1
|
Kumari D, Kour P, Singh CP, Choudhary R, Ali SM, Bhayye S, Bharitkar YP, Singh K. Anhydroparthenin as a dual-target inhibitor against Sterol C-24 methyltransferase and Sterol 14-α demethylase of Leishmania donovani: A comprehensive in vitro and in silico study. Int J Biol Macromol 2024; 269:132034. [PMID: 38702006 DOI: 10.1016/j.ijbiomac.2024.132034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Parthenium hysterophorus plant has a diverse chemical profile and immense bioactive potential. It exhibits excellent pharmacological properties such as anti-cancer, anti-inflammatory, anti-malarial, microbicidal, and anti-trypanosomal. The present study aims to evaluate the anti-leishmanial potential and toxicological safety of anhydroparthenin isolated from P. hysterophorus. Anydroparthenin was extracted from the leaves of P. hysterophorus and characterized through detailed analysis of 1H, 13C NMR, and HRMS. Dye-based in vitro and ex vivo assays confirmed that anhydroparthenin significantly inhibited both promastigote and amastigote forms of the Leishmania donovani parasites. Both the cytotoxicity experiment and hemolytic assay revealed its non-toxic nature and safety index in the range of 10 to 15. Further, various mechanistic assays suggested that anhydroparthenin led to the generation of oxidative stress, intracellular ATP depletion, alterations in morphology and mitochondrial membrane potential, formation of intracellular lipid bodies, and acidic vesicles, ultimately leading to parasite death. As a dual targeting approach, computational studies and sterol quantification assays confirmed that anhydroparthenin inhibits the Sterol C-24 methyl transferase and Sterol 14-α demethylase proteins involved in the ergosterol biosynthesis in Leishmania parasites. These results suggest that anhydroparthenin could be a promising anti-leishmanial molecule and can be developed as a novel therapeutic stratagem against leishmaniasis.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parampreet Kour
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Chetan Paul Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Natural Products & Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rinku Choudhary
- Department of Bioinformatics, Rajiv Gandhi Institute of I.T. and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra 411046, India
| | - Syed Mudassir Ali
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Sagar Bhayye
- Department of Bioinformatics, Rajiv Gandhi Institute of I.T. and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra 411046, India
| | - Yogesh P Bharitkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Natural Products & Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India.
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Garduño-Félix KG, Rochín-Medina JJ, Murua-López CC, López-Moreno HS, Ramírez K. Biostimulated-sesame sprout extracts as potential agents against Leishmania mexicana. Lett Appl Microbiol 2023; 76:ovad115. [PMID: 37777833 DOI: 10.1093/lambio/ovad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
Leishmania mexicana is one of the causal agents of cutaneous leishmaniasis. Current antileishmanial chemotherapeutics have demonstrated adverse side effects; thus, alternative treatments are needed. In this study, we performed in silico and in vitro analyses of the leishmanicidal potential of the most abundant phenolic compounds identified in black sesame sprouts biostimulated with Bacillus clausii. The molecular docking analysis showed strong interactions (binding free energies between -6.5 and -9.5 kcal/mol) of sesaminol 2-O-triglucoside, pinoresinol dihexoside, isoverbascoside, and apigenin with the arginase, leishmanolysin, cysteine peptidase B, and pyruvate kinase leishmanial enzymes. Furthermore, almost all phenolic compounds interacted with the active site residues of L. mexicana enzymes. In vitro, the B. clausii-biostimulated sprout phenolic extracts and apigenin inhibited the growth of promastigotes with IC50 values of 0.08 mg gallic acid equivalent/mL and 6.42 μM (0.0017 mg/mL), respectively. Additionally, in the macrophage infection model, cells treated with B. clausii-biostimulated sprout phenolic extracts and infected with L. mexicana exhibited significantly (P < 0.05) reduced nitric oxide production and decreased parasite burden. Altogether, our study provides important data related to high efficacy and less toxic natural antileishmanial candidates against promastigotes of L. mexicana.
