1
|
Islam N, Suwandecha T, Srichana T. Dry powder inhaler design and particle technology in enhancing Pulmonary drug deposition: challenges and future strategies. Daru 2024; 32:761-779. [PMID: 38861247 PMCID: PMC11555000 DOI: 10.1007/s40199-024-00520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVES The efficient delivery of drugs from dry powder inhaler (DPI) formulations is associated with the complex interaction between the device design, drug formulations, and patient's inspiratory forces. Several challenges such as limited emitted dose of drugs from the formulation, low and variable deposition of drugs into the deep lungs, are to be resolved for obtaining the efficiency in drug delivery from DPI formulations. The objective of this study is to review the current challenges of inhaled drug delivery technology and find a way to enhance the efficiency of drug delivery from DPIs. METHODS/EVIDENCE ACQUISITION Using appropriate keywords and phrases as search terms, evidence was collected from the published articles following SciFinder, Web of Science, PubMed and Google Scholar databases. RESULTS Successful lung drug delivery from DPIs is very challenging due to the complex anatomy of the lungs and requires an integrated strategy for particle technology, formulation design, device design, and patient inhalation force. New DPIs are still being developed with limited performance and future device design employs computer simulation and engineering technology to overcome the ongoing challenges. Many issues of drug formulation challenges and particle technology are concerning factors associated with drug dispersion from the DPIs into deep lungs. CONCLUSION This review article addressed the appropriate design of DPI devices and drug formulations aligned with the patient's inhalation maneuver for efficient delivery of drugs from DPI formulations.
Collapse
Affiliation(s)
- Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, QLD, Australia.
| | - Tan Suwandecha
- Drug and Cosmetic Excellence Center and School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Prince of Songkla University, Hat Yai, Songkla, 90110, Thailand.
| |
Collapse
|
2
|
Neoh CF, Jeong W, Kong DCM, Beardsley J, Kwok PCL, Slavin MA, Chen SCA. New and emerging roles for inhalational and direct antifungal drug delivery approaches for treatment of invasive fungal infections. Expert Rev Anti Infect Ther 2024:1-14. [PMID: 39317940 DOI: 10.1080/14787210.2024.2409408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION The rising prevalence of difficult-to-treat, deep-seated invasive fungal diseases (IFD) has led to high mortality. Currently available antifungal treatments, administered predominantly orally or intravenously, may not sufficiently penetrate certain body sites, and/or are associated with systemic toxicity. Little is known about how to position alternative administration approaches such as inhalational and direct drug delivery routes. AREAS COVERED This review provides an updated overview of unconventional drug delivery strategies for managing IFD, focusing on inhalational (to target the lungs) and direct delivery methods to the central nervous system, bone/joint, and eyes. Novel compounds (e.g. opelconazole) and existing antifungals with innovative drug delivery systems currently undergoing clinical trials and/or used off-label in the clinical setting are discussed. EXPERT OPINION For both inhalational agents and direct delivery approaches, there are similar challenges that include the absence of: approved formulations for specific administration routes, delivery vehicles that are simple and safe to use whilst maintaining potency and efficiency of delivery, animal models suitable for investigating pharmacokinetic/pharmacodynamic profiles of inhaled antifungals, and consensus on the composite endpoints and intervals for of follow-up in clinical trials. To meet these challenges, cooperation of all stakeholders in drug development and regulation is required.
Collapse
Affiliation(s)
- Chin Fen Neoh
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Wirawan Jeong
- Pharmacy Department, The Royal Women's Hospital, Melbourne, Australia
| | - David C M Kong
- The National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infections and Immunity, Melbourne, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Justin Beardsley
- Sydney infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, Australia
| | - Monica A Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sharon C-A Chen
- Sydney infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| |
Collapse
|
3
|
Kumar Subramani P, P N R, Narayanasamy D. The Role of Pulmonary Drug Delivery in Modern Therapeutics: An Overview. Cureus 2024; 16:e68639. [PMID: 39371739 PMCID: PMC11451426 DOI: 10.7759/cureus.68639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
The pulmonary drug delivery system is a promising and evolving technology in which the prescribed medicine is breathed through the lungs, and subsequently, it enters the circulation via the alveolar epithelium. This category of pulmonary drug delivery system is an appealing and non-invasive administration method. Pulmonary drug delivery is most commonly utilized to treat airway problems by providing locally active medicines directly to their site of action. The dose required to have a pharmacological effect is reduced when medicines are delivered directly to their site of action. In addition to locally acting medications, the pulmonary route can be utilized to deliver compounds with systemic effects, such as in the case of insulin inhalation therapy for systemic absorption. Particle size, bioavailability, device compatibility, and other aspects must be addressed, including the formulation of drugs into an acceptable dosage for inhalation with sufficient stability. This formulation must also be used in conjunction with a suitable inhaler device that produces an aerosol with a particle or droplet size that assures deposition in the required targeted area of the pulmonary system. Recent advancements in pulmonary drug delivery include the development of targeted nanoparticles and inhalable biologics, which enhance drug absorption and efficacy while minimizing systemic side effects. Future directions focus on personalized medicine approaches and advanced inhalation technologies, although limitations such as variable patient adherence and the need for precise dosing continue to pose challenges.
