far. The current treatments only achieve some temporary amelioration of the cognition symptoms. The main characteristics of the patient brains include the accumulation of amyloid plaques and neurofibrillary tangles (outside and inside the neurons) but also cholinergic deficit, increased oxidative stress and dyshomeostasis of transition metal ions. Considering the multi-factorial nature of AD, we report herein the development of a novel series of potential multi-target directed drugs which, besides the capacity to recover the cholinergic neurons, can also target other AD hallmarks. The novel series of tacrine-hydroxyphenylbenzimidazole (TAC-BIM) hybrid molecules has been designed, synthesized and studied for their multiple biological activities. These agents showed improved AChE inhibitory activity (IC50 in nanomolar range), as compared with the single drug tacrine (TAC), and also a high inhibition of self-induced- and Cu-induced-Aβ aggregation (up to 75%). They also present moderate radical scavenging activity and metal chelating ability. In addition, neuroprotective studies revealed that all these tested compounds are able to inhibit the neurotoxicity induced by Aβ and Fe/AscH(-) in neuronal cells. Hence, for this set of hybrids, structure-activity relationships are discussed and finally it is highlighted their real promising interest as potential anti-AD drugs.
Collapse
|
50
|
Carradori S, Secci D, Petzer JP. MAO inhibitors and their wider applications: a patent review. Expert Opin Ther Pat 2018; 28:211-226. [DOI: 10.1080/13543776.2018.1427735] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara , Chieti, Italy
| | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome, Italy
| | - Jacques P. Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, North-West University , Potchefstroom, South Africa
| |
Collapse
|