1
|
Sharma M, Pal P, Gupta SK. Microglial mediators in autoimmune Uveitis: Bridging neuroprotection and neurotoxicity. Int Immunopharmacol 2024; 136:112309. [PMID: 38810304 DOI: 10.1016/j.intimp.2024.112309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Autoimmune uveitis, a severe inflammatory condition of the eye, poses significant challenges due to its complex pathophysiology and the critical balance between protective and detrimental immune responses. Central to this balance are microglia, the resident immune cells of the central nervous system, whose roles in autoimmune uveitis are multifaceted and dynamic. This review article delves into the dual nature of microglial functions, oscillating between neuroprotective and neurotoxic outcomes in the context of autoimmune uveitis. Initially, we explore the fundamental aspects of microglia, including their activation states and basic functions, setting the stage for a deeper understanding of their involvement in autoimmune uveitis. The review then navigates through the intricate mechanisms by which microglia contribute to disease onset and progression, highlighting both their protective actions in immune regulation and tissue repair, and their shift towards a pro-inflammatory, neurotoxic profile. Special emphasis is placed on the detailed pathways and cellular interactions underpinning these dual roles. Additionally, the review examines the potential of microglial markers as diagnostic and prognostic indicators, offering insights into their clinical relevance. The article culminates in discussing future research directions, and the ongoing challenges in translating these findings into effective clinical applications. By providing a comprehensive overview of microglial mechanisms in autoimmune uveitis, this review underscores the critical balance of microglial activities and its implications for disease management and therapy development.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Sukesh Kumar Gupta
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India; Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
2
|
Sharma M, Tanwar AK, Purohit PK, Pal P, Kumar D, Vaidya S, Prajapati SK, Kumar A, Dhama N, Kumar S, Gupta SK. Regulatory roles of microRNAs in modulating mitochondrial dynamics, amyloid beta fibrillation, microglial activation, and cholinergic signaling: Implications for alzheimer's disease pathogenesis. Neurosci Biobehav Rev 2024; 161:105685. [PMID: 38670299 DOI: 10.1016/j.neubiorev.2024.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Alzheimer's Disease (AD) remains a formidable challenge due to its complex pathology, notably involving mitochondrial dysfunction and dysregulated microRNA (miRNA) signaling. This study delves into the underexplored realm of miRNAs' impact on mitochondrial dynamics and their interplay with amyloid-beta (Aβ) aggregation and tau pathology in AD. Addressing identified gaps, our research utilizes advanced molecular techniques and AD models, alongside patient miRNA profiles, to uncover miRNAs pivotal in mitochondrial regulation. We illuminate novel miRNAs influencing mitochondrial dynamics, Aβ, and tau, offering insights into their mechanistic roles in AD progression. Our findings not only enhance understanding of AD's molecular underpinnings but also spotlight miRNAs as promising therapeutic targets. By elucidating miRNAs' roles in mitochondrial dysfunction and their interactions with hallmark AD pathologies, our work proposes innovative strategies for AD therapy, aiming to mitigate disease progression through targeted miRNA modulation. This contribution marks a significant step toward novel AD treatments, emphasizing the potential of miRNAs in addressing this complex disease.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India.
| | - Ankur Kumar Tanwar
- Department of Pharmacy, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | | | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Devendra Kumar
- Department of Pharmaceutical Chemistry, NMIMS School of Pharmacy and Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur Campus, Dhule, Maharashtra, India
| | - Sandeep Vaidya
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | | | - Aadesh Kumar
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Nidhi Dhama
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sokindra Kumar
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sukesh Kumar Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
3
|
El Ati R, Öztaşkın N, Çağan A, Akıncıoğlu A, Demir Y, Göksu S, Touzani R, Gülçin İ. Novel benzene sulfonamides with acetylcholinesterase and carbonic anhydrase inhibitory actions. Arch Pharm (Weinheim) 2024; 357:e2300545. [PMID: 38423951 DOI: 10.1002/ardp.202300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
A series of benzene sulfonamides 15-26 were synthesized and determined for their in vitro and in silico inhibitory profiles toward acetylcholinesterase (AChE) and carbonic anhydrases (CAs). Commercially available 3,4-dimethoxytoluene was reacted with chlorosulfonic acid to furnish benzene sulfonyl chloride derivatives. The reaction of substituted benzene sulfonyl chloride with some amines also including (±)-α-amino acid methyl esters afforded a series of novel benzene sulfonamides. In this study, the enzyme inhibition abilities of these compounds were evaluated against AChE and CAs. They exhibited a highly potent inhibition ability on AChE and -CAs (Ki values are in the range of 28.11 ± 4.55 nM and 145.52 ± 28.68 nM for AChE, 39.20 ± 2.10 nM to 131.54 ± 12.82 nM for CA I, and 50.96 ± 9.83 nM and 147.94 ± 18.75 nM for CA II). The present newly synthesized novel benzene sulfonamides displayed efficient inhibitory profiles against AChE and CAs, and it is anticipated that they may emerge as lead molecules for some diseases including glaucoma, epilepsy, and Alzheimer's disease.
