1
|
Lu C, Liu Y, Ren F, Zhang H, Hou Y, Zhang H, Chen Z, Du X. HO-1: An emerging target in fibrosis. J Cell Physiol 2024:e31465. [PMID: 39420552 DOI: 10.1002/jcp.31465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Fibrosis, an aberrant reparative response to tissue injury, involves a disruption in the equilibrium between the synthesis and degradation of the extracellular matrix, leading to its excessive accumulation within normal tissues, and culminating in organ dysfunction. Manifesting in the terminal stages of nearly all chronic ailments, fibrosis carries a high mortality rate and poses a significant threat to human health. Heme oxygenase-1 (HO-1) emerges as an endogenous protective agent, mitigating tissue damage through its antioxidant, anti-inflammatory, and antiapoptotic properties. Numerous studies have corroborated HO-1's potential as a therapeutic target in anti-fibrosis treatment. This review delves into the structural and functional attributes, and the upstream and downstream pathways of HO-1. Additionally, the regulatory networks and mechanisms of HO-1 in cells associated with fibrosis are elucidated. The role of HO-1 in various fibrosis-related diseases is also explored. Collectively, this comprehensive information serves as a foundation for future research and augments the viability of HO-1 as a therapeutic target for fibrosis.
Collapse
Affiliation(s)
- Chenxi Lu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Yuan Liu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Feifei Ren
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Haoran Zhang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Yafang Hou
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Hong Zhang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Zhiyong Chen
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Xia Du
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| |
Collapse
|
2
|
Suárez-Rojas I, Pérez-Fernández M, Bai X, Martínez-Martel I, Intagliata S, Pittalà V, Salerno L, Pol O. The Inhibition of Neuropathic Pain Incited by Nerve Injury and Accompanying Mood Disorders by New Heme Oxygenase-1 Inducers: Mechanisms Implicated. Antioxidants (Basel) 2023; 12:1859. [PMID: 37891937 PMCID: PMC10603856 DOI: 10.3390/antiox12101859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain is a type of pain that persists for a long time and becomes pathological. Additionally, the anxiodepressive disorders derived from neuropathic pain are difficult to palliate with the current treatments and need to be resolved. Then, using male mice with neuropathic pain provoked by chronic constriction of the sciatic nerve (CCI), we analyzed and compared the analgesic actions produced by three new heme oxygenase 1 (HO-1) inducers, 1m, 1b, and 1a, with those performed by dimethyl fumarate (DMF). Their impact on the anxiety- and depressive-like comportments and the expression of the inflammasome NLRP3, Nrf2, and some antioxidant enzymes in the dorsal root ganglia (DRG) and amygdala (AMG) were also investigated. Results revealed that the administration of 1m, 1b, and DMF given orally for four days inhibited the allodynia and hyperalgesia caused by CCI, while 1a merely reduced the mechanical allodynia. However, in the first two days of treatment, the antiallodynic effects produced by 1m were higher than those of 1a and DMF, and its antihyperalgesic actions were greater than those produced by 1b, 1a, and DMF, revealing that 1m was the most effective compound. At four days of treatment, all drugs exerted anxiolytic and antidepressant effects, decreased the NLRP3 levels, and increased/normalized the Nrf2, HO-1, and superoxide dismutase 1 levels in DRG and AMG. Data indicated that the dual modulation of the antioxidant and inflammatory pathways produced by these compounds, especially 1m, is a new promising therapeutic approach for neuropathic pain and related emotional illnesses.