Collapse
Affiliation(s)
- Prem Kumar Subramani
- Pharmacy, SRM College of Pharmacy, SRM Institute of Science and Technology, Chennai, IND
| | - Remya P N
- Pharmacy, SRM Institute of Science and Technology, Chennai, IND
| | | |
Collapse
|
4
|
Panthi VK, Fairfull-Smith KE, Islam N. Ciprofloxacin-Loaded Inhalable Formulations against Lower Respiratory Tract Infections: Challenges, Recent Advances, and Future Perspectives. Pharmaceutics 2024; 16:648. [PMID: 38794310 PMCID: PMC11125790 DOI: 10.3390/pharmaceutics16050648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Inhaled ciprofloxacin (CFX) has been investigated as a treatment for lower respiratory tract infections (LRTIs) associated with cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and bronchiectasis. The challenges in CFX effectiveness for LRTI treatment include poor aqueous solubility and therapy resistance. CFX dry powder for inhalation (DPI) formulations were well-tolerated, showing a remarkable decline in overall bacterial burden compared to a placebo in bronchiectasis patients. Recent research using an inhalable powder combining Pseudomonas phage PEV20 with CFX exhibited a substantial reduction in bacterial density in mouse lungs infected with clinical P. aeruginosa strains and reduced inflammation. Currently, studies suggest that elevated biosynthesis of fatty acids could serve as a potential biomarker for detecting CFX resistance in LRTIs. Furthermore, inhaled CFX has successfully addressed various challenges associated with traditional CFX, including the incapacity to eliminate the pathogen, the recurrence of colonization, and the development of resistance. However, further exploration is needed to address three key unresolved issues: identifying the right patient group, determining the optimal treatment duration, and accurately assessing the risk of antibiotic resistance, with additional multicenter randomized controlled trials suggested to tackle these challenges. Importantly, future investigations will focus on the effectiveness of CFX DPI in bronchiectasis and COPD, aiming to differentiate prognoses between these two conditions. This review underscores the importance of CFX inhalable formulations against LRTIs in preclinical and clinical sectors, their challenges, recent advancements, and future perspectives.
Collapse
Affiliation(s)
- Vijay Kumar Panthi
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia;
| | - Kathryn E. Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| |
Collapse
|
5
|
Huang Y, Yu S, Ahmed MU, Zhou QT. Liposomal Formulation Reduces Transport and Cell Uptake of Colistin in Human Lung Epithelial Calu-3 Cell and 3D Human Lung Primary Tissue Models. AAPS PharmSciTech 2024; 25:40. [PMID: 38366100 DOI: 10.1208/s12249-024-02753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
Respiratory tract infections caused by multi-drug-resistant (MDR) bacteria have been a severe risk to human health. Colistin is often used to treat the MDR Gram-negative bacterial infections as a last-line therapy. Inhaled colistin can achieve a high concentration in the lung but none of aerosolized colistin products has been approved in the USA. Liposome has been reported as an advantageous formulation strategy for antibiotics due to its controlled release profile and biocompatibility. We have developed colistin liposomal formulations in our previous study. In the present study, the cellular uptake and transport of colistin in colistin liposomes were examined in two human lung epithelium in vitro models, Calu-3 monolayer and EpiAirway 3D tissue models. In both models, cellular uptake (p < 0.05) and cellular transport (p < 0.01) of colistin were significantly reduced by the colistin liposome compared to the colistin solution. Our findings indicate that inhaled colistin liposomes could be a promising treatment for extracellular bacterial lung infections caused by MDR Pseudomonas aeruginosa (P. aeruginosa).