Collapse
Affiliation(s)
- Rafika El Ati
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed the first, Oujda, Morocco
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| | - Necla Öztaşkın
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| | - Ahmet Çağan
- Central Researching Laboratory, Agri Ibrahim Cecen University, Agri, Turkiye
| | - Akın Akıncıoğlu
- Central Researching Laboratory, Agri Ibrahim Cecen University, Agri, Turkiye
- Vocational School, Ağrı İbrahim Çeçen University, Agri, Turkiye
| | - Yeliz Demir
- Department of Pharmacy Services, Ardahan University, Ardahan, Turkiye
| | - Süleyman Göksu
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| | - Rachid Touzani
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed the first, Oujda, Morocco
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| |
Collapse
|
4
|
Singh G, Shankar G, Panda SR, Kumar S, Rai S, Verma H, Kumar P, Nayak PK, Naidu VGM, Srikrishna S, Kumar S, Modi G. Design, Synthesis, and Biological Evaluation of Ferulic Acid Template-Based Novel Multifunctional Ligands Targeting NLRP3 Inflammasome for the Management of Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1388-1414. [PMID: 38525886 DOI: 10.1021/acschemneuro.3c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, which arises due to low levels of acetyl and butyrylcholines, an increase in oxidative stress, inflammation, metal dyshomeostasis, Aβ and tau aggregations. The currently available drugs for AD treatment can provide only symptomatic relief without interfering with pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multifunctional molecules for AD, systematic SAR studies on EJMC-4e were caried out to improve its multifunctional properties. The rigorous medicinal efforts led to the development of 12o, which displayed a 15-fold enhancement in antioxidant properties and a 2-fold increase in the activity against AChE and BChE over EJMC-4e. Molecular docking and dynamics studies revealed the binding sites and stability of the complex of 12o with AChE and BChE. The PAMPA-BBB assay clearly demonstrated that 12o can easily cross the blood-brain barrier. Interestingly, 12o also expresses promising metal chelation activity, while EJMC-4e was found to be devoid of this property. Further, 12o inhibited metal-induced or self Aβ1-42 aggregation. Observing the neuroprotection ability of 12o against H2O2-induced oxidative stress in the PC-12 cell line is noteworthy. Furthermore, 12o also inhibited NLRP3 inflammasome activation and attenuated mitochondrial-induced ROS and MMP damage caused by LPS and ATP in HMC-3 cells. In addition, 12o is able to effectively reduce mitochondrial and cellular oxidative stress in the AD Drosophila model. Finally, 12o could reverse memory impairment in the scopolamine-induced AD mice model, as evident through in vivo and ex vivo studies. These findings suggest that this compound may act as a promising candidate for further improvement in the management of AD.
Collapse
Affiliation(s)
- Gourav Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gauri Shankar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Himanshu Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Prabhat Kumar
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Prasanta Kumar Nayak
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
5
|
Kowalik M, Masternak J, Olszewski M, Maciejewska N, Kazimierczuk K, Sitkowski J, Dąbrowska AM, Chylewska A, Makowski M. Anticancer Study on Ir III and Rh III Half-Sandwich Complexes with the Bipyridylsulfonamide Ligand. Inorg Chem 2024; 63:1296-1316. [PMID: 38174357 DOI: 10.1021/acs.inorgchem.3c03801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Organometallic half-sandwich complexes [(η5-Cp)IrCl(L)]PF6 (1) and [(η5-Cp)RhCl(L)]PF6 (2) were prepared using pentamethylcyclopentadienyl chloride dimers of iridium(III) or rhodium(III) with the 4-amino-N-(2,2'-bipyridin-5-yl)benzenesulfonamide ligand (L) and ammonium hexafluorophosphate. The crystal structures of L, 1, and 2 were analyzed in detail. The coordination reactions of the ligand with the central ions were confirmed using various spectroscopic techniques. Additionally, the interactions between sulfaligand, Ir(III), and Rh(III) complexes with carbonic anhydrase (CA), human serum albumin (HSA), and CT-DNA were investigated. The iridium(III) complex (1) did not show any antiproliferative properties against four different cancer cell lines, i.e., nonsmall cell lung cancer A549, colon cancer HCT-116, breast cancer MCF7, lymphoblastic leukemia Nalm-6, and a nonmalignant human embryonic kidney cell line HEK293, due to high binding affinity to GSH. The sulfonamide ligand (L) and rhodium(III) complex (2) were further studied. L showed competitive inhibition toward CA, while complexes 1 and 2, uncompetitive. All compounds interacted with HSA, causing a conformational change in the protein's α-helical structure, suggesting the induction of a more open conformation in HSA, reducing its biological activity. Both L and 2 were found to induce cell death through a caspase-dependent pathway. These findings position L and 2 as potential starting compounds for pharmaceutical, therapeutic, or medicinal research.