Collapse
Affiliation(s)
- Karime G Garduño-Félix
- Laboratorio de Microbiología Molecular y Bioactivos, Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, 80220 Culiacán, México
| | - Jesús J Rochín-Medina
- Laboratorio de Microbiología Molecular y Bioactivos, Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, 80220 Culiacán, México
| | - Carolina C Murua-López
- CAC BB-UAS-264. Posgrados de la Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Sinaloa, 80030 Culiacán, México
| | - Héctor S López-Moreno
- CAC BB-UAS-264. Posgrados de la Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Sinaloa, 80030 Culiacán, México
| | - Karina Ramírez
- Laboratorio de Microbiología Molecular y Bioactivos, Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, 80220 Culiacán, México
| |
Collapse
|
3
|
Nasim F, Qureshi IA. Aminoacyl tRNA Synthetases: Implications of Structural Biology in Drug Development against Trypanosomatid Parasites. ACS OMEGA 2023; 8:14884-14899. [PMID: 37151504 PMCID: PMC10157851 DOI: 10.1021/acsomega.3c00826] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023]
Abstract
The ensemble of aminoacyl tRNA synthetases is regarded as a key component of the protein translation machinery. With the progressive increase in structure-based studies on tRNA synthetase-ligand complexes, the detailed picture of these enzymes is becoming clear. Having known their critical role in deciphering the genetic code in a living system, they have always been chosen as one of the important targets for development of antimicrobial drugs. Later on, the role of aminoacyl tRNA synthetases (aaRSs) on the survivability of trypanosomatids has also been validated. It became evident through several gene knockout studies that targeting even one of these enzymes affected parasitic growth drastically. Such successful studies have inspired researchers to search for inhibitors that could specifically target trypanosomal aaRSs, and their never-ending efforts have provided fruitful results. Taking all such studies into consideration, these macromolecules of prime importance deserve further investigation for the development of drugs that cure spectrum of infections caused by trypanosomatids. In this review, we have compiled advancements of over a decade that have taken place in the pursuit of devising drugs by using trypanosomatid aaRSs as a major target of interest. Several of these inhibitors work on an exemplary low concentration range without posing any threat to the mammalian cells which is a very critical aspect of the drug discovery process. Advancements have been made in terms of using structural biology as an important tool to analyze the architecture of the trypanosomatids aaRSs and concoction of inhibitors with augmented specificities toward their targets. Some of the inhibitors that have been tested on other parasites successfully but their efficacy has so far not been validated against these trypanosomatids have also been appended.
Collapse
|
4
|
Alamzeb M, Setzer WN, Ali S, Khan B, Rashid MU, Ihsanullah, Salman SM, Adnan, Omer M, Ali J, Ullah A. Spectral, Anti-Inflammatory, Anti-Pyretic, Leishmanicidal, and Molecular Docking Studies, Against Selected Protein Targets, of a New Bisbenzylisoquinoline Alkaloid. Front Chem 2022; 9:711190. [PMID: 34976944 PMCID: PMC8719521 DOI: 10.3389/fchem.2021.711190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
A new bisbenzylisoquinoline named as chondrofolinol (1) and four reported compounds (2–5) were isolated and characterized from the roots of Berberis glaucocarpa Stapf. Anti-inflammatory, anti-pyretic, and leishmanicidal studies were performed against carrageenan-induced paw edema, yeast-induced pyrexia, and the promastigotes of Leishmania tropica, respectively. The new compound significantly reduced the paw volume in carrageenan-induced paw edema and rectal temperature in yeast-induced pyrexia at 10 and 20 mg/ kg of body weight. Chondrofolinol caused almost 100% inhibition of the promastigotes of Leishmania tropica. All the compounds displayed minimal cytotoxicity against THP-1 monocytic cells. In order to ascertain the potential macromolecular targets of chondrofolinol responsible for the observed anti-inflammatory and anti-leishmanial activities, a molecular docking study was carried out on relevant protein targets of inflammation and Leishmania. Protein targets of human endoplasmic reticulum aminopeptidase 2 (ERAP2) and human matrix metalloproteinase-1 (MMP-1) for inflammation and protein targets of N-myristoyltransferase (NMT), tyrosyl-tRNA synthetase (TyrRS), and uridine diphosphate-glucose pyrophosphorylase (UGPase) for Leishmania major were selected after thorough literature search about protein targets responsible for inflammation and Leishmania major. Chondrofolinol showed excellent docking to ERAP2 and to MMP-1. The Leishmania major protein targets with the most favorable docking scores to chondrofolinol were NMT, TyrRS, and UGPase. The study indicated that bisbenzylisoquinoline and isoquinoline alkaloids possess anti-pyretic, anti-inflammatory, and anti-leishmanial properties with minimal cytotoxicity and therefore, need to be further explored for their therapeutic potential.