Collapse
Affiliation(s)
- Irene Suárez-Rojas
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Montse Pérez-Fernández
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | | | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Department of Molecular Medicine, Princess Al Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
3
|
Pérez-Fernández M, Suárez-Rojas I, Bai X, Martínez-Martel I, Ciaffaglione V, Pittalà V, Salerno L, Pol O. Novel Heme Oxygenase-1 Inducers Palliate Inflammatory Pain and Emotional Disorders by Regulating NLRP3 Inflammasome and Activating the Antioxidant Pathway. Antioxidants (Basel) 2023; 12:1794. [PMID: 37891874 PMCID: PMC10604550 DOI: 10.3390/antiox12101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic pain caused by persistent inflammation is current in multiple diseases and has a strong negative impact on society. It is commonly associated with several mental illnesses, which can exert a negative influence on pain perception, and needs to be eradicated. Nevertheless, actual therapies are not sufficiently safe and effective. Recent reports demonstrate that the induction of heme oxygenase-1 (HO-1) enzyme produces analgesic effects in animals with osteoarthritis pain and reverses the grip strength loss caused by sciatic nerve crush. In this research, we evaluated the potential use of three new HO-1 inducers, 1m, 1a, and 1b, as well as dimethyl fumarate (DMF), for treating persistent inflammatory pain induced by the subplantar injection of complete Freud's adjuvant and the functional deficits and emotional sickness associated. The modulator role of these treatments on the inflammatory and antioxidant pathways were also assessed. Our findings revealed that repeated treatment, for four days, with 1m, 1a, 1b, or DMF inhibited inflammatory pain, reversed grip strength deficits, and reversed the linked anxious- and depressive-like behaviors, with 1m being the most effective. These treatments also suppressed the up-regulation of the inflammasome NLRP3 and activated the expression of the Nrf2 transcription factor and the HO-1 and superoxide dismutase 1 enzymes in the paw and/or amygdala, thus revealing the anti-inflammatory and antioxidant capacity of these compounds during inflammatory pain. Results suggest the use of 1m, 1a, 1b, and DMF, particularly 1m, as promising therapies for inflammatory pain and the accompanying functional disabilities and emotional diseases.
Collapse
Affiliation(s)
- Montse Pérez-Fernández
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Irene Suárez-Rojas
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), 95126 Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
4
|
Kashfi K, Patel KK. Carbon monoxide and its role in human physiology: A brief historical perspective. Biochem Pharmacol 2022; 204:115230. [PMID: 36027927 DOI: 10.1016/j.bcp.2022.115230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
Carbon monoxide is a molecule with notoriety in modern culture and extensive documentation regarding its toxic physiological effects, long predating its formal discovery in the 18th century. Upon its discovery as a molecule in 1772, subsequent investigations into its properties have provided mechanisms describing its toxicity and insights into its function as an endogenously produced molecule and as a therapeutic agent. This brief review aims to provide a historical perspective on this molecule and recognize research regarding its physiological functions and therapeutic applications, often overshadowed by its reputation as a lethal substance. Historicizing science is an acknowledgment of the pioneers and helps us better conceptualize the issues.
Collapse
Affiliation(s)
- Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, USA.
| | - Kush K Patel
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| |
Collapse
|
5
|
Floresta G, Fallica AN, Salerno L, Sorrenti V, Pittalà V, Rescifina A. Growing the molecular architecture of imidazole-like ligands in HO-1 complexes. Bioorg Chem 2021; 117:105428. [PMID: 34710668 DOI: 10.1016/j.bioorg.2021.105428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022]
Abstract
Up-regulation of HO-1 had been frequently reported in different cases and types of human malignancies. Since poor clinical outcomes are reported in these cases, this enzyme's inhibition is considered a valuable and proven anticancer approach. To identify novel HO-1 inhibitors suitable for drug development, we report a structure-guided fragment-based approach to identify new lead compounds. Different parts of the selected molecules were analyzed, and the different series of novel compounds were virtually evaluated. The growing experiments of the classical HO-1 inhibitors structure led us to different hit-compounds. A synthetic pathway for six selected molecules was designed, and the compounds were synthesized. The biological activity revealed that molecules 10 and 12 inhibit the HO-1 activity with an IC50 of 1.01 and 0.90 μM, respectively. This study suggested that our growing approach was successful, and these results are ongoing for further development.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK.
| | - Antonino N Fallica
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy.