Collapse
Affiliation(s)
- Mateusz Kowalik
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Mateusz Olszewski
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Natalia Maciejewska
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Katarzyna Kazimierczuk
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jerzy Sitkowski
- Institute of Organic Chemistry, Polish Academic of Science, Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland
- National Medicines Institute, Chełmska 30/34, 00-725 Warszawa, Poland
| | | | - Agnieszka Chylewska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Mariusz Makowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
6
|
Egbujor MC. Sulfonamide Derivatives: Recent Compounds with Potent Anti-alzheimer's Disease Activity. Cent Nerv Syst Agents Med Chem 2024; 24:82-104. [PMID: 38275073 DOI: 10.2174/0118715249278489231128042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024]
Abstract
Facile synthetic procedures and broad spectrum of biological activities are special attributes of sulfonamides. Sulfonamide derivatives have demonstrated potential as a class of compounds for the treatment of Alzheimer's disease (AD). Recent sulfonamide derivatives have been reported as prospective anti-AD agents, with a focus on analogues that significantly inhibit the function of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes and exhibit remarkable antioxidant and anti-inflammatory properties, all of which are critical for the treatment of AD. Sulfonamide- mediated activation of nuclear factor erythroid 2-related factor 2 (NRF2), a key regulator of the endogenous antioxidant response, has also been suggested as a potential therapeutic approach in AD. Additionally, it has been discovered that a number of sulfonamide derivatives show selectivity for the β- and γ-secretase enzymes and a significant reduction of amyloid B (Aβ) aggregation, which have been implicated in AD. The comparative molecular docking of benzenesulfonamide and donepezil, an AD reference drug showed comparable anti-AD activities. These suggest that sulfonamide derivatives may represent a new class of drugs for the treatment of AD. Thus, the current review will focus on recent studies on the chemical synthesis and evaluation of the anti-AD properties, molecular docking, pharmacological profile, and structure-activity relationship (SAR) of sulfonamide derivatives, as well as their potential anti-AD mechanisms of action. This paper offers a thorough assessment of the state of the art in this field of study and emphasizes the potential of sulfonamide derivatives synthesized during the 2012-2023 period as a new class of compounds for the treatment of AD.
Collapse
|
7
|
Krátký M, Nováčková K, Svrčková K, Švarcová M, Štěpánková Š. New 3-amino-2-thioxothiazolidin-4-one-based inhibitors of acetyl- and butyryl-cholinesterase: synthesis and activity. Future Med Chem 2024; 16:59-74. [PMID: 38047370 DOI: 10.4155/fmc-2023-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Aim: 2-Thioxothiazolidin-4-one represents a versatile scaffold in drug development. The authors used it to prepare new potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors that can be utilized, e.g., to treat Alzheimer's disease. Materials & methods: 3-Amino-2-thioxothiazolidin-4-one was modified at the amino group or active methylene, using substituted benzaldehydes. The derivatives were evaluated for inhibition of AChE and BChE (Ellman's method). Results & conclusion: The derivatives were obtained with yields of 52-94%. They showed dual inhibition with IC50 values from 13.15 μM; many compounds were superior to rivastigmine. The structure-activity relationship favors nitrobenzylidene and 3,5-dihalogenosalicylidene scaffolds. AChE was inhibited noncompetitively, whereas BChE was inhibited with a mixed type of inhibition. Molecular docking provided insights into molecular interactions. Each enzyme is inhibited by a different binding mode.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Karolína Nováčková
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Katarína Svrčková
- Department of Biological & Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Markéta Švarcová
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, J. E. Purkinje University, Pasteurova 3632/15, 400 96, Ústí nad Labem, Czech Republic
| | - Šárka Štěpánková
- Department of Biological & Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| |
Collapse
|
8
|
Dhapola R, Kumari S, Sharma P, HariKrishnaReddy D. Insight into the emerging and common experimental in-vivo models of Alzheimer's disease. Lab Anim Res 2023; 39:33. [PMID: 38082453 PMCID: PMC10712122 DOI: 10.1186/s42826-023-00184-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 05/30/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, rapidly progressing neurodegenerative disorder. As the exact cause of the disease is still unclear, the drug development is very challenging. This review encompasses the commonly used AD models involving various chemicals, heavy metals and endogenous substances induced models and the transgenic models. It also provides insight into the reliable emerging models of AD that may overcome the shortcomings associated with available models. Chemicals like streptozotocin, scopolamine, colchicine and okadaic acid render the animal susceptible to neuroinflammation and oxidative stress induced neurodegeneration along with amyloid-β deposition and tau hyperphosphorylation. Similarly, endogenous substances like acrolein and amyloid-β 1-42 are efficient in inducing the major pathologies of AD. Heavy metals like aluminum and fluoride and mixture of these have been reported to induce neurotoxicity therefore are used as animal models for AD. Transgenic models developed as a result of knock-in or knock-out of certain genes associated with AD including PDAPP, APP23, Tg2576, APP/PS1, 3 × Tg and 5 × FAD have also been incorporated in this study. Further, emerging and advanced pathomimetic models of AD are provided particular interest here which will add on to the current knowledge of animal models and may aid in the drug development process and deepen our understanding related to AD pathogenesis. These newly discovered models include oAβ25-35 model, transgenic model expressing 82-kDa ChAT, oDGal mouse and APP knock-in rat. This study may aid in the selection of suitable model for development of novel potent therapeutics and for exploring detailed pathogenic mechanism of AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Sneha Kumari