Collapse
Affiliation(s)
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL , United States
| | - Saqib Ali
- Department of Chemistry, University of Kotli, Kotli, Pakistan
| | - Behramand Khan
- Department of Chemistry, Islamia College University, Peshawar, Pakistan
| | - Mamoon-Ur- Rashid
- Department of Chemistry, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Takatu Campus, Quetta, Pakistan
| | - Ihsanullah
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | | | - Adnan
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Muhammad Omer
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Javed Ali
- Department of Chemistry, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Asad Ullah
- Department of Chemistry, Islamia College University, Peshawar, Pakistan
| |
Collapse
|
5
|
Alamzeb M, Ali S, Mamoon-Ur-Rashid, Khan B, Ihsanullah, Adnan, Omer M, Ullah A, Ali J, Setzer WN, Salman SM, Khan A, Shah A. Antileishmanial Potential of Berberine Alkaloids From Berberis glaucocarpa Roots: Molecular Docking Suggests Relevant Leishmania Protein Targets. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211031148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Leishmaniases are a spectrum of poverty-linked neglected parasitic diseases that are endemic in 88 countries around the globe and affect millions of people every year. Currently available chemotherapeutic options are inadequate due to side effects, high cost, prolonged treatment, and parasite resistance. Thus, there is an existing need to develop new potent and safer leishmanicidal drugs. Considering the folkloric antiulcer and leishmanicidal use of the genus Berberis and its alkaloids, 5 reported alkaloids, namely berberine (1), palmatine (2), columbamine (3), 8-trichloromethyldihydroberberine (4), and jatrorrhizine (5), were isolated from the roots of Berberis glaucocarpa using classical (column and preparative chromatography) and modern isolation techniques (Sephadex LH-20). Their structures were elucidated and established from 1D and 2D spectroscopic data. The isolated alkaloids displayed excellent antileishmanial potential with IC50 values ranging from 1.50 to 2.56 µM: 1 (1.50 ± 0.53 µM), 2 (2.31 ± 0.37 µM), 3 (2.56 ± 0.48 µM), 4 (1.40 ± 0.90 µM), 5 (2.44 ± 1.34 µM). While the IC50 value for the standard drug (Amphotericin-B) was found to be 1.08 ± 0.95 µM. All of the isolated alkaloids displayed excellent antileishmanial potential as well as minimal cytotoxicity against THP-1 monocytic cells. Molecular docking analysis has revealed Leishmania N-myristoyl transferase, methionyl-tRNA synthetase, pteridine reductase 1, oligopeptidase B, tyrosyl-tRNA synthetase, and/or glycerol-3-phosphate dehydrogenase to be potential protein targets for the alkaloids.
Collapse
Affiliation(s)
| | - Saqib Ali
- University of Kotli, Kotli, Pakistan
| | - Mamoon-Ur-Rashid
- Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | | | - Ihsanullah
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Adnan
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Muhammad Omer
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Asad Ullah
- Islamia College University, Peshawar, Pakistan
| | - Javed Ali
- Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | | | | | - Ajmal Khan
- Leishmania Diagnostic & Drug Delivery Research Laboratory, University of Peshawar, Peshawar, Pakistan
| | - Akram Shah
- Leishmania Diagnostic & Drug Delivery Research Laboratory, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
6
|
Shen Y, Liang WJ, Shi YN, Kennelly EJ, Zhao DK. Structural diversity, bioactivities, and biosynthesis of natural diterpenoid alkaloids. Nat Prod Rep 2021; 37:763-796. [PMID: 32129397 DOI: 10.1039/d0np00002g] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: 2009 to 2018. Diterpenoid alkaloids, originating from the amination of natural tetracyclic diterpenes, are a diverse class of compounds having complex structural features with many stereocenters. The important pharmacological activities and structural complexity of the diterpenoid alkaloids have long interested scientists due to their medicinal uses, infamous toxicity, and unique biosynthesis. Since 2009, 373 diterpenoid alkaloids, assigned to 46 skeletons, have been isolated and identified from plants mostly in the Ranunculaceae family. The names, classes, molecular weight, molecular formula, NMR data, and plant sources of these diterpene alkaloids are collated here. This review will be a detailed update of the naturally occurring diterpene alkaloids reported from the plant kingdom from 2009-2018, providing an in-depth discussion of their diversity, biological activities, pharmacokinetics, toxicity, application, evolution, and biosynthesis.
