1
|
Fu H, Chen Z, Josephson L, Li Z, Liang SH. Positron Emission Tomography (PET) Ligand Development for Ionotropic Glutamate Receptors: Challenges and Opportunities for Radiotracer Targeting N-Methyl-d-aspartate (NMDA), α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA), and Kainate Receptors. J Med Chem 2019; 62:403-419. [PMID: 30110164 PMCID: PMC6393217 DOI: 10.1021/acs.jmedchem.8b00714] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission within the mammalian central nervous system. iGluRs exist as three main groups: N-methyl-d-aspartate receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and kainate receptors. The past decades have witnessed a remarkable development of PET tracers targeting different iGluRs including NMDARs and AMPARs, and several of the tracers have advanced to clinical imaging studies. Here, we assess the recent development of iGluR PET probes, focusing on tracer design, brain kinetics, and performance in PET imaging studies. Furthermore, this review will not only present challenges in the tracer development but also provide novel approaches in conjunction with most recent drug discovery efforts on these iGluRs, including subtype-selective NMDAR and transmembrane AMPAR regulatory protein modulators and positive allosteric modulators (PAMs) of AMPARs. These approaches, if successful as PET tracers, may provide fundamental knowledge to understand the roles of iGluR receptors under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology, Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, P. R. China
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| |
Collapse
|
2
|
Pharmacological characterisation of S 47445, a novel positive allosteric modulator of AMPA receptors. PLoS One 2017; 12:e0184429. [PMID: 28886144 PMCID: PMC5590943 DOI: 10.1371/journal.pone.0184429] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/23/2017] [Indexed: 11/19/2022] Open
Abstract
S 47445 is a novel positive allosteric modulator of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors (AMPA-PAM). S 47445 enhanced glutamate’s action at AMPA receptors on human and rat receptors and was inactive at NMDA and kainate receptors. Potentiation did not differ among the different AMPA receptors subtypes (GluA1/2/4 flip and flop variants) (EC50 between 2.5–5.4 μM), except a higher EC50 value for GluA4 flop (0.7 μM) and a greater amount of potentiation on GluA1 flop. A low concentration of S 47445 (0.1 μM) decreased receptor response decay time of GluA1flop/GluA2flip AMPA receptors and increased the sensitivity to glutamate. Furthermore, S 47445 (0.1 and 0.3 μM) in presence of repetitive glutamate pulses induced a progressive potentiation of the glutamate-evoked currents from the second pulse of glutamate confirming a rapid-enhancing effect of S 47445 at low concentrations. The potentiating effect of S 47445 (1 μM) was concentration-dependently reversed by the selective AMPA receptor antagonist GYKI52466 demonstrating the selective modulatory effect of S 47445 on AMPA receptors. Using an AMPA-kainate chimera approach, it was confirmed that S 47445 binds to the common binding pocket of AMPA-PAMs. S 47445 did not demonstrate neurotoxic effect against glutamate-mediated excitotoxicity in vitro, in contrast significantly protected rat cortical neurons at 10 μM. S 47445 was shown to improve both episodic and spatial working memory in adult rodents at 0.3 mg/kg, as measured in the natural forgetting condition of object recognition and T-maze tasks. Finally, no deleterious effect on spontaneous locomotion and general behavior was observed up to 1000 mg/kg of S 47445 given acutely in rodents, neither occurrence of convulsion or tremors. Collectively, these results indicate that S 47445 is a potent and selective AMPA-PAM presenting procognitive and potential neuroprotective properties. This drug is currently evaluated in clinical phase 2 studies in Alzheimer’s disease and in Major Depressive Disorder.