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Prajjwal Sharma
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Dibbanti HariKrishnaReddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
9
|
Gutti G, Leifeld J, Kakarla R, Bajad NG, Ganeshpurkar A, Kumar A, Krishnamurthy S, Klein-Schmidt C, Tapken D, Hollmann M, Singh SK. Discovery of triazole-bridged aryl adamantane analogs as an intriguing class of multifunctional agents for treatment of Alzheimer's disease. Eur J Med Chem 2023; 259:115670. [PMID: 37515920 DOI: 10.1016/j.ejmech.2023.115670] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
Alzheimer's disease (AD) is a progressive brain disorder associated with slow loss of brain functions leading to memory failure and modest changes in behavior. The multifactorial neuropathological condition is due to a depletion of cholinergic neurons and accumulation of amyloid-beta (Aβ) plaques. Recently, a multi-target-directed ligand (MTDL) strategy has emerged as a robust drug discovery tool to overcome current challenges. In this research work, we aimed to design and develop a library of triazole-bridged aryl adamantane analogs for the treatment of AD. All synthesized analogs were characterized and evaluated through various in vitro and in vivo biological studies. The optimal compounds 32 and 33 exhibited potent inhibitory activities against acetylcholinesterase (AChE) (32 - IC50 = 0.086 μM; 33 - 0.135 μM), and significant Aβ aggregation inhibition (20 μM). N-methyl-d-aspartate (NMDA) receptor (GluN1-1b/GluN2B subunit combination) antagonistic activity of compounds 32 and 33 measured upon heterologous expression in Xenopus laevis oocytes showed IC50 values of 3.00 μM and 2.86 μM, respectively. The compounds possessed good blood-brain barrier permeability in the PAMPA assay and were safe for SH-SY5Y neuroblastoma (10 μM) and HEK-293 cell lines (30 μM). Furthermore, in vivo behavioral studies in rats demonstrated that both compounds improved cognitive and spatial memory impairment at a dose of 10 mg/kg oral administration. Together, our findings suggest triazole-bridged aryl adamantane as a promising new scaffold for the development of anti-Alzheimer's drugs.
Collapse
Affiliation(s)
- Gopichand Gutti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India; Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Leifeld
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Ramakrishna Kakarla
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Nilesh Gajanan Bajad
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Ganeshpurkar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Christina Klein-Schmidt
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Daniel Tapken
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael Hollmann
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
10
|
Hesar Shourkabi M, Ghobeh M, Jafary H. Benzenesulfonamide as a novel, pharmaceutical small molecule inhibitor on Aβ gene expression and oxidative stress in Alzheimer's Wistar rats. Biochem Biophys Res Commun 2023; 674:154-161. [PMID: 37421923 DOI: 10.1016/j.bbrc.2023.06.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/07/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent acute neurodegenerative disease described by memory loss and other cognitive functions. Benzenesulfonamide, a novel, potent, and small organic molecule, was synthesized to investigate its effects on the levels of oxidative biomarkers (GPx, ROS, and MDA) and expression of beta-amyloid peptides (Aβ40 and Aβ42) in the pathology of AD. The results were compared with the rivastigmine drug. Applying benzenesulfonamide to Alzheimer's-induced Wistar rats showed a significant increase in the level of oxidative biomarkers (GPx, ROS, and MDA) in both the brain and blood serum as well as amyloid-β40 and 42 gene expressions. Therefore, benzenesulfonamide could be considered a novel therapeutic agent against AD.
Collapse
Affiliation(s)
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Hanieh Jafary
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Ganeshpurkar A, Singh R, Tripathi P, Alam Q, Krishnamurthy S, Kumar A, Singh SK. Effect of sulfonamide derivatives of phenylglycine on scopolamine-induced amnesia in rats. IBRAIN 2023; 9:13-31. [PMID: 37786521 PMCID: PMC10529173 DOI: 10.1002/ibra.12092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 10/04/2023]
Abstract
Alzheimer's disease is a neurodegenerative disease responsible for dementia and other neuropsychiatric symptoms. In the present study, compounds 30 and 33, developed earlier in our laboratory as selective butyrylcholinesterase inhibitors, were tested against scopolamine-induced amnesia to evaluate their pharmacodynamic effect. The efficacy of the compounds was determined by behavioral experiments using the Y-maze and the Barnes maze and neurochemical testing. Both compounds reduced the effect of scopolamine treatment in the behavioral tasks at a dose of 20 mg/kg. The results of the neurochemical experiment indicated a reduction in cholinesterase activity in the prefrontal cortex and the hippocampus. The levels of antioxidant enzymes superoxide dismutase and catalase were restored compared to the scopolamine-treated groups. The docking study on rat butyrylcholinesterase (BChE) indicated tight binding, with free energies of -9.66 and -10.23 kcal/mol for compounds 30 and 33, respectively. The two aromatic amide derivatives of 2-phenyl-2-(phenylsulfonamido) acetic acid produced stable complexes with rat BChE in the molecular dynamics investigation.