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Fallica A, Sorrenti V, D’Amico AG, Salerno L, Romeo G, Intagliata S, Consoli V, Floresta G, Rescifina A, D’Agata V, Vanella L, Pittalà V. Discovery of Novel Acetamide-Based Heme Oxygenase-1 Inhibitors with Potent In Vitro Antiproliferative Activity. J Med Chem 2021; 64:13373-13393. [PMID: 34472337 PMCID: PMC8474116 DOI: 10.1021/acs.jmedchem.1c00633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 12/25/2022]
Abstract
Heme oxygenase-1 (HO-1) promotes heme catabolism exercising cytoprotective roles in normal and cancer cells. Herein, we report the design, synthesis, molecular modeling, and biological evaluation of novel HO-1 inhibitors. Specifically, an amide linker in the central spacer and an imidazole were fixed, and the hydrophobic moiety required by the pharmacophore was largely modified. In many tumors, overexpression of HO-1 correlates with poor prognosis and chemoresistance, suggesting the inhibition of HO-1 as a possible antitumor strategy. Accordingly, compounds 7i and 7l-p emerged for their potency against HO-1 and were investigated for their anticancer activity against prostate (DU145), lung (A549), and glioblastoma (U87MG, A172) cancer cells. The selected compounds showed the best activity toward U87MG cells. Compound 7l was further investigated for its in-cell enzymatic HO-1 activity, expression levels, and effects on cell invasion and vascular endothelial growth factor (VEGF) extracellular release. The obtained data suggest that 7l can reduce cell invasivity acting through modulation of HO-1 expression.
Collapse
Affiliation(s)
- Antonino
N. Fallica
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Agata G. D’Amico
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Loredana Salerno
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Giuseppe Romeo
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | | | - Valeria Consoli
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Giuseppe Floresta
- Department
of Analytics, Environmental & Forensics, King’s College London, Stamford Street, London SE1 9NH, U.K.
| | - Antonio Rescifina
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Velia D’Agata
- Sections
of Human Anatomy and Histology, Department of Biomedical and Biotechnological
Sciences, University of Catania, 95123 Catania, Italy
| | - Luca Vanella
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Valeria Pittalà
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| |
Collapse
|
7
|
Ciaffaglione V, Modica MN, Pittalà V, Romeo G, Salerno L, Intagliata S. Mutual Prodrugs of 5-Fluorouracil: From a Classic Chemotherapeutic Agent to Novel Potential Anticancer Drugs. ChemMedChem 2021; 16:3496-3512. [PMID: 34415107 PMCID: PMC9290623 DOI: 10.1002/cmdc.202100473] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Indexed: 12/18/2022]
Abstract
The development of potent antitumor agents with a low toxicological profile against healthy cells is still one of the greatest challenges facing medicinal chemistry. In this context, the “mutual prodrug” approach has emerged as a potential tool to overcome undesirable physicochemical features and mitigate the side effects of approved drugs. Among broad‐spectrum chemotherapeutics available for clinical use today, 5‐fluorouracil (5‐FU) is one of the most representative, also included in the World Health Organization model list of essential medicines. Unfortunately, severe side effects and drug resistance phenomena are still the primary limits and drawbacks in its clinical use. This review describes the progress made over the last ten years in developing 5‐FU‐based mutual prodrugs to improve the therapeutic profile and achieve targeted delivery to cancer tissues.
Collapse
Affiliation(s)
- Valeria Ciaffaglione
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Maria N Modica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Romeo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
8
|
Combination of Heme Oxygenase-1 Inhibition and Sigma Receptor Modulation for Anticancer Activity. Molecules 2021; 26:molecules26133860. [PMID: 34202711 PMCID: PMC8270315 DOI: 10.3390/molecules26133860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a multifactorial disease that may be tackled by targeting different signaling pathways. Heme oxygenase-1 (HO-1) and sigma receptors (σRs) are both overexpressed in different human cancers, including prostate and brain, contributing to the cancer spreading. In the present study, we investigated whether HO-1 inhibitors and σR ligands, as well a combination of the two, may influence DU145 human prostate and U87MG human glioblastoma cancer cells proliferation. In addition, we synthesized, characterized, and tested a small series of novel hybrid compounds (HO-1/σRs) 1–4 containing the chemical features needed for HO-1 inhibition and σR modulation. Herein, we report for the first time that targeting simultaneously HO-1 and σR proteins may be a good strategy to achieve increased antiproliferative activity against DU145 and U87MG cells, with respect to the mono administration of the parent compounds. The obtained outcomes provide an initial proof of concept useful to further optimize the structure of HO-1/σRs hybrids to develop novel potential anticancer agents.