Collapse
Affiliation(s)
- Yijing Huang
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Maizbha Uddin Ahmed
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
6
|
Marzaman ANF, Roska TP, Sartini S, Utami RN, Sulistiawati S, Enggi CK, Manggau MA, Rahman L, Shastri VP, Permana AD. Recent Advances in Pharmaceutical Approaches of Antimicrobial Agents for Selective Delivery in Various Administration Routes. Antibiotics (Basel) 2023; 12:822. [PMID: 37237725 PMCID: PMC10215767 DOI: 10.3390/antibiotics12050822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Globally, the increase of pathogenic bacteria with antibiotic-resistant characteristics has become a critical challenge in medical treatment. The misuse of conventional antibiotics to treat an infectious disease often results in increased resistance and a scarcity of effective antimicrobials to be used in the future against the organisms. Here, we discuss the rise of antimicrobial resistance (AMR) and the need to combat it through the discovery of new synthetic or naturally occurring antibacterial compounds, as well as insights into the application of various drug delivery approaches delivered via various routes compared to conventional delivery systems. AMR-related infectious diseases are also discussed, as is the efficiency of various delivery systems. Future considerations in developing highly effective antimicrobial delivery devices to address antibiotic resistance are also presented here, especially on the smart delivery system of antibiotics.
Collapse
Affiliation(s)
- Ardiyah Nurul Fitri Marzaman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Tri Puspita Roska
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Rifka Nurul Utami
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sulistiawati Sulistiawati
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Cindy Kristina Enggi
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Marianti A. Manggau
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Venkatram Prasad Shastri
- Institute for Macromolecular Chemistry, Albert Ludwigs Universitat Freiburg, 79085 Freiburg, Germany;
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| |
Collapse
|
7
|
Debnath SK, Debnath M, Srivastava R. Opportunistic etiological agents causing lung infections: emerging need to transform lung-targeted delivery. Heliyon 2022; 8:e12620. [PMID: 36619445 PMCID: PMC9816992 DOI: 10.1016/j.heliyon.2022.e12620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/03/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
Lung diseases continue to draw considerable attention from biomedical and public health care agencies. The lung with the largest epithelial surface area is continuously exposed to the external environment during exchanging gas. Therefore, the chances of respiratory disorders and lung infections are overgrowing. This review has covered promising and opportunistic etiologic agents responsible for lung infections. These pathogens infect the lungs either directly or indirectly. However, it is difficult to intervene in lung diseases using available oral or parenteral antimicrobial formulations. Many pieces of research have been done in the last two decades to improve inhalable antimicrobial formulations. However, very few have been approved for human use. This review article discusses the approved inhalable antimicrobial agents (AMAs) and identifies why pulmonary delivery is explored. Additionally, the basic anatomy of the respiratory system linked with barriers to AMA delivery has been discussed here. This review opens several new scopes for researchers to work on pulmonary medicines for specific diseases and bring more respiratory medication to market.
Collapse
|
8
|
Arauzo B, González-Garcinuño Á, Tabernero A, Calzada-Funes J, Lobera MP, del Valle EMM, Santamaria J. Engineering Alginate-Based Dry Powder Microparticles to a Size Suitable for the Direct Pulmonary Delivery of Antibiotics. Pharmaceutics 2022; 14:pharmaceutics14122763. [PMID: 36559257 PMCID: PMC9781482 DOI: 10.3390/pharmaceutics14122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The inhaled route is regarded as one of the most promising strategies as a treatment against pulmonary infections. However, the delivery of drugs in a dry powder form remains challenging. In this work, we have used alginate to form microparticles containing an antibiotic model (colistin sulfate). The alginate microparticles were generated by atomization technique, and they were characterized by antimicrobial in vitro studies against Pseudomonas aeruginosa. Optimization of different parameters allowed us to obtain microparticles as a dry powder with a mean size (Feret diameter) of 4.45 ± 1.40 µm and drug loading of 8.5 ± 1.50%. The process developed was able to concentrate most of the colistin deposits on the surface of the microparticles, which could be observed by SEM and a Dual-Beam microscope. This produces a fast in vitro release of the drug, with a 100% release achieved in 4 h. Physicochemical characterization using the FTIR, EDX and PXRD techniques revealed information about the change that occurs from the amorphous to a crystalline form of colistin. Finally, the cytotoxicity of microparticles was tested using lung cell lines (A549 and Calu-3). Results of the study showed that alginate microparticles were able to inhibit bacterial growth while displaying non-toxicity toward lung cells.