Collapse
Affiliation(s)
- Ankit Ganeshpurkar
- Department of Pharmaceutical Engineering and Technology, Pharmaceutical Chemistry Research Laboratory IIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Ravi Singh
- Department of Pharmaceutical Engineering and Technology, Pharmaceutical Chemistry Research Laboratory IIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pratigya Tripathi
- Department of Pharmaceutical Engineering and Technology, Neurotherapeutics LaboratoryIndian Institute of Technology (Banaras Hindu University)VaranasiUttar PradeshIndia
| | - Qadir Alam
- Department of Pharmaceutical Engineering and Technology, Neurotherapeutics LaboratoryIndian Institute of Technology (Banaras Hindu University)VaranasiUttar PradeshIndia
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Neurotherapeutics LaboratoryIndian Institute of Technology (Banaras Hindu University)VaranasiUttar PradeshIndia
| | - Ashok Kumar
- Department of Pharmaceutical Engineering and Technology, Pharmaceutical Chemistry Research Laboratory IIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Sushil K. Singh
- Department of Pharmaceutical Engineering and Technology, Pharmaceutical Chemistry Research Laboratory IIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|
12
|
Sanfilippo C, Giuliano L, Castrogiovanni P, Imbesi R, Ulivieri M, Fazio F, Blennow K, Zetterberg H, Di Rosa M. Sex, Age, and Regional Differences in CHRM1 and CHRM3 Genes Expression Levels in the Human Brain Biopsies: Potential Targets for Alzheimer's Disease-related Sleep Disturbances. Curr Neuropharmacol 2023; 21:740-760. [PMID: 36475335 PMCID: PMC10207911 DOI: 10.2174/1570159x21666221207091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/06/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholinergic hypofunction and sleep disturbance are hallmarks of Alzheimer's disease (AD), a progressive disorder leading to neuronal deterioration. Muscarinic acetylcholine receptors (M1-5 or mAChRs), expressed in hippocampus and cerebral cortex, play a pivotal role in the aberrant alterations of cognitive processing, memory, and learning, observed in AD. Recent evidence shows that two mAChRs, M1 and M3, encoded by CHRM1 and CHRM3 genes, respectively, are involved in sleep functions and, peculiarly, in rapid eye movement (REM) sleep. METHODS We used twenty microarray datasets extrapolated from post-mortem brain tissue of nondemented healthy controls (NDHC) and AD patients to examine the expression profile of CHRM1 and CHRM3 genes. Samples were from eight brain regions and stratified according to age and sex. RESULTS CHRM1 and CHRM3 expression levels were significantly reduced in AD compared with ageand sex-matched NDHC brains. A negative correlation with age emerged for both CHRM1 and CHRM3 in NDHC but not in AD brains. Notably, a marked positive correlation was also revealed between the neurogranin (NRGN) and both CHRM1 and CHRM3 genes. These associations were modulated by sex. Accordingly, in the temporal and occipital regions of NDHC subjects, males expressed higher levels of CHRM1 and CHRM3, respectively, than females. In AD patients, males expressed higher levels of CHRM1 and CHRM3 in the temporal and frontal regions, respectively, than females. CONCLUSION Thus, substantial differences, all strictly linked to the brain region analyzed, age, and sex, exist in CHRM1 and CHRM3 brain levels both in NDHC subjects and in AD patients.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Department G.F. Ingrassia, Section of Neurosciences, University of Catania, Catania, Italy
| | - Loretta Giuliano
- Department G.F. Ingrassia, Section of Neurosciences, University of Catania, Catania, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy
| | - Martina Ulivieri
- Department of Psychiatry, Health Science, University of California San Diego, San Diego La Jolla, CA, USA
| | - Francesco Fazio
- Department of Psychiatry, Health Science, University of California San Diego, San Diego La Jolla, CA, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy
| |
Collapse
|
13
|
Akhtar A, Gupta SM, Dwivedi S, Kumar D, Shaikh MF, Negi A. Preclinical Models for Alzheimer's Disease: Past, Present, and Future Approaches. ACS OMEGA 2022; 7:47504-47517. [PMID: 36591205 PMCID: PMC9798399 DOI: 10.1021/acsomega.2c05609] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
A robust preclinical disease model is a primary requirement to understand the underlying mechanisms, signaling pathways, and drug screening for human diseases. Although various preclinical models are available for several diseases, clinical models for Alzheimer's disease (AD) remain underdeveloped and inaccurate. The pathophysiology of AD mainly includes the presence of amyloid plaques and neurofibrillary tangles (NFT). Furthermore, neuroinflammation and free radical generation also contribute to AD. Currently, there is a wide gap in scientific approaches to preventing AD progression. Most of the available drugs are limited to symptomatic relief and improve deteriorating cognitive functions. To mimic the pathogenesis of human AD, animal models like 3XTg-AD and 5XFAD are the primarily used mice models in AD therapeutics. Animal models for AD include intracerebroventricular-streptozotocin (ICV-STZ), amyloid beta-induced, colchicine-induced, etc., focusing on parameters such as cognitive decline and dementia. Unfortunately, the translational rate of the potential drug candidates in clinical trials is poor due to limitations in imitating human AD pathology in animal models. Therefore, the available preclinical models possess a gap in AD modeling. This paper presents an outline that critically assesses the applicability and limitations of the current approaches in disease modeling for AD. Also, we attempted to provide key suggestions for the best-fit model to evaluate potential therapies, which might improve therapy translation from preclinical studies to patients with AD.