Collapse
|
9
|
Giurdanella G, Longo A, Salerno L, Romeo G, Intagliata S, Lupo G, Distefano A, Platania CBM, Bucolo C, Li Volti G, Anfuso CD, Pittalà V. Glucose-impaired Corneal Re-epithelialization Is Promoted by a Novel Derivate of Dimethyl Fumarate. Antioxidants (Basel) 2021; 10:antiox10060831. [PMID: 34067436 PMCID: PMC8224583 DOI: 10.3390/antiox10060831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Glucose induces corneal epithelial dysfunctions characterized by delayed wound repair. Nuclear erythroid 2-related factor 2 (Nrf2) mediates cell protection mechanisms even through the Heme oxygenase-1 (HO-1) up-regulation. Here, we synthesized new HO-1 inducers by modifying dimethyl fumarate (DMF) and used docking studies to select VP13/126 as a promising compound with the best binding energy to Kelch-like ECH-associated protein 1 (keap1), which is the the regulator of Nrf2 nuclear translocation. We verified if VP13/126 protects SIRC cells from hyperglycemia compared to DMF. SIRC were cultured in normal (5 mM) or high glucose (25 mM, HG) in presence of DMF (1–25 μM) or VP13/126 (0.1–5 μM) with or without ERK1/2 inhibitor PD98059 (15 μM). VP13/126 was more effective than DMF in the prevention of HG-induced reduction of cell viability and proliferation. Reduction of wound closure induced by HG was similarly counteracted by 1 μM VP13/126 and 10 μM DMF. VP13/126 strongly increased phospho/total ERK1/2 and restored HO-1 protein in HG-treated SIRC; these effects are completely counteracted by PD98059. Moreover, high-content screening analysis showed a higher rate of Nrf2 nuclear translocation induced by VP13/126 than DMF in HG-stimulated SIRC. These data indicate that VP13/126 exerts remarkable pro-survival properties in HG-stimulated SIRC, promoting the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.G.); (A.L.); (G.L.); (A.D.); (G.L.V.)
| | - Anna Longo
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.G.); (A.L.); (G.L.); (A.D.); (G.L.V.)
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (L.S.); (G.R.); (S.I.)
| | - Giuseppe Romeo
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (L.S.); (G.R.); (S.I.)
| | - Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (L.S.); (G.R.); (S.I.)
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.G.); (A.L.); (G.L.); (A.D.); (G.L.V.)
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, 95125 Catania, Italy;
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.G.); (A.L.); (G.L.); (A.D.); (G.L.V.)
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via S. Sofia 97, 95123 Catania, Italy;
| | - Claudio Bucolo
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, 95125 Catania, Italy;
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via S. Sofia 97, 95123 Catania, Italy;
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.G.); (A.L.); (G.L.); (A.D.); (G.L.V.)
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, 95125 Catania, Italy;
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.G.); (A.L.); (G.L.); (A.D.); (G.L.V.)
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, 95125 Catania, Italy;
- Correspondence: (C.D.A.); (V.P.); Tel.: +39-095-478-1170 (C.D.A.); +39-095-738-4269 (V.P.)
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (L.S.); (G.R.); (S.I.)
