1
|
Elango H, Das RN, saha A. Benzimidazole-based small molecules as anticancer agents targeting telomeric G-quadruplex and inhibiting telomerase enzyme. Future Med Chem 2024; 16:2043-2067. [PMID: 39316718 PMCID: PMC11485724 DOI: 10.1080/17568919.2024.2400982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Telomeres, crucial for chromosomal integrity, have been related to aging and cancer formation, mainly through regulating G-quadruplex structures. G-quadruplexes are structural motifs that can arise as secondary structures of nucleic acids, especially in guanine-rich DNA and RNA regions. Targeting these structures by small compounds shows promise in the selective suppression of cell growth, opening up novel possibilities for anticancer treatment. A comprehensive investigation of the many structural forms of G-quadruplex ligands is required to create ground-breaking anticancer drugs. Recent research into using specific benzimidazole molecules in stabilizing telomeric DNA into G-quadruplex structures has highlighted their ability to influence oncogene expression and demonstrate antiproliferative characteristics against cancer cells. This review describes the benzimidazole derivative, designed to enhance the stability of the G-quadruplex structure DNA to suppress the activity of telomerase enzyme, exhibiting promising potential for anticancer therapy.
Collapse
Affiliation(s)
- Hemanathan Elango
- Department of Chemistry, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, 603203, India
| | | | - Abhijit saha
- Department of Chemistry, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, 603203, India
| |
Collapse
|
2
|
Caminski ES, Antunes FTT, Souza IA, Dallegrave E, Zamponi GW. Regulation of N-type calcium channels by nociceptin receptors and its possible role in neurological disorders. Mol Brain 2022; 15:95. [PMID: 36434658 PMCID: PMC9700961 DOI: 10.1186/s13041-022-00982-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Activation of nociceptin opioid peptide receptors (NOP, a.k.a. opioid-like receptor-1, ORL-1) by the ligand nociceptin/orphanin FQ, leads to G protein-dependent regulation of Cav2.2 (N-type) voltage-gated calcium channels (VGCCs). This typically causes a reduction in calcium currents, triggering changes in presynaptic calcium levels and thus neurotransmission. Because of the widespread expression patterns of NOP and VGCCs across multiple brain regions, the dorsal horn of the spinal cord, and the dorsal root ganglia, this results in the alteration of numerous neurophysiological features. Here we review the regulation of N-type calcium channels by the NOP-nociceptin system in the context of neurological conditions such as anxiety, addiction, and pain.
Collapse
Affiliation(s)
- Emanuelle Sistherenn Caminski
- grid.412344.40000 0004 0444 6202Graduate Program in Health Sciences, Laboratory of Research in Toxicology (LAPETOX), Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS Brazil
| | - Flavia Tasmin Techera Antunes
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Ivana Assis Souza
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Eliane Dallegrave
- grid.412344.40000 0004 0444 6202Graduate Program in Health Sciences, Laboratory of Research in Toxicology (LAPETOX), Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS Brazil
| | - Gerald W. Zamponi
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| |
Collapse
|
3
|
Shimizu C, Mitani Y, Tsuchiya Y, Nabeshima T. Effects of Oral Calcium Dosage and Timing on Ethanol-Induced Sensitization of Locomotion in DBA/2 Mice. Biol Pharm Bull 2018; 41:1049-1061. [PMID: 29769465 DOI: 10.1248/bpb.b18-00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethanol (EtOH) dosage, frequency, and paired associative learning affect the risk of alcoholism. Recently, Spanagel et al. reported that acamprosate calcium (Acam Ca) prescribed for alcoholism exerts an anti-relapse effect via Ca. Ca is contained in foods, sometimes consumed with alcohol. Therefore, we investigated the association among oral Ca ingestion, EtOH-induced locomotor sensitization, and plasma Ca levels on how to consume Ca for moderate drinking. We used DBA/2 CrSlc mice, and CaCl2 as water-soluble Ca salts. For pre-administration, elemental Ca (50, 75, 100, or 150 mg/kg, per os (p.o.)) or water for control was administered 1 h before EtOH (2 g/kg, 20 v/v (%) EtOH in saline) administration intraperitoneal (i.p.) for locomotor sensitization or for plasma Ca level changes. For post-administration, elemental Ca (100 mg/kg) was administered 1 h after EtOH. Moreover, we employed bepridil and the dopamine D1 antagonist, SCH-23390 to further examine the mechanism of EtOH-induced sensitization. The locomotor sensitization segmentalized for 300 s had two peaks (0-90 s and 180-300 s). Pre-administration of Ca (50, 75, and 100 mg/kg) significantly reduced the 0-90-s peak, selectively blocked by SCH-23390, but "non-dose dependently" as Ca 150 mg/kg did not have this effect. Bepridil blocked the suppressive effect of pre-administration of Ca (100 mg/kg). The effective pre-doses of Ca (50-100 mg/kg) maintained plasma Ca basal levels against EtOH-induced decrease of Ca. On the contrary, post-administration of Ca inversely led to significant promotion of sensitization of both locomotor peaks. Oral Ca intake had diverse effects on EtOH-induced sensitization depending on Ca dosage and timing.