Collapse
Affiliation(s)
- Ansab Akhtar
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, Dehradun 248007, India
| | - Shraddha M. Gupta
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, Dehradun 248007, India
| | - Shubham Dwivedi
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, Dehradun 248007, India
| | - Devendra Kumar
- Faculty
of Pharmacy, DIT University, Uttarakhand, Dehradun 248009, India
| | - Mohd. Farooq Shaikh
- Neuropharmacology
Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
| | - Arvind Negi
- Department
of Bioproducts and Biosystems, Aalto University, FI-00076 Espoo, Finland
- E-mail:
| |
Collapse
|
14
|
Recent advance on pleiotropic cholinesterase inhibitors bearing amyloid modulation efficacy. Eur J Med Chem 2022; 242:114695. [PMID: 36044812 DOI: 10.1016/j.ejmech.2022.114695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022]
Abstract
Due to the hugely important roles of neurotransmitter acetylcholine (ACh) and amyloid-β (Aβ) in the pathogenesis of Alzheimer's disease (AD), the development of multi-target directed ligands (MTDLs) focused on cholinesterase (ChE) and Aβ becomes one of the most attractive strategies for combating AD. To date, numerous preclinical studies toward multifunctional conjugates bearing ChE inhibition and anti-Aβ aggregation have been reported. Noteworthily, most of the reported multifunctional cholinesterase inhibitors are carbamate-based compounds due to the initial properties of carbamate moiety. However, because their easy hydrolysis in vivo and the instability of the compound-enzyme conjugate, the mechanism of action of these compounds is rare. Thus, non-carbamate compounds are of great need for developing novel cholinesterase inhibitors. Besides, given that Aβ accumulation begins to occur 10-15 years before AD onset, modulating Aβ is ineffective only in inhibiting its aggregation but not eliminate the already accumulated Aβ if treatment is started when the patient has been diagnosed as AD. Considering the limitation of current Aβ accumulation modulators in ameliorating cognitive deficits and ineffectiveness of ChE inhibitors in blocking disease progression, the development of a practically valuable strategy with multiple pharmaceutical properties including ChE inhibition and Aβ modulation for treating AD is indispensable. In this review, we focus on summarizing the scaffold characteristics of reported non-carbamate cholinesterase inhibitors with Aβ modulation since 2020, and understanding the ingenious multifunctional drug design ideas to accelerate the pace of obtaining more efficient anti-AD drugs in the future.
Collapse
|
15
|
Identification of sulfonamide-based butyrylcholinesterase inhibitors using machine learning. Future Med Chem 2022; 14:1049-1070. [PMID: 35707942 DOI: 10.4155/fmc-2021-0325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: This study reports the designing of BChE inhibitors through machine learning (ML), followed by in silico and in vitro evaluations. Methodology: ML technique was used to predict the virtual hit, and its derivatives were synthesized and characterized. The compounds were evaluated by using various in vitro tests and in silico methods. Results: The gradient boosting classifier predicted N-phenyl-4-(phenylsulfonamido) benzamide as an active BChE inhibitor. The derivatives of the inhibitor, i.e., compounds 34, 37 and 54 were potent BChE inhibitors and displayed blood-brain barrier permeability with no significant AChE inhibition. Conclusion: The ML prediction was effective, and the synthesized compounds showed the BChE inhibitory activity, which was also supported by the in silico studies.
Collapse
|
16
|
Xie Y, Wang Y, Jiang S, Xiang X, Wang J, Ning L. Novel strategies for the fight of Alzheimer's disease targeting amyloid-β protein. J Drug Target 2021; 30:259-268. [PMID: 34435898 DOI: 10.1080/1061186x.2021.1973482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD), which is recognised as a devastating neurodegenerative disease throughout the world and lack of effective treatments, is a growing concern in modern society with a growing population of elderly patients. A growing number of studies reveal that abnormal accumulation and deposition of Aβ is responsible for AD. Inspired by this, strategies for the treatment of AD targeting-Aβ clearance have been discussed for a long period, exploring new drugs which is capable of destroying soluble Aβ oligomers and unsolvable Aβ aggregates. In this paper, results of recent clinical trials on several anti-amyloid-β drugs are presented and several emerging anti-amyloid AD therapies based on recent studies are reviewed. Furthermore, some of the current challenges and novel strategies to prevent AD are addressed. Herein, this review focuses on current pharmacotherapy of AD targeting-Aβ and intends to design a promising therapeutic agent for AD treatment.
Collapse
Affiliation(s)
- Yang Xie
- Pharmaceutical Engineering Center, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yan Wang
- Chemistry and Chemical Engineering College, Huangshan University, Huangshan, China
| | - Shangfei Jiang
- Pharmaceutical Engineering Center, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xiaohong Xiang
- Pharmaceutical Engineering Center, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Linhong Ning
- Pharmaceutical Engineering Center, Chongqing Medical and Pharmaceutical College, Chongqing, China
| |
Collapse
|
17
|
Ganeshpurkar A, Singh R, Shivhare S, Divya, Kumar D, Gutti G, Singh R, Kumar A, Singh SK. Improved machine learning scoring functions for identification of Electrophorus electricus's acetylcholinesterase inhibitors. Mol Divers 2021; 26:1455-1479. [PMID: 34328603 DOI: 10.1007/s11030-021-10280-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Structure-based drug design (SBDD) is an important in silico technique, used for the identification of enzyme inhibitors. Acetylcholinesterase (AChE), obtained from Electrophorus electricus (ee), is widely used for the screening of AChE inhibitors. It shares structural homology with the AChE of human and other organisms. Till date, the three-dimensional crystal structure of enzyme from ee is not available that makes it challenging to use the SBDD approach for the identification of inhibitors. A homology model was developed for eeAChE in the present study, followed by its structural refinement through energy minimisation. The docking protocol was developed using a grid dimension of 84 × 66 × 72 and grid point spacing of 0.375 Å for eeAChE. The protocol was validated by redocking a set of co-crystallised inhibitors obtained from mouse AChE, and their interaction profiles were compared. The results indicated a poor performance of the Autodock scoring function. Hence, a batch of machine learning-based scoring functions were developed. The validation results displayed an accuracy of 81.68 ± 1.73% and 82.92 ± 3.05% for binary and multiclass classification scoring function, respectively. The regression-based scoring function produced [Formula: see text] and [Formula: see text] values of 0.94, 0.635 and 0.634, respectively.