- Correspondence: (C.D.A.); (V.P.); Tel.: +39-095-478-1170 (C.D.A.); +39-095-738-4269 (V.P.)
| |
Collapse
|
10
|
Novel Heme Oxygenase-1 (HO-1) Inducers Based on Dimethyl Fumarate Structure. Int J Mol Sci 2020; 21:ijms21249541. [PMID: 33333908 PMCID: PMC7765375 DOI: 10.3390/ijms21249541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/31/2022] Open
Abstract
Novel heme oxygenase-1 (HO-1) inducers based on dimethyl fumarate (DMF) structure are reported in this paper. These compounds are obtained by modification of the DMF backbone. Particularly, maintaining the α, β-unsaturated dicarbonyl function as the central chain crucial for HO-1 induction, different substituted or unsubstituted phenyl rings are introduced by means of an ester or amide linkage. Symmetric and asymmetric derivatives are synthesized. All compounds are tested on a human hepatic stellate cell line LX-2 to assay their capacity for modifying HO-1 expression. Compounds 1b, 1l and 1m stand out for their potency as HO-1 inducers, being 2–3 fold more active than DMF, and for their ability to reverse reactive oxygen species (ROS) production mediated using palmitic acid (PA). These properties, coupled with a low toxicity toward LX-2 cell lines, make these compounds potentially useful for treatment of diseases in which HO-1 overexpression may counteract inflammation, such as hepatic fibrosis. Docking studies show a correlation between predicted binding free energy and experimental HO-1 expression data. These preliminary results may support the development of new approaches in the management of liver fibrosis.
Collapse
|
11
|
Dihydrotanshinone, a Natural Diterpenoid, Preserves Blood-Retinal Barrier Integrity via P2X7 Receptor. Int J Mol Sci 2020; 21:ijms21239305. [PMID: 33291318 PMCID: PMC7730037 DOI: 10.3390/ijms21239305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Activation of P2X7 signaling, due to high glucose levels, leads to blood retinal barrier (BRB) breakdown, which is a hallmark of diabetic retinopathy (DR). Furthermore, several studies report that high glucose (HG) conditions and the related activation of the P2X7 receptor (P2X7R) lead to the over-expression of pro-inflammatory markers. In order to identify novel P2X7R antagonists, we carried out virtual screening on a focused compound dataset, including indole derivatives and natural compounds such as caffeic acid phenethyl ester derivatives, flavonoids, and diterpenoids. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) rescoring and structural fingerprint clustering of docking poses from virtual screening highlighted that the diterpenoid dihydrotanshinone (DHTS) clustered with the well-known P2X7R antagonist JNJ47965567. A human-based in vitro BRB model made of retinal pericytes, astrocytes, and endothelial cells was used to assess the potential protective effect of DHTS against HG and 2′(3′)-O-(4-Benzoylbenzoyl)adenosine-5′-triphosphate (BzATP), a P2X7R agonist, insult. We found that HG/BzATP exposure generated BRB breakdown by enhancing barrier permeability (trans-endothelial electrical resistance (TEER)) and reducing the levels of ZO-1 and VE-cadherin junction proteins as well as of the Cx-43 mRNA expression levels. Furthermore, HG levels and P2X7R agonist treatment led to increased expression of pro-inflammatory mediators (TLR-4, IL-1β, IL-6, TNF-α, and IL-8) and other molecular markers (P2X7R, VEGF-A, and ICAM-1), along with enhanced production of reactive oxygen species. Treatment with DHTS preserved the BRB integrity from HG/BzATP damage. The protective effects of DHTS were also compared to the validated P2X7R antagonist, JNJ47965567. In conclusion, we provided new findings pointing out the therapeutic potential of DHTS, which is an inhibitor of P2X7R, in terms of preventing and/or counteracting the BRB dysfunctions elicited by HG conditions.