Collapse
|
3
|
Aseervatham GSB, Suryakala U, Doulethunisha, Sundaram S, Bose PC, Sivasudha T. Expression pattern of NMDA receptors reveals antiepileptic potential of apigenin 8-C-glucoside and chlorogenic acid in pilocarpine induced epileptic mice. Biomed Pharmacother 2016; 82:54-64. [PMID: 27470339 DOI: 10.1016/j.biopha.2016.04.066] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 01/09/2023] Open
Abstract
The present study was aimed to evaluate the effect of apigenin 8-C-glucoside (Vitexin) and chlorogenic acid on epileptic mice induced by pilocarpine and explored its possible mechanisms. Intraperitonial administration of pilocarpine (85mg/kg) induced seizure in mice was assessed by behavior observations, which is significantly (p>0.05) reduced by apigenin 8-C-glucoside (AP8CG) (10mg/kg) and chlorogenic acid (CA) (5mg/kg), similar to diazepam. Seizure was accompanied by an imbalance in the levels of Gamma-aminobutyric acid (GABA) and glutamate in the pilocarpine administered group. Moreover, convulsion along with reduced acetylcholinesterase, increased monoamine oxidase and oxidative stress was observed in epileptic mice brain. AP8CG and CA significantly restored back to normal levels even at lower doses. Further, increased lipid peroxidation and nitrite content was also significantly attenuated by AP8CG and CA. However, CA was found to be more effective when compared to AP8CG. In addition, the mRNA expression of N-methyl-d-aspartate receptor (NMDAR), mGluR1 and mGlu5 was significantly (P≤0.05) inhibited by AP8CG and CA in a lower dose. The mRNA expression of GRIK1 did not differ significantly in any of the group and showed a similar pattern of expression. Our result shows that AP8CG and CA selectively inhibit NMDAR, mGluR1 and mGlu5 expression. Modification in the provoked NMDAR calcium response coupled with neuronal death. Hence, these findings underline that the polyphenolics, AP8CG and CA have exerted antiepileptic and neuroprotective activity by suppressing glutamate receptors.
Collapse
Affiliation(s)
- G Smilin Bell Aseervatham
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - U Suryakala
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Doulethunisha
- Central Inter-Disciplinary Research Facility, Mahatma Gandhi Medical College and Research Institute Campus, Pillayarkuppam, Puducherry 607 402, India
| | - S Sundaram
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - P Chandra Bose
- Department of Biotechnology, Anna University, Tiruchirappalli 620 024, Tamilnadu, India
| | - T Sivasudha
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India.
| |
Collapse
|
4
|
Soluble Tumor Necrosis Factor Alpha Promotes Retinal Ganglion Cell Death in Glaucoma via Calcium-Permeable AMPA Receptor Activation. J Neurosci 2015; 35:12088-102. [PMID: 26338321 DOI: 10.1523/jneurosci.1273-15.2015] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Loss of vision in glaucoma results from the selective death of retinal ganglion cells (RGCs). Tumor necrosis factor α (TNFα) signaling has been linked to RGC damage, however, the mechanism by which TNFα promotes neuronal death remains poorly defined. Using an in vivo rat glaucoma model, we show that TNFα is upregulated by Müller cells and microglia/macrophages soon after induction of ocular hypertension. Administration of XPro1595, a selective inhibitor of soluble TNFα, effectively protects RGC soma and axons. Using cobalt permeability assays, we further demonstrate that endogenous soluble TNFα triggers the upregulation of Ca(2+)-permeable AMPA receptor (CP-AMPAR) expression in RGCs of glaucomatous eyes. CP-AMPAR activation is not caused by defects in GluA2 subunit mRNA editing, but rather reflects selective downregulation of GluA2 in neurons exposed to elevated eye pressure. Intraocular administration of selective CP-AMPAR blockers promotes robust RGC survival supporting a critical role for non-NMDA glutamate receptors in neuronal death. Our study identifies glia-derived soluble TNFα as a major inducer of RGC death through activation of CP-AMPARs, thereby establishing a novel link between neuroinflammation and cell loss in glaucoma. SIGNIFICANCE STATEMENT Tumor necrosis factor α (TNFα) has been implicated in retinal ganglion cell (RGC) death, but how TNFα exerts this effect is poorly understood. We report that ocular hypertension, a major risk factor in glaucoma, upregulates TNFα production by Müller cells and microglia. Inhibition of soluble TNFα using a dominant-negative strategy effectively promotes RGC survival. We find that TNFα stimulates the expression of calcium-permeable AMPA receptors (CP-AMPAR) in RGCs, a response that does not depend on abnormal GluA2 mRNA editing but on selective downregulation of the GluA2 subunit by these neurons. Consistent with this, CP-AMPAR blockers promote robust RGC survival supporting a critical role for non-NMDA glutamate receptors in glaucomatous damage. This study identifies a novel mechanism by which glia-derived soluble TNFα modulates neuronal death in glaucoma.
