1
|
Zhang Y, Wu Y, Liu Z, Yang K, Lin H, Xiong K. Non-coding RNAs as potential targets in metformin therapy for cancer. Cancer Cell Int 2024; 24:333. [PMID: 39354464 PMCID: PMC11445969 DOI: 10.1186/s12935-024-03516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Metformin, a widely used oral hypoglycemic drug, has emerged as a potential therapeutic agent for cancer treatment. While initially known for its role in managing diabetes, accumulating evidence suggests that metformin exhibits anticancer properties through various mechanisms. Several cellular or animal experiments have attempted to elucidate the role of non-coding RNA molecules, including microRNAs and long non-coding RNAs, in mediating the anticancer effects of metformin. The present review summarized the current understanding of the mechanisms by which non-coding RNAs modulate the response to metformin in cancer cells. The regulatory roles of non-coding RNAs, particularly miRNAs, in key cellular processes such as cell proliferation, cell death, angiogenesis, metabolism and epigenetics, and how metformin affects these processes are discussed. This review also highlights the role of lncRNAs in cancer types such as lung adenocarcinoma, breast cancer, and renal cancer, and points out the need for further exploration of the mechanisms by which metformin regulates lncRNAs. In addition, the present review explores the potential advantages of metformin-based therapies over direct delivery of ncRNAs, and this review highlights the mechanisms of non-coding RNA regulation when metformin is combined with other therapies. Overall, the present review provides insights into the molecular mechanisms underlying the anticancer effects of metformin mediated by non-coding RNAs, offering novel opportunities for the development of personalized treatment strategies in cancer patients.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Yunhao Wu
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Zixu Liu
- The First School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Kangping Yang
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang, China
| | - Kai Xiong
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China.
| |
Collapse
|
2
|
Kang BA, Li HM, Chen YT, Deng MJ, Li Y, Peng YM, Gao JJ, Mo ZW, Zhou JG, Ou ZJ, Ou JS. High-density lipoprotein regulates angiogenesis by affecting autophagy via miRNA-181a-5p. SCIENCE CHINA. LIFE SCIENCES 2024; 67:286-300. [PMID: 37897614 DOI: 10.1007/s11427-022-2381-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/02/2023] [Indexed: 10/30/2023]
Abstract
We previously demonstrated that normal high-density lipoprotein (nHDL) can promote angiogenesis, whereas HDL from patients with coronary artery disease (dHDL) is dysfunctional and impairs angiogenesis. Autophagy plays a critical role in angiogenesis, and HDL regulates autophagy. However, it is unclear whether nHDL and dHDL regulate angiogenesis by affecting autophagy. Endothelial cells (ECs) were treated with nHDL and dHDL with or without an autophagy inhibitor. Autophagy, endothelial nitric oxide synthase (eNOS) expression, miRNA expression, nitric oxide (NO) production, superoxide anion (O2•-) generation, EC migration, and tube formation were evaluated. nHDL suppressed the expression of miR-181a-5p, which promotes autophagy and the expression of eNOS, resulting in NO production and the inhibition of O2•- generation, and ultimately increasing in EC migration and tube formation. dHDL showed opposite effects compared to nHDL and ultimately inhibited EC migration and tube formation. We found that autophagy-related protein 5 (ATG5) was a direct target of miR-181a-5p. ATG5 silencing or miR-181a-5p mimic inhibited nHDL-induced autophagy, eNOS expression, NO production, EC migration, tube formation, and enhanced O2•- generation, whereas overexpression of ATG5 or miR-181a-5p inhibitor reversed the above effects of dHDL. ATG5 expression and angiogenesis were decreased in the ischemic lower limbs of hypercholesterolemic low-density lipoprotein receptor null (LDLr-/-) mice when compared to C57BL/6 mice. ATG5 overexpression improved angiogenesis in ischemic hypercholesterolemic LDLr-/- mice. Taken together, nHDL was able to stimulate autophagy by suppressing miR-181a-5p, subsequently increasing eNOS expression, which generated NO and promoted angiogenesis. In contrast, dHDL inhibited angiogenesis, at least partially, by increasing miR-181a-5p expression, which decreased autophagy and eNOS expression, resulting in a decrease in NO production and an increase in O2•- generation. Our findings reveal a novel mechanism by which HDL affects angiogenesis by regulating autophagy and provide a therapeutic target for dHDL-impaired angiogenesis.