Collapse
Affiliation(s)
- Beatriz Arauzo
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC—University of Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical and Environmental Engineering, Campus Río Ebro-Edificio I + D, University of Zaragoza, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | | | - Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, 37008 Salamanca, Spain
| | - Javier Calzada-Funes
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC—University of Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical and Environmental Engineering, Campus Río Ebro-Edificio I + D, University of Zaragoza, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - María Pilar Lobera
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC—University of Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical and Environmental Engineering, Campus Río Ebro-Edificio I + D, University of Zaragoza, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Eva M. Martín del Valle
- Department of Chemical Engineering, University of Salamanca, 37008 Salamanca, Spain
- Correspondence: (E.M.M.d.V.); (J.S.)
| | - Jesus Santamaria
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC—University of Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical and Environmental Engineering, Campus Río Ebro-Edificio I + D, University of Zaragoza, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Correspondence: (E.M.M.d.V.); (J.S.)
| |
Collapse
|
9
|
Zhu S, Song C, Zhang J, Diao S, Heinrichs TM, Martins FS, Lv Z, Zhu Y, Yu M, Sy SKB. Effects of amikacin, polymyxin-B, and sulbactam combination on the pharmacodynamic indices of mutant selection against multi-drug resistant Acinetobacter baumannii. Front Microbiol 2022; 13:1013939. [PMID: 36338049 PMCID: PMC9632654 DOI: 10.3389/fmicb.2022.1013939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/29/2022] [Indexed: 12/01/2022] Open
Abstract
Amikacin and polymyxins as monotherapies are ineffective against multidrug-resistant Acinetobacter baumannii at the clinical dose. When polymyxins, aminoglycosides, and sulbactam are co-administered, the combinations exhibit in vitro synergistic activities. The minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined in 11 and 5 clinical resistant isolates of A. baumannii harboring OXA-23, respectively, in order to derive the fraction of time over the 24-h wherein the free drug concentration was within the mutant selection window (fTMSW) and the fraction of time that the free drug concentration was above the MPC (fT>MPC) from simulated pharmacokinetic profiles. The combination of these three antibiotics can confer susceptibility in multi-drug resistant A. baumannii and reduce the opportunity for bacteria to develop further resistance. Clinical intravenous dosing regimens of amikacin, polymyxin-B, and sulbactam were predicted to optimize fTMSW and fT>MPC from drug exposures in the blood. Mean fT>MPC were ≥ 60% and ≥ 80% for amikacin and polymyxin-B, whereas mean fTMSW was reduced to <30% and <15%, respectively, in the triple antibiotic combination. Due to the low free drug concentration of amikacin and polymyxin-B simulated in the epithelial lining fluid, the two predicted pharmacodynamic parameters in the lung after intravenous administration were not optimal even in the combination therapy setting.
Collapse
Affiliation(s)
- Shixing Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chu Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shuo Diao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Tobias M. Heinrichs
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Frederico S. Martins
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Zhihua Lv,
| | - Yuanqi Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Mingming Yu,
| | - Sherwin K. B. Sy
- Department of Statistics, State University of Maringá, Paraná, Brazil
- Sherwin K. B. Sy,
| |
Collapse
|
10
|
Ding L, Wang J, Cai S, Smyth H, Cui Z. Pulmonary biofilm-based chronic infections and inhaled treatment strategies. Int J Pharm 2021; 604:120768. [PMID: 34089796 DOI: 10.1016/j.ijpharm.2021.120768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Certain pulmonary diseases, such as cystic fibrosis (CF), non-CF bronchiectasis, chronic obstructive pulmonary disease, and ventilator-associated pneumonia, are usually accompanied by respiratory tract infections due to the physiological alteration of the lung immunological defenses. Recurrent infections may lead to chronic infection through the formation of biofilms. Chronic biofilm-based infections are challenging to treat using antimicrobial agents. Therefore, effective ways to eradicate biofilms and thus relieve respiratory tract infection require the development of efficacious agents for biofilm destruction, the design of delivery carriers with biofilm-targeting and/or penetrating abilities for these agents, and the direct delivery of them into the lung. This review provides an in-depth description of biofilm-based infections caused by pulmonary diseases and focuses on current existing agents that are administered by inhalation into the lung to treat biofilm, which include i) inhalable antimicrobial agents and their combinations, ii) non-antimicrobial adjuvants such as matrix-targeting enzymes, mannitol, glutathione, cyclosporin A, and iii) liposomal formulations of anti-biofilm agents. Finally, novel agents that have shown promise against pulmonary biofilms as well as traditional and new devices for pulmonary delivery of anti-biofilm agents into the lung are also discussed.