Collapse
|
5
|
Franzyk H, Grzeskowiak JW, Tikhonov DB, Jaroszewski JW, Mellor IR. The effects of conformational constraints in the polyamine moiety of philanthotoxins on AMPAR inhibition. ChemMedChem 2014; 9:1725-31. [PMID: 25044789 DOI: 10.1002/cmdc.201402109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Indexed: 11/06/2022]
Abstract
Philanthotoxin-433 (PhTX-433) is a known potent inhibitor of ionotropic glutamate receptors, and analogues have been synthesised to identify more potent and selective antagonists. Herein we report the synthesis of four PhTXs with a cyclopropane moiety introduced into their polyamine chain, and their inhibition of an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subtype by using two-electrode voltage-clamp assays on Xenopus oocytes expressing the GluA1flop subunit. All analogues were found to be more potent than PhTX-343, with trans-cyclopropyl-PhTX-343 being the most potent (∼28-fold) and cis-cyclopropyl-PhTX-343 least potent (∼4-fold). Both cis- and trans-cyclopropyl-PhTX-444 had intermediate potency (both∼12-fold). Molecular modelling indicates that a cyclopropane moiety confers a favourable steric constraint to the polyamine part, but this is compromised by a cis conformation due to enhanced intramolecular folding. Elongated PhTX-444 analogues alleviate this to some extent, but optimal positioning of the amines is not permitted.
Collapse
Affiliation(s)
- Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen (Denmark)
| | | | | | | | | |
Collapse
|
6
|
Riluzole as an adjunctive therapy to risperidone for the treatment of irritability in children with autistic disorder: a double-blind, placebo-controlled, randomized trial. Paediatr Drugs 2013; 15:505-14. [PMID: 23821414 DOI: 10.1007/s40272-013-0036-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND A hyperglutamatergic state has been shown to play a possible role in the pathophysiology of autistic disorders. Riluzole is a glutamate-modulating agent with neuroprotective properties, which has been shown to have positive effects in many neuropsychiatric disorders. OBJECTIVE The aim of this study was to assess the efficacy and tolerability of riluzole as an adjunctive to risperidone in the treatment of irritability in autistic children who were not optimally responding to previous medications. STUDY DESIGN This was a 10-week, randomized, double-blind, parallel-group, placebo-controlled trial. PARTICIPANTS The study enrolled male and female outpatients aged 5-12 years with a diagnosis of autistic disorder based on the DSM-IV-TR criteria and a score of ≥12 on the Aberrant Behavior Checklist-Community (ABC-C) irritability subscale who had discontinued other medications because of a lack of efficacy. INTERVENTIONS Subjects received riluzole (titrated to 50 or 100 mg/day based on bodyweight) or placebo in addition to risperidone (titrated up to 2 or 3 mg/day based on bodyweight) for 10 weeks. OUTCOME Patients were assessed at baseline, week 5, and week 10. The primary outcome measure was the difference in the change in the ABC-C irritability subscale score from baseline to week 10 between the two groups. We also compared changes in other ABC-C subscale scores and Clinical Global Impressions-Improvement (CGI-I) scale scores between the two groups. RESULTS Forty-nine patients were enrolled in the study, and forty children completed the trial (dropouts: placebo = 4, riluzole = 5). A significantly greater improvement in the study primary outcome (the ABC-C irritability subscale score) was achieved by the riluzole-treated children compared with the placebo group (P = 0.03). Patients in the riluzole group also showed significantly greater improvement on the lethargy/social withdrawal (P = 0.02), stereotypic behavior (P = 0.03), and hyperactivity/non-compliance subscales (P = 0.005), but not on the inappropriate speech subscale (P = 0.20) than patients in the placebo group. Eleven patients in the riluzole group and five patients in the placebo group were classified as responders based on their CGI-I scores [χ(2)(1) = 3.750, P = 0.05]. Children in the riluzole group experienced significantly more increases in their appetite and bodyweight than children in the placebo group by the end of the study. CONCLUSION Riluzole add-on therapy shows several therapeutic outcomes, particularly for improving irritability, in children with autism. However, its add-on to risperidone also results in significantly increased appetite and weight gain.