Collapse
Affiliation(s)
- Yong Shen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, P. R. China and Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, P. R. China. and Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, P. R. China and School of Life Science, Yunnan University, Kunming, 650504, P. R. China and Kunming Kangren Biotechnology Co., Ltd., Kunming, 650203, P. R. China and Research & Development Center for Functional Products, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Wen-Juan Liang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Ya-Na Shi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, P. R. China and Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650000, P. R. China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, 10468, USA. and Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center, City University of New York, New York, 10016, USA
| | - Da-Ke Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, P. R. China. and Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, P. R. China and School of Life Science, Yunnan University, Kunming, 650504, P. R. China and Kunming Kangren Biotechnology Co., Ltd., Kunming, 650203, P. R. China
| |
Collapse
|
7
|
Tajuddeen N, Bringmann G. N, C-Coupled naphthylisoquinoline alkaloids: a versatile new class of axially chiral natural products. Nat Prod Rep 2021; 38:2154-2186. [PMID: 34212956 DOI: 10.1039/d1np00020a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to April 2021During the past decades, a plethora of natural products with restricted rotation about a biaryl axis have been discovered, among them the naphthylisoquinoline (NIQ) alkaloids, mostly C,C-coupled and having remarkable bioactivities. Within this fascinating class of naturally occurring biaryl compounds, NIQ alkaloids bearing an N,C-heterobiaryl axis have attracted particular attention. They are structurally and biosynthetically unprecedented, with interesting stereochemical implications and biological activities. In contrast to existing articles and reviews about axially chiral - yet C,C-coupled - natural products, this is the first, comprehensive review on the new subclass of N,C-coupled NIQs, their isolation and structural elucidation, their N,C-axial chirality, their biosynthetic origin, their promising antiparasitic and antileukemic activities, and their total synthesis.
Collapse
Affiliation(s)
- Nasir Tajuddeen
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
8
|
Scotti MT, Monteiro AFM, de Oliveira Viana J, Bezerra Mendonça Junior FJ, Ishiki HM, Tchouboun EN, De Araújo RSA, Scotti L. Recent Theoretical Studies Concerning Important Tropical Infections. Curr Med Chem 2020; 27:795-834. [DOI: 10.2174/0929867326666190711121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated
with poverty, flourish in impoverished environments, and thrive best in tropical areas,
where they tend to present overlap. They comprise several diseases, and the symptoms
vary dramatically from disease to disease, often causing from extreme pain, and untold misery
that anchors populations to poverty, permanent disability, and death. They affect more than 1
billion people worldwide; mostly in poor populations living in tropical and subtropical climates.
In this review, several complementary in silico approaches are presented; including
identification of new therapeutic targets, novel mechanisms of activity, high-throughput
screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship
and recent molecular docking studies. Current and active research against Sleeping
Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully
lead to safer, more effective, less costly and more widely available treatments against
these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | | | - Hamilton M. Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos A. De Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| |
Collapse
|
9
|
Pérez M, Pis Diez CM, Belén Valdez M, García M, Paola A, Avigliano E, Palermo JA, Blustein G. Isolation and Antimacrofouling Activity of Indole and Furoquinoline Alkaloids from ‘Guatambú’ Trees (Aspidosperma australeandBalfourodendron riedelianum). Chem Biodivers 2019; 16:e1900349. [DOI: 10.1002/cbdv.201900349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Miriam Pérez
- Centro de Investigación y Desarrollo en Tecnología de Pinturas-CIDEPINT Calle 52 e/121 y 122, 1900 La Plata B1900AYB Argentina
- Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo Calle 60 y 122, 1900 La Plata B1900AYB Argentina
| | - Cristian M. Pis Diez
- Universidad de Buenos AiresDepartamento de Química Orgánica – Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria Pabellón 2 1428 Buenos Aires Argentina
- CONICET-Universidad de Buenos AiresUnidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Ciudad Universitaria Pabellón 2 1428 Buenos Aires Argentina
| | - María Belén Valdez
- Universidad de Buenos AiresDepartamento de Química Orgánica – Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria Pabellón 2 1428 Buenos Aires Argentina
- CONICET-Universidad de Buenos AiresUnidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Ciudad Universitaria Pabellón 2 1428 Buenos Aires Argentina
| | - Mónica García
- Centro de Investigación y Desarrollo en Tecnología de Pinturas-CIDEPINT Calle 52 e/121 y 122, 1900 La Plata B1900AYB Argentina
| | - Analía Paola
- Centro de Investigación y Desarrollo en Tecnología de Pinturas-CIDEPINT Calle 52 e/121 y 122, 1900 La Plata B1900AYB Argentina
- Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo Calle 60 y 122, 1900 La Plata B1900AYB Argentina
| | - Esteban Avigliano
- Instituto de Investigaciones en Producción Animal (INPA-CONICET-UBA), Av. Chorroarín 280Universidad de Buenos Aires, 1427 Buenos Aires C1427CWO Argentina
- Centro de Investigaciones Antonia Ramos (CIAR)Fundación Bosques Nativos Argentinos Camino Balneario s/n Villa Bonita 3125, Misiones Argentina
| | - Jorge A. Palermo
- Universidad de Buenos AiresDepartamento de Química Orgánica – Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria Pabellón 2 1428 Buenos Aires Argentina
- CONICET-Universidad de Buenos AiresUnidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Ciudad Universitaria Pabellón 2 1428 Buenos Aires Argentina
| | - Guillermo Blustein
- Centro de Investigación y Desarrollo en Tecnología de Pinturas-CIDEPINT Calle 52 e/121 y 122, 1900 La Plata B1900AYB Argentina
- Universidad Nacional de La PlataFacultad de Ciencias Agrarias y Forestales, Calle 60 y 119, 1900 La Plata B1900AYB Argentina
| |
Collapse
|
10
|
Jehangir I, Ahmad SF, Jehangir M, Jamal A, Khan M. Integration of Bioinformatics and in vitro Analysis Reveal Anti-leishmanial Effects of Azithromycin and Nystatin. Curr Bioinform 2019. [DOI: 10.2174/1574893614666181217142344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background:
Leishmaniasis is the major cause of mortality in under-developed countries.