Collapse
Affiliation(s)
- Li Ding
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jieliang Wang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shihao Cai
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hugh Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
11
|
Sebbane F, Lemaître N. Antibiotic Therapy of Plague: A Review. Biomolecules 2021; 11:724. [PMID: 34065940 PMCID: PMC8151713 DOI: 10.3390/biom11050724] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
Plague-a deadly disease caused by the bacterium Yersinia pestis-is still an international public health concern. There are three main clinical forms: bubonic plague, septicemic plague, and pulmonary plague. In all three forms, the symptoms appear suddenly and progress very rapidly. Early antibiotic therapy is essential for countering the disease. Several classes of antibiotics (e.g., tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, chloramphenicol, rifamycin, and β-lactams) are active in vitro against the majority of Y. pestis strains and have demonstrated efficacy in various animal models. However, some discrepancies have been reported. Hence, health authorities have approved and recommended several drugs for prophylactic or curative use. Only monotherapy is currently recommended; combination therapy has not shown any benefits in preclinical studies or case reports. Concerns about the emergence of multidrug-resistant strains of Y. pestis have led to the development of new classes of antibiotics and other therapeutics (e.g., LpxC inhibitors, cationic peptides, antivirulence drugs, predatory bacteria, phages, immunotherapy, host-directed therapy, and nutritional immunity). It is difficult to know which of the currently available treatments or therapeutics in development will be most effective for a given form of plague. This is due to the lack of standardization in preclinical studies, conflicting data from case reports, and the small number of clinical trials performed to date.
Collapse
Affiliation(s)
- Florent Sebbane
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nadine Lemaître
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
- Laboratoire de Bactériologie-Hygiène, Centre Hospitalier Universitaire Amiens Picardie, UR 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Université de Picardie Jules Verne, F-80000 Amiens, France
| |
Collapse
|
12
|
Debnath SK, Srivastava R, Debnath M, Omri A. Status of inhalable antimicrobial agents for lung infection: progress and prospects. Expert Rev Respir Med 2021; 15:1251-1270. [PMID: 33866900 DOI: 10.1080/17476348.2021.1919514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Available parenteral and oral administration of antimicrobial agents (AMAs) in respiratory infections often show less penetration into the lung parenchyma. Due to inappropriate dose availability, the rate of antibiotic resistance is increasing gradually. Inhaled antibiotics intensely improve the availability of drugs at the site of respiratory infections. This targeted delivery minimizes systemic exposure and associated toxicity.Area covers: This review was performed by searching in the scientific database like PubMed and several trusted government sites like fda.gov, cdc.gov, ClinicalTrials.gov, etc. For better understanding, AMAs are classified in different stages of approval. Mechanism and characterization of pulmonary drug deposition section helps to understand the effective delivery of AMAs to the respiratory tract. There is a need for proper adoption of delivery devices for inhalable AMAs. Thus, delivery devices are extensively explained. Inspiratory flow has a remarkable impact on the delivery device that has been explained in detail.Expert opinion: Pulmonary delivery restricts the bulk administration of drugs in comparison with other routes. Therefore, novel AMAs with higher bactericidal activity at lower concentrations need to be synthesized. Extensive research is indeed in developing innovative delivery devices that would able to deliver higher doses of AMAs through the pulmonary route.
Collapse
Affiliation(s)
- Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| | - Monalisha Debnath
- School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, India
| | - Abdelwahab Omri
- Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
13
|
Hoogevest P, Tiemessen H, Metselaar JM, Drescher S, Fahr A. The Use of Phospholipids to Make Pharmaceutical Form Line Extensions. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Peter Hoogevest
- Phospholipid Research Center Im Neuenheimer Feld 515 Heidelberg 69120D‐69120 Germany
| | - Harry Tiemessen
- Technical & Research Development PHAD PDU Specialty Novartis Campus Physical Garden (WSJ 177) 2.14 Basel CH‐4002 Switzerland
| | - Josbert M. Metselaar
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic Aachen D‐52074 Germany
- Institute for Biomedical Engineering, Faculty of Medicine RWTH Aachen University Aachen D‐52074 Germany
| | - Simon Drescher
- Phospholipid Research Center Im Neuenheimer Feld 515 Heidelberg D‐69120 Germany
| | - Alfred Fahr
- Professor Emeritus, Pharmaceutical Technology Friedrich‐Schiller‐University Jena Jena Germany
| |
Collapse
|
14
|
Chang RYK, Kwok PCL, Ghassabian S, Brannan JD, Koskela HO, Chan H. Cough as an adverse effect on inhalation pharmaceutical products. Br J Pharmacol 2020; 177:4096-4112. [PMID: 32668011 PMCID: PMC7443471 DOI: 10.1111/bph.15197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/06/2023] Open
Abstract
Cough is an adverse effect that may hinder the delivery of drugs into the lungs. Chemical or mechanical stimulants activate the transient receptor potential in some airway afferent nerves (C-fibres or A-fibres) to trigger cough. Types of inhaler device and drug, dose, excipients and formulation characteristics, including pH, tonicity, aerosol output and particle size may trigger cough by stimulating the cough receptors. Release of inflammatory mediators may increase the sensitivity of the cough receptors to stimulants. The cough-provoking effect of aerosols is enhanced by bronchoconstriction in diseased airways and reduces drug deposition in the target pulmonary regions. In this article, we review the factors by which inhalation products may cause cough.