Collapse
|
7
|
Ross TL, Sihver W, Ermert J, Coenen HH. Synthesis and preliminary pharmacological evaluation of a new putative radioiodinated AMPA receptor ligand for molecular imaging. RADIOCHIM ACTA 2013. [DOI: 10.1524/ract.2013.2050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Summary
A new (radio)iodinated AMPA receptor ligand has been developed and pharmacologically evaluated in vitro and ex vivo using rodents. The new radioligand was directly labeled by electrophilic radioiodo-destannylation with iodine- 131 in high radiochemical yields of 97% within 2 min. The new radioligand showed an excellent initial brain uptake of 2.1%ID/g at 10 min post injection, but a fast wash-out reduced the uptake by about 10-fold at 60 min post injection. Due to high nonspecific binding accompanied with a uniform distribution in brain tissue, however, the new radiotracer appears not suitable for AMPA receptor imaging in vivo.
Collapse
Affiliation(s)
- T. L. Ross
- Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - W. Sihver
- Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - J. Ermert
- Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - H. H. Coenen
- Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
8
|
Sobrio F. Radiosynthesis of carbon-11 and fluorine-18 labelled radiotracers to image the ionotropic and metabotropic glutamate receptors. J Labelled Comp Radiopharm 2013; 56:180-6. [DOI: 10.1002/jlcr.2995] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/28/2012] [Accepted: 11/06/2012] [Indexed: 01/28/2023]
|
9
|
Pirotte B, Francotte P, Goffin E, de Tullio P. AMPA receptor positive allosteric modulators: a patent review. Expert Opin Ther Pat 2013; 23:615-28. [DOI: 10.1517/13543776.2013.770840] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Majo VJ, Prabhakaran J, Mann JJ, Kumar JSD. PET and SPECT tracers for glutamate receptors. Drug Discov Today 2012; 18:173-84. [PMID: 23092894 DOI: 10.1016/j.drudis.2012.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 07/10/2012] [Accepted: 10/15/2012] [Indexed: 12/19/2022]
Abstract
Radioligands for PET imaging of glutamate receptors will have the potential for studying neurological and neuropsychiatric disorders and their diagnosis and therapeutic intervention. Glutamate is the major excitatory neurotransmitter in the brain and is implicated in the pathophysiology of many neurodegenerative and neuropsychiatric disorders. Glutamate and its receptors are potential targets in the treatment of these disorders. Glutamate signaling is mediated through ionotropic and metabotropic receptors. The abundant concentration of these receptors can facilitate their in vivo quantification using positron emission tomography (PET). Glutamate receptors are a potentially important set of targets for monitoring disease progression, for evaluating the effect of therapy and for new treatment development based on the quantification of receptor occupancy. Here, we review the PET and single-photon emission computed tomography (SPECT) radioligands that have been developed for imaging glutamate receptors in living brain.
Collapse
Affiliation(s)
- Vattoly J Majo
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
11
|
Lemoine D, Jiang R, Taly A, Chataigneau T, Specht A, Grutter T. Ligand-gated ion channels: new insights into neurological disorders and ligand recognition. Chem Rev 2012; 112:6285-318. [PMID: 22988962 DOI: 10.1021/cr3000829] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Damien Lemoine
- Laboratoire de Biophysicochimie des Récepteurs Canaux, UMR 7199 CNRS, Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Université de Strasbourg , 67400 Illkirch, France
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The neurotransmitter glutamate interacts with glutamate receptor proteins, leading to the activation of multiple signaling pathways. Dysfunction in the glutamatergic signaling pathway is well established as a frequent player in diseases such as schizophrenia, Alzheimer disease, and brain tumors (gliomas). Recently, aberrant functioning of this pathway has also been shown in melanoma. In both glioma and melanoma, glutamate secretion stimulates tumor growth, proliferation, and survival through activation of the mitogen-activated protein kinase and phosphoinositide 3-kinase/Akt pathways. In the future, extracellular glutamate levels and glutamatergic signaling may serve as biological markers for tumorigenicity and facilitate targeted therapy for melanoma. .