Collapse
Affiliation(s)
- Bi-Ang Kang
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Hua-Ming Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Meng-Jie Deng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Jian-Jun Gao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Zhi-Wei Mo
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia-Guo Zhou
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
- NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
- NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Sun LL, Liu Z, Ran F, Huang D, Zhang M, Li XQ, Li WD. Non-coding RNAs regulating endothelial progenitor cells for venous thrombosis: promising therapy and innovation. Stem Cell Res Ther 2024; 15:7. [PMID: 38169418 PMCID: PMC10762949 DOI: 10.1186/s13287-023-03621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Venous thromboembolism, which includes deep venous thrombosis (DVT) and pulmonary embolism, is the third most common vascular disease in the world and seriously threatens the lives of patients. Currently, the effect of conventional treatments on DVT is limited. Endothelial progenitor cells (EPCs) play an important role in the resolution and recanalization of DVT, but an unfavorable microenvironment reduces EPC function. Non-coding RNAs, especially long non-coding RNAs and microRNAs, play a crucial role in improving the biological function of EPCs. Non-coding RNAs have become clinical biomarkers of diseases and are expected to serve as new targets for disease intervention. A theoretical and experimental basis for the development of new methods for preventing and treating DVT in the clinic will be provided by studies on the role and molecular mechanism of non-coding RNAs regulating EPC function in the occurrence and development of DVT. To summarize, the characteristics of venous thrombosis, the regulatory role of EPCs in venous thrombosis, and the effect of non-coding RNAs regulating EPCs on venous thrombosis are reviewed. This summary serves as a useful reference and theoretical basis for research into the diagnosis, prevention, treatment, and prognosis of venous thrombosis.
Collapse
Affiliation(s)
- Li-Li Sun
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Zhao Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Feng Ran
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Dian Huang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Ming Zhang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Wen-Dong Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
4
|
Liao ZZ, Ran L, Qi XY, Wang YD, Wang YY, Yang J, Liu JH, Xiao XH. Adipose endothelial cells mastering adipose tissues metabolic fate. Adipocyte 2022; 11:108-119. [PMID: 35067158 PMCID: PMC8786343 DOI: 10.1080/21623945.2022.2028372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dynamic communication within adipose tissue depends on highly vascularized structural characteristics to maintain systemic metabolic homoeostasis. Recently, it has been noted that adipose endothelial cells (AdECs) act as essential bridges for biological information transmission between adipose-resident cells. Hence, paracrine regulators that mediate crosstalk between AdECs and adipose stromal cells were summarized. We also highlight the importance of AdECs to maintain adipocytes metabolic homoeostasis by regulating insulin sensitivity, lipid turnover and plasticity. The differential regulation of AdECs in adipose plasticity often depends on vascular density and metabolic states. Although choosing pro-angiogenic or anti-angiogenic therapies for obesity is still a matter of debate in clinical settings, the growing numbers of drugs have been confirmed to play an anti-obesity effect by affecting vascularization. Pharmacologic angiogenesis intervention has great potential as therapeutic strategies for obesity.