One of the main problems in leishmaniasis is the limited number of drug options, resistance
and side effects. Such a situation requires to study the new chemical series with anti-leishmanial
activity.
Objective:
To assess the anti-leishmanial activity of antibacterial and antifungal drugs.
Methods:
We have applied an integrative approach based on computational and in vitro methods
to elucidate the efficacy of different antibacterial and antifungal drugs against Leishmania tropica
(KWH23). Firstly these compounds were analyzed using in silico molecular docking. This analysis
showed that the nystatin and azithromycin interacted with the active site amino acids of the target
protein leishmanolysin. The nystatin, followed by azithromycin, produced the lowest binding energies
indicating their inhibitive activity against the target. The efficacy of the docked drugs was
further validated in vitro which showed that our bioinformatics based predictions completely
agreed with experimental results. Stock solutions of drugs, media preparation and parasites cultures
were performed according to the standard in-vitro protocol.
Results:
We found that the half maximal inhibitory concentration (IC50) value of dosage form of
nystatin (10,000,00 U) and pure nystatin was 0.05701 µM and 0.00324 µM respectively. The IC50
value of combined azithromycin and nystatin (dosage and pure form) was 0.156 µg/ml and 0.0023
µg /ml (0.00248 µM) respectively. It was observed that IC50 value of nystatin is better than
azithromycin and pure form of drugs had significant activity than the dosage form of drugs.
Conclusion:
From these results, it was also proven that pure drugs combination result is much better
than all tested drugs results. The results of both in vitro and in silico studies clearly indicated
that comparatively, nystatin is the potential candidate drug in combat against Leishmania tropica.
Collapse
Affiliation(s)
- Irum Jehangir
- Department of Microbiology, Khyber Medical University, Peshawar, Pakistan
| | - Syed Farhan Ahmad
- Department of Morphology, Biosciences Institute, Sao Paulo State University, Botucatu, Sao Paulo, Brazil
| | - Maryam Jehangir
- Department of Morphology, Biosciences Institute, Sao Paulo State University, Botucatu, Sao Paulo, Brazil
| | - Anwar Jamal
- Department of Microbiology, Khyber Medical University, Peshawar, Pakistan
| | - Momin Khan
- Department of Microbiology, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
11
|
Lombe BK, Feineis D, Bringmann G. Dimeric naphthylisoquinoline alkaloids: polyketide-derived axially chiral bioactive quateraryls. Nat Prod Rep 2019; 36:1513-1545. [DOI: 10.1039/c9np00024k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This is the first review on dimeric naphthylisoquinolines, a group of structurally intriguing, biosynthetically unique, and pharmacologically promising alkaloids.
Collapse
Affiliation(s)
- Blaise Kimbadi Lombe
- Institute of Organic Chemistry
- University of Würzburg
- D-97074 Würzburg
- Germany
- Faculté des Sciences
| | - Doris Feineis
- Institute of Organic Chemistry
- University of Würzburg
- D-97074 Würzburg
- Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry
- University of Würzburg
- D-97074 Würzburg
- Germany
| |
Collapse
|
12
|
Copaifera of the Neotropics: A Review of the Phytochemistry and Pharmacology. Int J Mol Sci 2018; 19:ijms19051511. [PMID: 29783680 PMCID: PMC5983702 DOI: 10.3390/ijms19051511] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/25/2022] Open
Abstract
The oleoresin of Copaifera trees has been widely used as a traditional medicine in Neotropical regions for thousands of years and remains a popular treatment for a variety of ailments. The copaiba resins are generally composed of a volatile oil made up largely of sesquiterpene hydrocarbons, such as β-caryophyllene, α-copaene, β-elemene, α-humulene, and germacrene D. In addition, the oleoresin is also made up of several biologically active diterpene acids, including copalic acid, kaurenoic acid, alepterolic acid, and polyalthic acid. This review presents a summary of the ecology and distribution of Copaifera species, the traditional uses, the biological activities, and the phytochemistry of copaiba oleoresins. In addition, several biomolecular targets relevant to the bioactivities have been implicated by molecular docking methods.