Collapse
Affiliation(s)
- Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Shalini Shivhare
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Divya
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Devendra Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | | | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
18
|
Taha M, Alshamrani FJ, Rahim F, Anouar EH, Uddin N, Chigurupati S, Almandil NB, Farooq RK, Iqbal N, Aldubayan M, Venugopal V, Khan KM. Synthesis, characterization, biological evaluation, and kinetic study of indole base sulfonamide derivatives as acetylcholinesterase inhibitors in search of potent anti-Alzheimer agent. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2021; 33:101401. [DOI: 10.1016/j.jksus.2021.101401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
|
19
|
Kumar S, Kumar M, Tyagi YK, Kumar S. Inhibition of Amyloid Fibrillation of HEWL by 4-Methylcoumarin and 4-Methylthiocoumarin Derivatives. Curr Pharm Biotechnol 2021; 22:232-244. [PMID: 32933456 DOI: 10.2174/1389201021666200915112849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/28/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Several human diseases like Parkinson's, Alzheimer's disease, and systemic amyloidosis are associated with the misfolding and aggregation of protein molecules. OBJECTIVE The present study demonstrated the comparison of 4-methyl coumarin and 4-methylthiocoumarin derivative for their anti-amyloidogenic and disaggregation activities. The hen egg-white lysozyme is used as a model system to study protein aggregation and disaggregation under in vitro conditions. METHODS Techniques used in the study were Thioflavin T fluorescence assay, intrinsic fluorescence assay, circular dichroism, transmission electron microscopy, and molecular dynamics. RESULTS Fifteen compounds were screened for their anti-amyloidogenic and disaggregation potential. Six compounds significantly inhibited the fibril formation, whereas ten compounds showed disaggregation property of pre-formed fibrils. Under in vitro conditions, the compound C3 and C7 showed significant inhibition of fibril formation in a concentration-dependent manner as compared to control. C3 and C7 demonstrated 93% and 76% inhibition of fibril formation, respectively. Furthermore, C3 and C7 exhibited 83% and 76% disaggregation activity, respectively, of pre-formed HEWL fibrils at their highest concentration. These anti-amyloidogenic and disaggregation potential of C3 and C7 were validated by intrinsic fluorescence, CD, molecular dynamics, and TEM study. DISCUSSION 4-methylthiocoumarins derivatives have shown better anti-amyloidogenic activity as compared to 4-methylcoumarin derivatives for both amyloid formation as well as disaggregation of preformed amyloid fibrils. Structurally, the derivatives of 4-methylthiocoumarins (C3 and C7) contain thio group on 2nd position that might be responsible for anti-amyloidogenic activity as compared to 4- methylcoumarin derivatives (C2 and C4). CONCLUSION C3 and C7 are novel 4-methylthiocoumarin derivatives that can be used as a lead for alleviation and symptoms associated with protein aggregation disorders.
Collapse
Affiliation(s)
- Shivani Kumar
- University School of Biotechnology Guru Gobind Singh Indraprastha University Dwarka, Sector 16C, New Delhi- 110078, India
| | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Yogesh K Tyagi
- University School of Basic and Applied Sciences Guru Gobind Singh Indraprastha University Dwarka, Sector 16C, New Delhi- 110078, India
| | - Suresh Kumar
- University School of Biotechnology Guru Gobind Singh Indraprastha University Dwarka, Sector 16C, New Delhi- 110078, India
| |
Collapse
|
20
|
He Y, Li SG, Mbaezue II, Reddy AC, Tsantrizos YS. Copper-boryl mediated transfer hydrogenation of N-sulfonyl imines using methanol as the hydrogen donor. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
21
|
Shaikh S, Pavale G, Dhavan P, Singh P, Uparkar J, Vaidya SP, Jadhav BL, Ramana MMV. Design, synthesis and evaluation of dihydropyranoindole derivatives as potential cholinesterase inhibitors against Alzheimer's disease. Bioorg Chem 2021; 110:104770. [PMID: 33667902 DOI: 10.1016/j.bioorg.2021.104770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/21/2021] [Indexed: 02/08/2023]
Abstract
A series of novel dihydropyranoindole derivatives containing sulphonamide group were designed, synthesized and evaluated for in-vitro anti-cholinesterase activity. The result showed that all the compounds exhibited potent acetylcholinesterase (AChE) activity (IC50 = 0.41-8.79 µM) while demonstrated moderate to good activity for butyrylcholinesterase (BuChE) (IC50 = 1.17-30.17 µM). The tested compounds exhibited selectivity towards AChE over BuChE. Compound 5o was most potent towards both AChE (IC50 = 0.41 µM) and BuChE (IC50 = 1.17 µM) when compared to standard galantamine and rivastigmine. Enzyme kinetics and molecular docking studies revealed that compound 5o shows mixed type inhibition and binds to peripheral anionic site (PAS) and the catalytic sites (CAS) of both the enzymes. Furthermore, cell viability studies were also performed against N2a cells along with neuroprotection studies against H2O2 in the same cell line. Antioxidant studies using DPPH radical and H2O2 were also performed which revealed that all compounds possessed some antioxidant activity. Also, DNA damage protection assay for compound 5o was performed implying that compound 5o was protective in nature. ADME studies were also performed which demonstrated good pharmacokinetics. These findings indicated that dihydropyranoindole derivatives could be possible drug lead in the search for new multifunctional AD drugs.