Collapse
Affiliation(s)
- Zhe-Zhen Liao
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Ran
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao-Yan Qi
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ya-Di Wang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan-Yuan Wang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiang-Hua Liu
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin-Hua Xiao
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Zbucka-Krętowska M, Adamska A. Metformin Intervention—A Panacea for Cancer Treatment? Cancers (Basel) 2022; 14:cancers14051336. [PMID: 35267644 PMCID: PMC8909770 DOI: 10.3390/cancers14051336] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
The molecular mechanism of action and the individual influence of various metabolic pathways related to metformin intervention are under current investigation. The available data suggest that metformin provides many advantages, exhibiting anti-inflammatory, anti-cancer, hepatoprotective, cardioprotective, otoprotective, radioprotective, and radio-sensitizing properties depending on cellular context. This literature review was undertaken to provide novel evidence concerning metformin intervention, with a particular emphasis on cancer treatment and prevention. Undoubtedly, the pleiotropic actions associated with metformin include inhibiting inflammatory processes, increasing antioxidant capacity, and improving glycemic and lipid metabolism. Consequently, these characteristics make metformin an attractive medicament to translate to human trials, the promising results of which were also summarized in this review.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
- Correspondence: (A.B.); (A.A.); Tel.: +48-85-746-8513 (A.B.); +48-85-746-8660 (A.A.)
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: (A.B.); (A.A.); Tel.: +48-85-746-8513 (A.B.); +48-85-746-8660 (A.A.)
| |
Collapse
|
6
|
Analysis on Value of Applying Serum miR-144 and miR-221 Levels in Diagnosing Atherosclerosis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2261854. [PMID: 35126910 PMCID: PMC8808211 DOI: 10.1155/2022/2261854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 12/04/2022]
Abstract
OBJECTIVE To explore the value of serum miR-144 and miR-221 in diagnosing atherosclerosis (AS). METHODS The clinical data of 52 AS patients treated in the department of cardiovascular medicine of our hospital from August 2019 to August 2020 were retrospectively analyzed, and 53 healthy persons were selected from the physical examination center at the same period as the control group. By measuring the indicators including the serum vascular endothelial growth factor (VEGF), superoxide dismutase (SOD), miR-144, and miR-221 in patients of both groups, their value of diagnosing AS was analyzed. RESULTS Compared with the control group, the AS group obtained significantly higher serum miR-221 and miR-144 expression levels (P < 0.001), significantly higher mean serum homocysteine (Hcy) level value (P < 0.001), lower mean serum SOD level (P < 0.001), and significantly higher level values of serum VEGF, nuclear factor-kappaB (NF-kB), and transforming growth factor-β (TGF-β) (P < 0.001), and the area under ROC curve, sensitivity, and specificity of combining miR-221 with miR-144 were significantly higher than those of single diagnosis. CONCLUSION Serum miR-221 and miR-144 expression levels are increased in AS patients, and combining the two indicators in diagnosis is more accurate and can provide an accurate basis for diagnosis and condition assessment of AS.
Collapse
|
7
|
Ding Y, Zhou Y, Ling P, Feng X, Luo S, Zheng X, Little PJ, Xu S, Weng J. Metformin in cardiovascular diabetology: a focused review of its impact on endothelial function. Am J Cancer Res 2021; 11:9376-9396. [PMID: 34646376 PMCID: PMC8490502 DOI: 10.7150/thno.64706] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
As a first-line treatment for diabetes, the insulin-sensitizing biguanide, metformin, regulates glucose levels and positively affects cardiovascular function in patients with diabetes and cardiovascular complications. Endothelial dysfunction (ED) represents the primary pathological change of multiple vascular diseases, because it causes decreased arterial plasticity, increased vascular resistance, reduced tissue perfusion and atherosclerosis. Caused by “biochemical injury”, ED is also an independent predictor of cardiovascular events. Accumulating evidence shows that metformin improves ED through liver kinase B1 (LKB1)/5'-adenosine monophosphat-activated protein kinase (AMPK) and AMPK-independent targets, including nuclear factor-kappa B (NF-κB), phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt), endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1), forkhead box O1 (FOXO1), krüppel-like factor 4 (KLF4) and krüppel-like factor 2 (KLF2). Evaluating the effects of metformin on endothelial cell functions would facilitate our understanding of the therapeutic potential of metformin in cardiovascular diabetology (including diabetes and its cardiovascular complications). This article reviews the physiological and pathological functions of endothelial cells and the intact endothelium, reviews the latest research of metformin in the treatment of diabetes and related cardiovascular complications, and focuses on the mechanism of action of metformin in regulating endothelial cell functions.