Collapse
Affiliation(s)
- Chikako Shimizu
- Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD
| | - Yutaka Mitani
- Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD
| | | | - Toshitaka Nabeshima
- Fujita Health University.,Aino University.,NPO Japanese Drug Organization of Appropriate Use and Research
| |
Collapse
|
4
|
Discovery and SAR of novel tetrahydropyrrolo[3,4-c]pyrazoles as inhibitors of the N-type calcium channel. Bioorg Med Chem Lett 2014; 24:2053-6. [DOI: 10.1016/j.bmcl.2014.03.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 11/17/2022]
|
5
|
Winters MP, Subasinghe N, Wall M, Beck E, Brandt MR, Finley MFA, Liu Y, Lubin ML, Neeper MP, Qin N, Flores CM, Sui Z. Discovery and SAR of a novel series of 2,4,5,6-tetrahydrocyclopenta[c]pyrazoles as N-type calcium channel inhibitors. Bioorg Med Chem Lett 2014; 24:2057-61. [PMID: 24726803 DOI: 10.1016/j.bmcl.2014.03.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 12/01/2022]
Abstract
A novel series of substituted 2,4,5,6-tetrahydrocyclopenta[c]pyrazoles were investigated as N-type calcium channel blockers (Cav2.2 channels), a chronic pain target. One compound was active in vivo in the rat CFA pain model.
Collapse
Affiliation(s)
- Michael P Winters
- Janssen Research and Development, LLC, 1400 McKean Rd., Spring House, PA 19477, USA.
| | - Nalin Subasinghe
- Janssen Research and Development, LLC, 1400 McKean Rd., Spring House, PA 19477, USA
| | - Mark Wall
- Janssen Research and Development, LLC, 1400 McKean Rd., Spring House, PA 19477, USA
| | - Edward Beck
- Janssen Research and Development, LLC, 1400 McKean Rd., Spring House, PA 19477, USA
| | - Michael R Brandt
- Janssen Research and Development, LLC, 1400 McKean Rd., Spring House, PA 19477, USA
| | - Michael F A Finley
- Janssen Research and Development, LLC, 1400 McKean Rd., Spring House, PA 19477, USA
| | - Yi Liu
- Janssen Research and Development, LLC, 1400 McKean Rd., Spring House, PA 19477, USA
| | - Mary Lou Lubin
- Janssen Research and Development, LLC, 1400 McKean Rd., Spring House, PA 19477, USA
| | - Michael P Neeper
- Janssen Research and Development, LLC, 1400 McKean Rd., Spring House, PA 19477, USA
| | - Ning Qin
- Janssen Research and Development, LLC, 1400 McKean Rd., Spring House, PA 19477, USA
| | - Christopher M Flores
- Janssen Research and Development, LLC, 1400 McKean Rd., Spring House, PA 19477, USA
| | - Zhihua Sui
- Janssen Research and Development, LLC, 1400 McKean Rd., Spring House, PA 19477, USA
| |
Collapse
|
6
|
Waszkielewicz AM, Gunia A, Szkaradek N, Słoczyńska K, Krupińska S, Marona H. Ion channels as drug targets in central nervous system disorders. Curr Med Chem 2013; 20:1241-85. [PMID: 23409712 PMCID: PMC3706965 DOI: 10.2174/0929867311320100005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 12/27/2022]
Abstract
Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na(+) channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 - for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca(2+)s channels are not any more divided to T, L, N, P/Q, and R, but they are described as Ca(v)1.1-Ca(v)3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs.
Collapse
Affiliation(s)
- A M Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
7
|
Skubatz H, Klatt B. Further Characterization of a Novel Tetrapeptide with an Analgesic Action in the Central and Peripheral Nervous System in Rats. Int J Pept Res Ther 2011. [DOI: 10.1007/s10989-011-9277-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|