Collapse
Affiliation(s)
- Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
| | - Sussan Ghassabian
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
| | - John D. Brannan
- Department of Respiratory and Sleep MedicineJohn Hunter HospitalNewcastleNSWAustralia
| | - Heikki O. Koskela
- Unit for Medicine and Clinical Research, Pulmonary DivisionKuopio University HospitalKuopioFinland
- School of Medicine, Faculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Hak‐Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
15
|
Yang L, Liu Y, Wang N, Wang H, Wang K, Luo XL, Dai RX, Tao RJ, Wang HJ, Yang JW, Tao GQ, Qu JM, Ge BX, Li YY, Xu JF. Albumin-Based LL37 Peptide Nanoparticles as a Sustained Release System against Pseudomonas aeruginosa Lung Infection. ACS Biomater Sci Eng 2020; 7:1817-1826. [PMID: 33966375 DOI: 10.1021/acsbiomaterials.0c01084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pseudomonas aeruginosa (PA) has emerged as a pressing challenge to pulmonary infection and lung damage. The LL37 peptide is an efficient antimicrobial agent against PA strains, but its application is limited because of fast clearance in vivo, biosafety concerns, and low bioavailability. Thus, an albumin-based nanodrug delivery system with reduction sensitivity was developed by forming intermolecular disulfide bonds to increase in vivo LL37 performance against PA. Cationic LL37 can be efficiently encapsulated via electrostatic interactions to exert improved antimicrobial effects. The LL37 peptide exhibits greater than 48 h of sustained released from LL37 peptide nanoparticles (LL37 PNP), and prolonged antimicrobial effects were noted as the incubation time increased. Levels of inflammatory cytokines secreted by peritoneal macrophages, including TNF-α and IL-6, were reduced significantly after LL37 PNP treatment following PA stimulation, indicating that LL37 PNP inhibits PA growth and exerts anti-inflammatory effects in vitro. In a murine model of acute PA lung infection, LL37 PNP significantly reduced TNF-α and IL-1β expression and alleviated lung damage. The accelerated clearance of PA indicates that LL37 PNP could improve PA lung infection and the subsequent inflammation response more efficiently compared with free LL37 peptide. In conclusion, this excellent biocompatible LL37 delivery strategy may serve as an alternative approach for the application of new types of clinical treatment in future.