Collapse
|
8
|
Poniedziałek-Czajkowska E, Mierzyński R, Dłuski D, Leszczyńska-Gorzelak B. Prevention of Hypertensive Disorders of Pregnancy-Is There a Place for Metformin? J Clin Med 2021; 10:jcm10132805. [PMID: 34202343 PMCID: PMC8268471 DOI: 10.3390/jcm10132805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
The possibility of prophylaxis of hypertensive disorders of pregnancy (HDPs) such as preeclampsia (PE) and pregnancy-induced hypertension is of interest due to the unpredictable course of these diseases and the risks they carry for both mother and fetus. It has been proven that their development is associated with the presence of the placenta, and the processes that initiate it begin at the time of the abnormal invasion of the trophoblast in early pregnancy. The ideal HDP prophylaxis should alleviate the influence of risk factors and, at the same time, promote physiological trophoblast invasion and maintain the physiologic endothelium function without any harm to both mother and fetus. So far, aspirin is the only effective and recommended pharmacological agent for the prevention of HDPs in high-risk groups. Metformin is a hypoglycemic drug with a proven protective effect on the cardiovascular system. Respecting the anti-inflammatory properties of metformin and its favorable impact on the endothelium, it seems to be an interesting option for HDP prophylaxis. The results of previous studies on such use of metformin are ambiguous, although they indicate that in a certain group of pregnant women, it might be effective in preventing hypertensive complications. The aim of this study is to present the possibility of metformin in the prevention of hypertensive disorders of pregnancy with respect to its impact on the pathogenic elements of development
Collapse
|
9
|
Alimoradi N, Firouzabadi N, Fatehi R. How metformin affects various malignancies by means of microRNAs: a brief review. Cancer Cell Int 2021; 21:207. [PMID: 33849540 PMCID: PMC8045276 DOI: 10.1186/s12935-021-01921-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Metformin known as the first-line orally prescribed drug for lowering blood glucose in type II diabetes (T2DM) has recently found various therapeutic applications including in cancer. Metformin has been studied for its influences in prevention and treatment of cancer through multiple mechanisms such as microRNA (miR) regulation. Alteration in the expression of miRs by metformin may play an important role in the treatment of various cancers. MiRs are single-stranded RNAs that are involved in gene regulation. By binding to the 3'UTR of target mRNAs, miRs influence protein levels. Irregularities in the expression of miRs that control the expression of oncogenes and tumor suppressor genes are associated with the onset and progression of cancer. Metformin may possess an effect on tumor prevention and progression by modifying miR expression and downstream pathways. Here, we summarize the effect of metformin on different types of cancer by regulating the expression of various miRs and the associated downstream molecules.
Collapse
Affiliation(s)
- Nahid Alimoradi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reihaneh Fatehi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Atorvastatin improves the proliferation and migration of endothelial progenitor cells via the miR-221/VEGFA axis. Biosci Rep 2021; 40:226426. [PMID: 32936287 PMCID: PMC7689653 DOI: 10.1042/bsr20193053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The present study was aimed at investigating the detailed functions of atorvastatin, a lipid-lowering agent, in the pathogenesis of coronary slow flow (CSF), a clinical disease characterized by delayed angiographic coronary opacity without obstructive coronary disease. In the present study, we successfully identified isolated endothelial progenitor cells (EPCs) from the peripheral blood of patients with CSF. Their vascular endothelial growth factor-A (VEGFA) protein levels were determined using immunoblotting analyses. We determined cell viability using MTT assays, cell migration capacity using Transwell assays, and the angiogenic capacity using a tube formation assay. The target association between miR-221 and VEGFA was validated with a luciferase reporter assay. Atorvastatin treatment increased EPC VEGFA protein levels, proliferation, migration, and angiogenesis. miR-221 expression was down-regulated after atorvastatin treatment; miR-221 overexpression exerted an opposing effect to atorvastatin treatment on VEGFA protein, EPC proliferation, migration, and angiogenesis. The protective effects of atorvastatin treatment on VEGFA protein and EPCs could be significantly suppressed by miR-221 overexpression. miR-221 directly bound the VEGFA 3'UTR to inhibit its expression. In conclusion, atorvastatin improves the cell proliferation, migration, and angiogenesis of EPCs via the miR-221/VEGFA axis. Thus, atorvastatin could be a potent agent against CSF, pending further in vivo and clinical investigations.