Collapse
Affiliation(s)
- Sarfaraz Shaikh
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400 098, India
| | - Ganesh Pavale
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400 098, India
| | - Pratik Dhavan
- Department of Life Sciences, University of Mumbai, Santacruz (E), Mumbai 400 098, India
| | - Pinky Singh
- Department of Microbiology, Haffkine Institute, Parel, Mumbai 400012, India
| | - Jasmin Uparkar
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400 098, India
| | - S P Vaidya
- Department of Microbiology, Haffkine Institute, Parel, Mumbai 400012, India
| | - B L Jadhav
- Department of Life Sciences, University of Mumbai, Santacruz (E), Mumbai 400 098, India
| | - M M V Ramana
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400 098, India.
| |
Collapse
|
22
|
Kowalik M, Brzeski J, Gawrońska M, Kazimierczuk K, Makowski M. Experimental and theoretical investigation of conformational states and noncovalent interactions in crystalline sulfonamides with a methoxyphenyl moiety. CrystEngComm 2021. [DOI: 10.1039/d1ce00869b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The conformational and noncovalent interaction properties of sulfonamides with a methoxyphenyl moiety were examined by both experimental and theoretical methods.
Collapse
Affiliation(s)
- Mateusz Kowalik
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jakub Brzeski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Małgorzata Gawrońska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Kazimierczuk
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mariusz Makowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
23
|
New Hybrids of 4-Amino-2,3-polymethylene-quinoline and p-Tolylsulfonamide as Dual Inhibitors of Acetyl- and Butyrylcholinesterase and Potential Multifunctional Agents for Alzheimer's Disease Treatment. Molecules 2020; 25:molecules25173915. [PMID: 32867324 PMCID: PMC7504258 DOI: 10.3390/molecules25173915] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 01/31/2023] Open
Abstract
New hybrid compounds of 4-amino-2,3-polymethylene-quinoline containing different sizes of the aliphatic ring and linked to p-tolylsulfonamide with alkylene spacers of increasing length were synthesized as potential drugs for treatment of Alzheimer’s disease (AD). All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The lead compound 4-methyl-N-(5-(1,2,3,4-tetrahydro-acridin-9-ylamino)-pentyl)-benzenesulfonamide (7h) exhibited an IC50 (AChE) = 0.131 ± 0.01 µM (five times more potent than tacrine), IC50(BChE) = 0.0680 ± 0.0014 µM, and 17.5 ± 1.5% propidium displacement at 20 µM. The compounds possessed low activity against carboxylesterase, indicating a likely absence of unwanted drug-drug interactions in clinical use. Kinetics studies were consistent with mixed-type reversible inhibition of both cholinesterases. Molecular docking demonstrated dual binding sites of the conjugates in AChE and clarified the differences in the structure-activity relationships for AChE and BChE inhibition. The conjugates could bind to the AChE peripheral anionic site and displace propidium, indicating their potential to block AChE-induced β-amyloid aggregation, thereby exerting a disease-modifying effect. All compounds demonstrated low antioxidant activity. Computational ADMET profiles predicted that all compounds would have good intestinal absorption, medium blood-brain barrier permeability, and medium cardiac toxicity risk. Overall, the results indicate that the novel conjugates show promise for further development and optimization as multitarget anti-AD agents.
Collapse
|
24
|
Zipfel P, Rochais C, Baranger K, Rivera S, Dallemagne P. Matrix Metalloproteinases as New Targets in Alzheimer's Disease: Opportunities and Challenges. J Med Chem 2020; 63:10705-10725. [PMID: 32459966 DOI: 10.1021/acs.jmedchem.0c00352] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although matrix metalloproteinases (MMPs) are implicated in the regulation of numerous physiological processes, evidence of their pathological roles have also been obtained in the last decades, making MMPs attractive therapeutic targets for several diseases. Recent discoveries of their involvement in central nervous system (CNS) disorders, and in particular in Alzheimer's disease (AD), have paved the way to consider MMP modulators as promising therapeutic strategies. Over the past few decades, diverse approaches have been undertaken in the design of therapeutic agents targeting MMPs for various purposes, leading, more recently, to encouraging developments. In this article, we will present recent examples of inhibitors ranging from small molecules and peptidomimetics to biologics. We will also discuss the scientific knowledge that has led to the development of emerging tools and techniques to overcome the challenges of selective MMP inhibition.
Collapse
Affiliation(s)
- Pauline Zipfel
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Christophe Rochais
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Patrick Dallemagne
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| |
Collapse
|