Collapse
Affiliation(s)
- Ling Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yang Liu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Ning Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Hong Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Kun Wang
- School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, PR China.,Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, PR China
| | - Xiao-Li Luo
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Ruo-Xuan Dai
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Ru-Jia Tao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Huai-Ji Wang
- School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, PR China.,Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, PR China
| | - Jia-Wei Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Guo-Qing Tao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jie-Ming Qu
- Ruijin Hospital, Medical School of Shanghai Jiaotong University, Shanghai 200025, China
| | - Bao-Xue Ge
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yong-Yong Li
- School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, PR China.,Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, PR China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
16
|
Mangal S, Park H, Nour R, Shetty N, Cavallaro A, Zemlyanov D, Thalberg K, Puri V, Nicholas M, Narang AS, Zhou QT. Correlations between surface composition and aerosolization of jet-milled dry powder inhaler formulations with pharmaceutical lubricants. Int J Pharm 2019; 568:118504. [PMID: 31299339 DOI: 10.1016/j.ijpharm.2019.118504] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/03/2019] [Accepted: 07/07/2019] [Indexed: 11/30/2022]
Abstract
Co-jet-milling drugs and lubricants may enable simultaneous particle size reduction and surface coating to achieve satisfactory aerosolization performance. This study aims to establish the relationship between surface lubricant coverage and aerosolization behavior of a model drug (ciprofloxacin HCl) co-jet-milled with lubricants [magnesium stearate (MgSt) or l-leucine]. The co-jet-milled formulations were characterized for particle size, morphology, cohesion, Carr's index, and aerosolization performance. The surface lubricant coating was assessed by probing surface chemical composition using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary-ion mass spectrometry (ToF-SIMS). The effects of co-jet-milling on the surface energy and in vitro dissolution of ciprofloxacin were also evaluated. Our results indicated that, in general, the ciprofloxacin co-jet-milled with l-leucine at >0.5% w/w showed a significant higher fine particle fraction (FPF) compared with the ciprofloxacin jet-milled alone. The FPF values plateau at or above 5% w/w for both MgSt and l-leucine. We have established the quantitative correlations between surface lubricant coverage and aerosolization in the tested range for each of the lubricants. More importantly, our results suggest different mechanisms to improve aerosolization for MgSt-coating and l-leucine-coating, respectively: MgSt-coating reduces inter-particulate interactions through the formation of low surface energy coating films, while l-leucine-coating not only reduces the surface energy but also creates rough particle surfaces that reduce inter-particulate contact area. Furthermore, surface coatings with 5% w/w MgSt (which is hydrophobic) did not lead to substantial changes in in vitro dissolution. Our findings have shown that the coating structure/quality and their effects could be highly dependent on the process and the coating material. The findings from this mechanistic study provide fundamental understanding of the critical effects of MgSt and l-leucine surface coverages on aerosolization and powder flow properties of inhalation particles.
Collapse
Affiliation(s)
- Sharad Mangal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Reham Nour
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Nivedita Shetty
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Alex Cavallaro
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Kyrre Thalberg
- Inhalation Product Development, Pharmaceutical Technology & Development, AstraZeneca, Gothenburg, Sweden
| | - Vibha Puri
- Small Molecule Pharmaceutics Department, Genentech, Inc., One DNA Way, South San Francisco, CA 94080, USA
| | - Mark Nicholas
- Inhalation Product Development, Pharmaceutical Technology & Development, AstraZeneca, Gothenburg, Sweden
| | - Ajit S Narang
- Small Molecule Pharmaceutics Department, Genentech, Inc., One DNA Way, South San Francisco, CA 94080, USA
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
17
|
Khatib I, Khanal D, Ruan J, Cipolla D, Dayton F, Blanchard JD, Chan HK. Ciprofloxacin nanocrystals liposomal powders for controlled drug release via inhalation. Int J Pharm 2019; 566:641-651. [PMID: 31202900 DOI: 10.1016/j.ijpharm.2019.05.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/24/2019] [Accepted: 05/27/2019] [Indexed: 01/20/2023]
Abstract
This study was conducted to evaluate the feasibility of developing inhalable dry powders of liposomal encapsulated ciprofloxacin nanocrystals (LECN) for controlled drug release. Dry powders of LECN were produced by freeze-thaw followed by spray drying. The formulations contained sucrose as a lyoprotectant in different weight ratios (0.75:1, 1:1 and 2:1 sucrose to lipids), along with 2% magnesium stearate and 5% isoleucine as aerosolization enhancers. The powder physical properties (particle size, morphology, crystallinity, moisture content), in vitro aerosolization performance, drug encapsulation efficiency and in vitro drug release were investigated. The spray dried powders were comprised of spherical particles with a median diameter of ∼1 µm, partially crystalline, with a low water content (∼2% mass) and did not undergo recrystallization at high relative humidity. When dispersed by an Osmohaler® inhaler at 100 L/min, the powders showed a high aerosol performance with a fine particle fraction (% wt. <5 µm) of 66-70%. After reconstitution of the powders in saline, ciprofloxacin nanocrystals were confirmed by cryo-electron microscopy. The drug encapsulation efficiency of the reconstituted liposomes was 71-79% compared with the stock liquid formulation. Of the three formulations, the one containing a sucrose to lipids wt. ratio of 2:1 demonstrated a prolonged release of ciprofloxacin from the liposomes. In conclusion, ciprofloxacin nanocrystal liposomal powders were prepared that were suitable for inhalation aerosol delivery and controlled drug release.