Collapse
|
12
|
Identification of a potent heme oxygenase-2 (HO-2) inhibitor by targeting the secondary hydrophobic pocket of the HO-2 western region. Bioorg Chem 2020; 104:104310. [DOI: 10.1016/j.bioorg.2020.104310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
|
13
|
Stark T, Di Bartolomeo M, Di Marco R, Drazanova E, Platania CBM, Iannotti FA, Ruda-Kucerova J, D'Addario C, Kratka L, Pekarik V, Piscitelli F, Babinska Z, Fedotova J, Giurdanella G, Salomone S, Sulcova A, Bucolo C, Wotjak CT, Starcuk Z, Drago F, Mechoulam R, Di Marzo V, Micale V. Altered dopamine D3 receptor gene expression in MAM model of schizophrenia is reversed by peripubertal cannabidiol treatment. Biochem Pharmacol 2020; 177:114004. [PMID: 32360362 DOI: 10.1016/j.bcp.2020.114004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022]
Abstract
Gestational methylazoxymethanol acetate (MAM) treatment produces offspring with adult phenotype relevant to schizophrenia, including positive- and negative-like symptoms, cognitive deficits, dopaminergic dysfunction, structural and functional abnormalities. Here we show that adult rats prenatally treated with MAM at gestational day 17 display significant increase in dopamine D3 receptor (D3) mRNA expression in prefrontal cortex (PFC), hippocampus and nucleus accumbens, accompanied by increased expression of dopamine D2 receptor (D2) mRNA exclusively in the PFC. Furthermore, a significant change in the blood perfusion at the level of the circle of Willis and hippocampus, paralleled by the enlargement of lateral ventricles, was also detected by magnetic resonance imaging (MRI) techniques. Peripubertal treatment with the non-euphoric phytocannabinoid cannabidiol (30 mg/kg) from postnatal day (PND) 19 to PND 39 was able to reverse in MAM exposed rats: i) the up-regulation of the dopamine D3 receptor mRNA (only partially prevented by haloperidol 0.6 mg/kg/day); and ii) the regional blood flow changes in MAM exposed rats. Molecular modelling predicted that cannabidiol could bind preferentially to dopamine D3 receptor, where it may act as a partial agonist according to conformation of ionic-lock, which is highly conserved in GPCRs. In summary, our results demonstrate that the mRNA expression of both dopamine D2 and D3 receptors is altered in the MAM model; however only the transcript levels of D3 are affected by cannabidiol treatment, likely suggesting that this gene might not only contribute to the schizophrenia symptoms but also represent an unexplored target for the antipsychotic activity of cannabidiol.
Collapse
Affiliation(s)
- Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; RG "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Roberta Di Marco
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Eva Drazanova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | | | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Lucie Kratka
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Vladimir Pekarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy
| | - Zuzana Babinska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Julia Fedotova
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, St. Petersburg, Russian Federation; Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology RASci., St. Petersburg, Russian Federation; Lobachevsky State University of Nizhny Novgorod, Institute of Biology and Biomedicine, Nizhny Novgorod, Russian Federation
| | - Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alexandra Sulcova
- ICCI - International Cannabis and Cannabinoid Institute, Praha, Czech Republic
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carsten T Wotjak
- RG "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany; Boehringer Ingelheim Pharma GmbH & KO KG, Germany
| | - Zenon Starcuk
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raphael Mechoulam
- Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, Canada; Joint International Unit on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval and Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
14
|
New Arylethanolimidazole Derivatives as HO-1 Inhibitors with Cytotoxicity against MCF-7 Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21061923. [PMID: 32168943 PMCID: PMC7139504 DOI: 10.3390/ijms21061923] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
In this paper, a novel series of imidazole-based heme oxygenase-1 (HO-1) inhibitors is reported. These compounds were obtained by modifications of previously described high potent and selective arylethanolimidazoles. In particular, simplification of the central linker and repositioning of the hydrophobic portion were carried out. Results indicate that a hydroxyl group in the central region is crucial for the potency as well as the spatial distribution of the hydrophobic portion. Docking studies revealed a similar interaction of the classical HO-1 inhibitors with the active site of the protein. The most potent and selective compound (5a) was tested for its potential cytotoxic activity against hormone-sensitive and hormone-resistant breast cancer cell lines (MCF-7 and MDA-MB-231).
Collapse
|