Collapse
|
13
|
Chowdhury SR, Kumar A, Godinho JLP, De Macedo Silva ST, Zuma AA, Saha S, Kumari N, Rodrigues JCF, Sundar S, Dujardin JC, Roy S, De Souza W, Mukhopadhyay S, Majumder HK. Voacamine alters Leishmania ultrastructure and kills parasite by poisoning unusual bi-subunit topoisomerase IB. Biochem Pharmacol 2017; 138:19-30. [PMID: 28483460 DOI: 10.1016/j.bcp.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 01/01/2023]
Abstract
Indole alkaloids possess a large spectrum of biological activities including anti-protozoal action. Here we report for the first time that voacamine, isolated from the plant Tabernaemontana coronaria, is an antiprotozoal agent effective against a large array of trypanosomatid parasites including Indian strain of Leishmania donovani and Brazilian strains of Leishmania amazonensis and Trypanosoma cruzi. It inhibits the relaxation activity of topoisomerase IB of L. donovani (LdTop1B) and stabilizes the cleavable complex. Voacamine is probably the first LdTop1B-specific poison to act uncompetitively. It has no impact on human topoisomerase I and II up to 200μM concentrations. The study also provides a thorough insight into ultrastructural alterations induced in three kinetoplastid parasites by a specific inhibitor of LdTop1B. Voacamine is also effective against intracellular amastigotes of different drug unresponsive field isolates of Leishmania donovani obtained from endemic zones of India severely affected with visceral leishmaniasis. Most importantly, this is the first report demonstrating the efficacy of a compound to reduce the burden of drug resistant parasites, unresponsive to SAG, amphotericin B and miltefosine, in experimental BALB/c mice model of visceral leishmaniasis. The findings cumulatively provide a strong evidence that voacamine can be a promising drug candidate against trypanosomatid infections.
Collapse
Affiliation(s)
- Somenath Roy Chowdhury
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Ashish Kumar
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Joseane Lima Prado Godinho
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Sara Teixeira De Macedo Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Aline Araujo Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Sourav Saha
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Neha Kumari
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Juliany Cola Fernandes Rodrigues
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Jean-Claude Dujardin
- Department of Parasitology, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Syamal Roy
- Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 726 101, India
| | - Wanderley De Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Sibabrata Mukhopadhyay
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Hemanta K Majumder
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
14
|
Lenz SAP, Kohout JD, Wetmore SD. Hydrolytic Glycosidic Bond Cleavage in RNA Nucleosides: Effects of the 2'-Hydroxy Group and Acid-Base Catalysis. J Phys Chem B 2016; 120:12795-12806. [PMID: 27933981 DOI: 10.1021/acs.jpcb.6b09620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite the inherent stability of glycosidic linkages in nucleic acids that connect the nucleobases to sugar-phosphate backbones, cleavage of these bonds is often essential for organism survival. The current study uses DFT (B3LYP) to provide a fundamental understanding of the hydrolytic deglycosylation of the natural RNA nucleosides (A, C, G, and U), offers a comparison to DNA hydrolysis, and examines the effects of acid, base, or simultaneous acid-base catalysis on RNA deglycosylation. By initially examining HCOO-···H2O mediated deglycosylation, the barriers for RNA hydrolysis were determined to be 30-38 kJ mol-1 higher than the corresponding DNA barriers, indicating that the 2'-OH group stabilizes the glycosidic bond. Although the presence of HCOO- as the base (i.e., to activate the water nucleophile) reduces the barrier for uncatalyzed RNA hydrolysis (i.e., unactivated H2O nucleophile) by ∼15-20 kJ mol-1, the extreme of base catalysis as modeled using a fully deprotonated water molecule (i.e., OH- nucleophile) decreases the uncatalyzed barriers by up to 65 kJ mol-1. Acid catalysis was subsequently examined by selectively protonating the hydrogen-bond acceptor sites of the RNA nucleobases, which results in an up to ∼80 kJ mol-1 barrier reduction relative to the corresponding uncatalyzed pathway. Interestingly, the nucleobase proton acceptor sites that result in the greatest barrier reductions match sites typically targeted in enzyme-catalyzed reactions. Nevertheless, simultaneous acid and base catalysis is the most beneficial way to enhance the reactivity of the glycosidic bonds in RNA, with the individual effects of each catalytic approach being weakened, additive, or synergistic depending on the strength of the base (i.e., degree of water nucleophile activation), the nucleobase, and the hydrogen-bonding acceptor site on the nucleobase. Together, the current contribution provides a greater understanding of the reactivity of the glycosidic bond in natural RNA nucleosides, and has fundamental implications for the function of RNA-targeting enzymes.