Collapse
|
11
|
Ren Y, Luo H. Metformin: The next angiogenesis panacea? SAGE Open Med 2021; 9:20503121211001641. [PMID: 33796300 PMCID: PMC7970164 DOI: 10.1177/20503121211001641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis, the development of new blood vessels from existing ones, is
a critical process in wound healing and skeletal muscle hypertrophy.
It also leads to pathological conditions such as retinopathy and tumor
genesis. Metformin, the first-line treatment for type 2 diabetic
mellitus, has a specific regulatory effect on the process of
angiogenesis. Anti-angiogenesis can inhibit the occurrence and
metastasis of tumors and alleviate patients’ symptoms with polycystic
ovary syndrome. Moreover, promoting angiogenesis effect can accelerate
wound healing and promote stroke recovery and limb ischemia
reconstruction. This review reorganizes metformin in angiogenesis, and
the underlying mechanism in alleviating disease to bring some
inspiration to relevant researchers.
Collapse
Affiliation(s)
- Yu Ren
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Hua Luo
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| |
Collapse
|
12
|
Tsou YA, Chang WC, Lin CD, Chang RL, Tsai MH, Shih LC, Staniczek T, Wu TF, Hsu HY, Chang WD, Lai CH, Chen CM. Metformin Increases Survival in Hypopharyngeal Cancer Patients with Diabetes Mellitus: Retrospective Cohort Study and Cell-Based Analysis. Pharmaceuticals (Basel) 2021; 14:ph14030191. [PMID: 33652909 PMCID: PMC7996771 DOI: 10.3390/ph14030191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Hypopharyngeal squamous cell carcinoma (HSCC) is usually diagnosed at an advanced stage, leading to a poor prognosis. Even after improvement of surgical techniques, chemotherapy, and radiation technology, the survival rate of HSCC remains poor. Metformin, which is commonly used for type 2 diabetes mellitus (DM), has been suggested to reduce the risk of various cancer types. However, only a few clinical studies mentioned the relationship between metformin use and HSCC. Hence, the aim of this study was to elucidate the specific effect and mechanism of action of metformin in hypopharyngeal cancer. We first assessed whether metformin use has an effect on hypopharyngeal cancer patients with DM by conducting a retrospective cohort study. Our results showed that DM hypopharyngeal cancer patients who used metformin exhibited significantly better overall survival rates than that without metformin treatment. The cell-based analysis further indicated that metformin treatment regulated p38/JNK pathway to reduce Cyclin D1 and Bcl-2 expressions. In addition, metformin activated the pathways of AMPKα and MEK/ERK to phosphorylate p27(Thr198) and reduce mTOR phosphorylation in cells. These actions direct cells toward G1 cell cycle arrest, apoptosis, and autophagy. Our results, through combining a clinical cohort analysis with an in vitro study, demonstrate that metformin can be used for drug repositioning in the treatment of DM patients with hypopharyngeal cancer.
Collapse
Affiliation(s)
- Yung-An Tsou
- Department of Otolaryngology-Head and Neck Surgery, China Medical University Hospital, Taichung 406, Taiwan; (Y.-A.T.); (C.-D.L.); (M.-H.T.); (L.-C.S.); (T.-F.W.)