Collapse
Affiliation(s)
- Todd D Prickett
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
13
|
McClymont DW, Harris J, Mellor IR. Open-channel blockade is less effective on GluN3B than GluN3A subunit-containing NMDA receptors. Eur J Pharmacol 2012; 686:22-31. [PMID: 22564863 PMCID: PMC3657159 DOI: 10.1016/j.ejphar.2012.04.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/05/2012] [Accepted: 04/12/2012] [Indexed: 01/25/2023]
Abstract
The GluN3 subunits of the N-methyl-d-aspartate (NMDA) receptor are known to reduce its Ca2+ permeability and Mg2+ sensitivity, however, little is known about their effects on other channel blockers. cRNAs for rat NMDA receptor subunits were injected into Xenopus oocytes and responses to NMDA and glycine were recorded using two electrode voltage clamp. Channel block of receptors containing GluN1-1a/2A, GluN1-1a/2A/3A or GluN1-1a/2A/3B subunits was characterised using Mg2+, memantine, MK-801, philanthotoxin-343 and methoctramine. IC50 values for Mg2+ and memantine increased when receptors contained GluN3A subunits and were further increased when they contained GluN3B, e.g. IC50s at − 75 mV for block of GluN1-1a/2A, GluN1-1a/2A/3A and GluN1-1a/2A/3B receptors respectively were 4.2, 22.4 and 40.1 μM for Mg2+, and 2.5, 7.5 and 17.5 μM for memantine. Blocking activity was found to be fully or partially restored when G or R (at the N and N + 1 sites respectively) were mutated to N in GluN3A. Thus, the changes cannot be attributed to the loss of the N or N + 1 sites alone, but rather involve both sites or residues elsewhere. Block by MK-801 and philanthotoxin-343 was also reduced by GluN3A, most strongly at − 100 mV but not at − 50 mV, and by GluN3B at all Vh. Methoctramine was the least sensitive to introduction of GluN3 subunits suggesting a minimal interaction with the N and N + 1 sites. We conclude that GluN3B-containing receptors provide increased resistance to channel block compared to GluN3A-containing receptors and this must be due to differences outside the deep pore region (N site and deeper).
Collapse
Affiliation(s)
- David W McClymont
- School of Biology, University of Nottingham, University Park, Nottingham, UK
| | | | | |
Collapse
|
14
|
Abstract
The time course of excitatory synaptic currents, the major means of fast communication between neurons of the central nervous system, is encoded in the dynamic behaviour of post-synaptic glutamate-activated channels. First-pass attempts to explain the glutamate-elicited currents with mathematical models produced reaction mechanisms that included only the most basic functionally defined states: resting vs. liganded, closed vs. open, responsive vs. desensitized. In contrast, single-molecule observations afforded by the patch-clamp technique revealed an unanticipated kinetic multiplicity of transitions: from microseconds-lasting flickers to minutes-long modes. How these kinetically defined events impact the shape of the synaptic response, how they relate to rearrangements in receptor structure, and whether and how they are physiologically controlled represent currently active research directions. Modal gating, which refers to the slowest, least frequently observed ion-channel transitions, has been demonstrated for representatives of all ion channel families. However, reaction schemes have been largely confined to the short- and medium-range time scales. For glutamate receptors as well, modal gating has only recently come under rigorous scrutiny. This article reviews the evidence for modal gating of glutamate receptors and the still developing hypotheses about the mechanism(s) by which modal shifts occur and the ways in which they may impact the time course of synaptic transmission.
Collapse
Affiliation(s)
- Gabriela K Popescu
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY 14214, USA.
| |
Collapse
|