Collapse
Affiliation(s)
- Stefan A P Lenz
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Johnathan D Kohout
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
15
|
Ogungbe IV, Setzer WN. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations. Molecules 2016; 21:E1389. [PMID: 27775577 PMCID: PMC6274513 DOI: 10.3390/molecules21101389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Malaria, leishmaniasis, Chagas disease, and human African trypanosomiasis continue to cause considerable suffering and death in developing countries. Current treatment options for these parasitic protozoal diseases generally have severe side effects, may be ineffective or unavailable, and resistance is emerging. There is a constant need to discover new chemotherapeutic agents for these parasitic infections, and natural products continue to serve as a potential source. This review presents molecular docking studies of potential phytochemicals that target key protein targets in Leishmania spp., Trypanosoma spp., and Plasmodium spp.
Collapse
Affiliation(s)
- Ifedayo Victor Ogungbe
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
16
|
Byler KG, Collins JT, Ogungbe IV, Setzer WN. Alphavirus protease inhibitors from natural sources: A homology modeling and molecular docking investigation. Comput Biol Chem 2016; 64:163-184. [DOI: 10.1016/j.compbiolchem.2016.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/08/2016] [Accepted: 06/20/2016] [Indexed: 12/11/2022]
|
17
|
Di Pietro O, Vicente-García E, Taylor MC, Berenguer D, Viayna E, Lanzoni A, Sola I, Sayago H, Riera C, Fisa R, Clos MV, Pérez B, Kelly JM, Lavilla R, Muñoz-Torrero D. Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofused quinolines with multi-trypanosomatid activity. Eur J Med Chem 2015; 105:120-37. [PMID: 26479031 PMCID: PMC4638191 DOI: 10.1016/j.ejmech.2015.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 11/28/2022]
Abstract
Human African trypanosomiasis (HAT), Chagas disease and leishmaniasis, which are caused by the trypanosomatids Trypanosoma brucei, Trypanosoma cruzi and Leishmania species, are among the most deadly neglected tropical diseases. The development of drugs that are active against several trypanosomatids is appealing from a clinical and economic viewpoint, and seems feasible, as these parasites share metabolic pathways and hence might be treatable by common drugs. From benzonapthyridine 1, an inhibitor of acetylcholinesterase (AChE) for which we have found a remarkable trypanocidal activity, we have designed and synthesized novel benzo[h][1,6]naphthyridines, pyrrolo[3,2-c]quinolines, azepino[3,2-c]quinolines, and pyrano[3,2-c]quinolines through 2–4-step sequences featuring an initial multicomponent Povarov reaction as the key step. To assess the therapeutic potential of the novel compounds, we have evaluated their in vitro activity against T. brucei, T. cruzi, and Leishmania infantum, as well as their brain permeability, which is of specific interest for the treatment of late-stage HAT. To assess their potential toxicity, we have determined their cytotoxicity against rat myoblast L6 cells and their AChE inhibitory activity. Several tricyclic heterofused quinoline derivatives were found to display an interesting multi-trypanosomatid profile, with one-digit micromolar potencies against two of these parasites and two-digit micromolar potency against the other. Pyranoquinoline 39, which displays IC50 values of 1.5 μM, 6.1 μM and 29.2 μM against T. brucei, L. infantum and T. cruzi, respectively, brain permeability, better drug-like properties (lower lipophilicity and molecular weight and higher CNS MPO desirability score) than hit 1, and the lowest AChE inhibitory activity of the series (IC50 > 30 μM), emerges as an interesting multi-trypanosomatid lead, amenable to further optimization particularly in terms of its selectivity index over mammalian cells. Novel classes of tricyclic heterofused quinolines have been synthesized. Their 2–4-step syntheses involve a multicomponent Povarov reaction as the key step. Some compounds exhibit single digit micromolar potencies against 2 trypanosomatids. All compounds with multi-trypanosomatid activity can cross the blood–brain barrier. Most compounds with multi-trypanosomatid activity have drug like properties.