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Wei-Chao Chang
- Center for Molecular Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406, Taiwan; (W.-C.C.); (H.-Y.H.)
| | - Chia-Der Lin
- Department of Otolaryngology-Head and Neck Surgery, China Medical University Hospital, Taichung 406, Taiwan; (Y.-A.T.); (C.-D.L.); (M.-H.T.); (L.-C.S.); (T.-F.W.)
| | - Ro-Lin Chang
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Ming-Hsui Tsai
- Department of Otolaryngology-Head and Neck Surgery, China Medical University Hospital, Taichung 406, Taiwan; (Y.-A.T.); (C.-D.L.); (M.-H.T.); (L.-C.S.); (T.-F.W.)
| | - Liang-Chun Shih
- Department of Otolaryngology-Head and Neck Surgery, China Medical University Hospital, Taichung 406, Taiwan; (Y.-A.T.); (C.-D.L.); (M.-H.T.); (L.-C.S.); (T.-F.W.)
- Center for Molecular Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406, Taiwan; (W.-C.C.); (H.-Y.H.)
| | - Theresa Staniczek
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Center of Excellence in Dermatology, Heidelberg University, 68167 Mannheim, Germany;
| | - Tsu-Fang Wu
- Department of Otolaryngology-Head and Neck Surgery, China Medical University Hospital, Taichung 406, Taiwan; (Y.-A.T.); (C.-D.L.); (M.-H.T.); (L.-C.S.); (T.-F.W.)
| | - Hui-Ying Hsu
- Center for Molecular Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406, Taiwan; (W.-C.C.); (H.-Y.H.)
| | - Wen-Dien Chang
- Department of Sport Performance, National Taiwan University of Sport, Taichung 404, Taiwan;
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Department of Microbiology, School of Medicine, China Medical University, Taichung 406, Taiwan
- Department of Nursing, Asia University, Taichung 413, Taiwan
- Correspondence: (C.-H.L.); (C.-M.C.)
| | - Chuan-Mu Chen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan;
- The iEGG and Animal Biotechnology Center, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (C.-H.L.); (C.-M.C.)
| |
Collapse
|
13
|
Lu G, Wu Z, Shang J, Xie Z, Chen C, Zhang C. The effects of metformin on autophagy. Biomed Pharmacother 2021; 137:111286. [PMID: 33524789 DOI: 10.1016/j.biopha.2021.111286] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Metformin is the first-line option for treating newly diagnosed diabetic patients and also involved in other pharmacological actions, including antitumor effect, anti-aging effect, polycystic ovarian syndrome prevention, cardiovascular action, and neuroprotective effect, etc. However, the mechanisms of metformin actions were not fully illuminated. Recently, increasing researches showed that autophagy is a vital medium of metformin playing pharmacological actions. Nevertheless, results on the effects of metformin on autophagy were inconsistent. Apart from few clinical evidences, more data focused on kinds of no-clinical models. First, many studies showed that metformin could induce autophagy via a number of signaling pathways, including AMPK-related signaling pathways (e.g. AMPK/mTOR, AMPK/CEBPD, MiTF/TFE, AMPK/ULK1, and AMPK/miR-221), Redd1/mTOR, STAT, SIRT, Na+/H+ exchangers, MAPK/ERK, PK2/PKR/AKT/ GSK3β, and TRIB3. Secondly, some signaling pathways were involved in the process of metformin inhibiting autophagy, such as AMPK-related signaling pathways (AMPK/NF-κB and other undetermined AMPK-related signaling pathways), Hedgehog, miR-570-3p, miR-142-3p, and MiR-3127-5p. Thirdly, two types of signaling pathways including PI3K/AKT/mTOR and endoplasmic reticulum (ER) stress could bidirectionally impact the effectiveness of metformin on autophagy. Finally, multiple signal pathways were reviewed collectively in terms of affecting the effectiveness of metformin on autophagy. The pharmacological effects of metformin combining its actions on autophagy were also discussed. It would help better apply metformin to treat diseases in term of mediating autophagy.
Collapse
Affiliation(s)
- Guangli Lu
- School of Business, Henan University, Henan, Kaifeng, China
| | - Zhen Wu
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China
| | - Jia Shang
- School of Kaifeng Culture and Tourism, Henan, Kaifeng, China
| | - Zhenxing Xie
- School of Basic Medicine, Henan University, Henan, Kaifeng, Jinming Avenue, 475004, China.
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China.
| | - Chuning Zhang
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China
| |
Collapse
|
14
|
Jiang LL, Liu L. Effect of metformin on stem cells: Molecular mechanism and clinical prospect. World J Stem Cells 2020; 12:1455-1473. [PMID: 33505595 PMCID: PMC7789120 DOI: 10.4252/wjsc.v12.i12.1455] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Metformin is a first-line medication for type II diabetes. Numerous studies have shown that metformin not only has hypoglycemic effects, but also modulates many physiological and pathological processes ranging from aging and cancer to fracture healing. During these different physiological activities and pathological changes, stem cells usually play a core role. Thus, many studies have investigated the effects of metformin on stem cells. Metformin affects cell differentiation and has promising applications in stem cell medicine. It exerts anti-aging effects and can be applied to gerontology and regenerative medicine. The potential anti-cancer stem cell effect of metformin indicates that it can be an adjuvant therapy for cancers. Furthermore, metformin has beneficial effects against many other diseases including cardiovascular and autoimmune diseases. In this review, we summarize the effects of metformin on stem cells and provide an overview of its molecular mechanisms and clinical prospects.
Collapse
Affiliation(s)
- Lin-Li Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
15
|
Wang G, Lin F, Wan Q, Wu J, Luo M. Mechanisms of action of metformin and its regulatory effect on microRNAs related to angiogenesis. Pharmacol Res 2020; 164:105390. [PMID: 33352227 DOI: 10.1016/j.phrs.2020.105390] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is rapidly initiated in response to pathological conditions and is a key target for pharmaceutical intervention in various malignancies. Anti-angiogenic therapy has emerged as a potential and effective therapeutic strategy for treating cancer and cardiovascular-related diseases. Metformin, a first-line oral antidiabetic agent for type 2 diabetes mellitus (T2DM), not only reduces blood glucose levels and improves insulin sensitivity and exerts cardioprotective effects but also shows benefits against cancers, cardiovascular diseases, and other diverse diseases and regulates angiogenesis. MicroRNAs (miRNAs) are endogenous noncoding RNA molecules with a length of approximately 19-25 bases that are widely involved in controlling various human biological processes. A large number of miRNAs are involved in the regulation of cardiovascular cell function and angiogenesis, of which miR-21 not only regulates vascular cell proliferation, migration and apoptosis but also plays an important role in angiogenesis. The relationship between metformin and abnormal miRNA expression has gradually been revealed in the context of numerous diseases and has received increasing attention. This paper reviews the drug-target interactions and drug repositioning events of metformin that influences vascular cells and has benefits on angiogenesis-mediated effects. Furthermore, we use miR-21 as an example to explain the specific molecular mechanism underlying metformin-mediated regulation of the miRNA signaling pathway controlling angiogenesis and vascular protective effects. These findings may provide a new therapeutic target and theoretical basis for the clinical prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Fang Lin
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qin Wan
- Department of Endocrinology, Nephropathy Clinical Medical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
16
|
Harguindey S, Alfarouk K, Polo Orozco J, Fais S, Devesa J. Towards an Integral Therapeutic Protocol for Breast Cancer Based upon the New H +-Centered Anticancer Paradigm of the Late Post-Warburg Era. Int J Mol Sci 2020; 21:E7475. [PMID: 33050492 PMCID: PMC7589677 DOI: 10.3390/ijms21207475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
A brand new approach to the understanding of breast cancer (BC) is urgently needed. In this contribution, the etiology, pathogenesis, and treatment of this disease is approached from the new pH-centric anticancer paradigm. Only this unitarian perspective, based upon the hydrogen ion (H+) dynamics of cancer, allows for the understanding and integration of the many dualisms, confusions, and paradoxes of the disease. The new H+-related, wide-ranging model can embrace, from a unique perspective, the many aspects of the disease and, at the same time, therapeutically interfere with most, if not all, of the hallmarks of cancer known to date. The pH-related armamentarium available for the treatment of BC reviewed here may be beneficial for all types and stages of the disease. In this vein, we have attempted a megasynthesis of traditional and new knowledge in the different areas of breast cancer research and treatment based upon the wide-ranging approach afforded by the hydrogen ion dynamics of cancer. The concerted utilization of the pH-related drugs that are available nowadays for the treatment of breast cancer is advanced.