Collapse
Affiliation(s)
- Ornella Di Pietro
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | | | - Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Diana Berenguer
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Elisabet Viayna
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Anna Lanzoni
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Irene Sola
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Helena Sayago
- Barcelona Science Park, Baldiri Reixac, 10-12, E-08028, Barcelona, Spain
| | - Cristina Riera
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Roser Fisa
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - M Victòria Clos
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Belén Pérez
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - John M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Rodolfo Lavilla
- Barcelona Science Park, Baldiri Reixac, 10-12, E-08028, Barcelona, Spain; Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain.
| |
Collapse
|
18
|
Loza-Mejía MA, Salazar JR. Sterols and triterpenoids as potential anti-inflammatories: Molecular docking studies for binding to some enzymes involved in inflammatory pathways. J Mol Graph Model 2015; 62:18-25. [PMID: 26342572 DOI: 10.1016/j.jmgm.2015.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 12/12/2022]
Abstract
Triterpenes and sterols are good candidates for the development of anti-inflammatory drugs and use in chemoprevention or chemotherapy of cancer via the interaction with therapeutic targets related to inflammation, such as COX-1 and -2; LOX-5; MPO, PLA2 and i-NOS. In this study, we use molecular docking to evaluate the potential binding of a database of selected sterol and triterpenoid compounds with several skeletons against enzymes related to inflammation to propose structural requirements beneficial for anti-inflammatory activity that can be used for the design of more potent and selective anti-inflammatory and antitumor drugs. Our results suggest that the substitution pattern is important and that there is an important relationship between the class of sterol or triterpenoid skeleton and enzyme binding.
Collapse
Affiliation(s)
- Marco A Loza-Mejía
- Facultad de Ciencias Químicas, Universidad La Salle, Benjamín Franklin 47, 06140 México City, Mexico.
| | - Juan Rodrigo Salazar
- Facultad de Ciencias Químicas, Universidad La Salle, Benjamín Franklin 47, 06140 México City, Mexico.
| |
Collapse
|
19
|
Nagle A, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJN, Chennamaneni N, Pendem N, Buckner FS, Gelb M, Molteni V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem Rev 2014; 114:11305-47. [PMID: 25365529 PMCID: PMC4633805 DOI: 10.1021/cr500365f] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Advait
S. Nagle
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shilpi Khare
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Arun Babu Kumar
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frantisek Supek
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Andriy Buchynskyy
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Casey J. N. Mathison
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Naveen
Kumar Chennamaneni
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Nagendar Pendem
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frederick S. Buckner
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Michael
H. Gelb
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Valentina Molteni
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
20
|
Monzote L, Piñón A, Setzer WN. Antileishmanial Potential of Tropical Rainforest Plant Extracts. MEDICINES (BASEL, SWITZERLAND) 2014; 1:32-55. [PMID: 28933376 PMCID: PMC5532977 DOI: 10.3390/medicines1010032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 05/02/2023]
Abstract
A total of 115 different plant extracts from our collection, representing 96 plant species, have been evaluated for in vitro antileishmanial activity against L. amazonensis promastigotes. In addition, the extracts were screened for cytotoxic activity against BALB/c mouse macrophages in order to assess a selectivity index. Crude extracts that showed a selectivity index (CC50 for macrophage / IC50 for promastigotes) ³ 5 or with IC50 < 12.5 μg/mL against promastigotes, a total of 28 extracts, were further screened for anti-amastigote activity. A total of 25 extracts showed promising activity against L. amazonensis promastigotes with low cytotoxic activity. Ten of these extracts showed selectivity indices, (CC50 for macrophages / IC50 for amastigotes) greater than 10 and are considered "hits", worthy candidates for further phytochemical exploration: Conostegia xalapensis methanol bark extract, Endiandra palmerstonii bark extract, Eugenia monteverdensis acetone bark extract, Eugenia sp. "fine leaf" acetone bark extract, Exothea paniculata chloroform bark extract, Mallotus paniculatus ethanol bark extract, Matelea pseudobarbata ethanol extract, Quercus insignis ethanol bark extract, Sassafras albidum dichloromethane bark extract, and Stemmadenia donnell-smithii acetone bark extract.
Collapse
Affiliation(s)
- Lianet Monzote
- Parasitology Department, Institute of Tropical Medicine "Pedro Kouri", 10400 Havana, Cuba.
| | - Abel Piñón
- Parasitology Department, Institute of Tropical Medicine "Pedro Kouri", 10400 Havana, Cuba.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
21
|
|