Collapse
Affiliation(s)
- Salvador Harguindey
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Department of Pharmacology, Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah 42316, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| |
Collapse
|
17
|
Chen GG, Woo PYM, Ng SCP, Wong GKC, Chan DTM, van Hasselt CA, Tong MCF, Poon WS. Impact of metformin on immunological markers: Implication in its anti-tumor mechanism. Pharmacol Ther 2020; 213:107585. [PMID: 32473961 DOI: 10.1016/j.pharmthera.2020.107585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
Metformin, an anti-hyperglycemic drug, has been known to have antitumor properties for around 15 years. Although there are a number of reports attributing the antitumor function of metformin to its impact on energy homeostasis and oxygen re-distribution in tumor microenvironment, detailed mechanisms remain largely unknown. In the past several years, there is an increasing number of publications indicating that metformin can affect various immunological components including lymphocytes, macrophages, cytokines and several key immunological molecules in both human and animal studies. These interesting results appear to be in line with emerging data that suggest associations between immune responses and energy homeostasis/oxygen re-distribution, which may explain effective impacts of metformin on immunotherapies against autoimmune diseases as well as cancers. This review article is to analyse and discuss recent development in the above areas with aim to justify metformin as a new adjuvant for immunotherapy against human cancers. We hope that our summary will help to optimize the application of metformin for various types of human cancers.
Collapse
Affiliation(s)
- George G Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China; Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Peter Y M Woo
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Stephanie C P Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - George K C Wong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Danny T M Chan
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Charles A van Hasselt
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Michael C F Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Wai Sang Poon
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| |
Collapse
|
18
|
Harguindey S, Alfarouk K, Polo Orozco J, Hardonnière K, Stanciu D, Fais S, Devesa J. A New and Integral Approach to the Etiopathogenesis and Treatment of Breast Cancer Based upon Its Hydrogen Ion Dynamics. Int J Mol Sci 2020; 21:E1110. [PMID: 32046158 PMCID: PMC7036897 DOI: 10.3390/ijms21031110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Despite all efforts, the treatment of breast cancer (BC) cannot be considered to be a success story. The advances in surgery, chemotherapy and radiotherapy have not been sufficient at all. Indeed, the accumulated experience clearly indicates that new perspectives and non-main stream approaches are needed to better characterize the etiopathogenesis and treatment of this disease. This contribution deals with how the new pH-centric anticancer paradigm plays a fundamental role in reaching a more integral understanding of the etiology, pathogenesis, and treatment of this multifactorial disease. For the first time, the armamentarium available for the treatment of the different types and phases of BC is approached here from a Unitarian perspective-based upon the hydrogen ion dynamics of cancer. The wide-ranged pH-related molecular, biochemical and metabolic model is able to embrace most of the fields and subfields of breast cancer etiopathogenesis and treatment. This single and integrated approach allows advancing towards a unidirectional, concerted and synergistic program of treatment. Further efforts in this line are likely to first improve the therapeutics of each subtype of this tumor and every individual patient in every phase of the disease.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Kévin Hardonnière
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France;
| | - Daniel Stanciu
- Scientific Direction, MCS Foundation For Life, 5623KR Eindhoven, The Netherlands;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena, 299, 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, Travesía de Montouto 24, 15886 Teo, Spain;
| |
Collapse
|