Collapse
Affiliation(s)
- Isra Khatib
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Dipesh Khanal
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Juanfang Ruan
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, NSW 2052, Australia
| | | | | | | | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
18
|
Ling J, Mangal S, Park H, Wang S, Cavallaro A, Zhou QT. Simultaneous Particle Size Reduction and Homogeneous Mixing to Produce Combinational Powder Formulations for Inhalation by the Single-Step Co-Jet Milling. J Pharm Sci 2019; 108:3146-3151. [PMID: 31112716 DOI: 10.1016/j.xphs.2019.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/17/2019] [Accepted: 05/07/2019] [Indexed: 01/12/2023]
Abstract
Homogeneous mixing of 2 cohesive jet-milled drug powders is a challenge for pharmaceutical manufacturing on account of their cohesive nature resulting in the formation of strong and random agglomerates. In this study, colistin and ciprofloxacin were co-jet milled to develop combinational antibiotic dry powder formulations for inhalation. The properties of particle size, morphology, content uniformity, and in vitro aerosolization were evaluated. The distribution of 2 drugs in the co-jet milled powders was assessed using time-of-flight-secondary ion mass spectrometry. The co-jet milled powders demonstrated an acceptable content uniformity indicating homogeneity. In general, time-of-flight-secondary ion mass spectrometry images showed relatively homogeneous distributions of ciprofloxacin and colistin in the co-milled formulations. Importantly, the 2 drugs generally had the similar fine particle fraction and deposition behavior in each combinational formulation supporting that the particle mixtures were relatively homogenous and could maximize the antimicrobial synergy. In conclusion, co-jet milling could be a viable technique to produce the combination powders for inhalation.
Collapse
Affiliation(s)
- Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhuoshan 316022, China; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907
| | - Sharad Mangal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907
| | - Shaoning Wang
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907; Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Alex Cavallaro
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907.
| |
Collapse
|
19
|
Poly(lactic acid)/poly(lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00443-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Mangal S, Huang J, Shetty N, Park H, Lin YW, Yu HH, Zemlyanov D, Velkov T, Li J, Zhou QT. Effects of the antibiotic component on in-vitro bacterial killing, physico-chemical properties, aerosolization and dissolution of a ternary-combinational inhalation powder formulation of antibiotics for pan-drug resistant Gram-negative lung infections. Int J Pharm 2019; 561:102-113. [PMID: 30797863 DOI: 10.1016/j.ijpharm.2019.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/02/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022]
Abstract
Combinational antibiotic formulations have emerged as an important strategy to combat antibiotic resistance. The main objective of this study was to examine effects of individual components on the antimicrobial activity, physico-chemical properties, aerosolization and dissolution of powder aerosol formulations when three synergistic drugs were co-spray dried. A ternary dry powder formulation consisting of meropenem (75.5 %w/w), colistin (15.1 %w/w) and rifampicin (9.4 %w/w) at the selected ratio was produced by spray drying. The ternary formulation was characterized for in-vitro antibacterial activity, physico-chemical properties, surface composition, aerosol performance and dissolution. All of the formulations demonstrated excellent aerosolization behavior achieving a fine particle fraction of >70%, which was substantially higher than those for the Meropenem-SD and Colistin-Meropenem formulations. The results indicated that rifampicin controlled the surface morphology of the ternary and binary combination formulations resulting in the formation of highly corrugated particles. Advanced characterization of surface composition by XPS supported the hypothesis that rifampicin was enriched on the surface of the combination powder formulations. All spray-dried formulations were amorphous and absorbed substantial amount of water at the elevated humidity. Storage at the elevated humidity caused a substantial decline in aerosolization performance for the Meropenem-SD and Colistin-Meropenem, which was attributed to increased inter-particulate capillary forces or particle fusion. In contrast, the ternary combination and binary Meropenem-Rifampicin formulations showed no change in aerosol performance at the elevated storage humidity conditions; attributable to the enriched hydrophobicity of rifampicin on the particle surface that acted as a barrier against moisture condensation and particle fusion. Interestingly, in the ternary formulation rifampicin enrichment on the surface did not interfere with the dissolution of other two components (i.e. meropenem and colistin). Our study provides an insight on the impact of each component on the performance of co-spray dried combinational formulations.
Collapse
Affiliation(s)
- Sharad Mangal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jiayang Huang
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Nivedita Shetty
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yu-Wei Lin
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Heidi H Yu
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
21
|
Mangal S, Xu R, Park H, Zemlyanov D, Shetty N, Lin YW, Morton D, Chan HK, Li J, Zhou QT. Understanding the Impacts of Surface Compositions on the In-Vitro Dissolution and Aerosolization of Co-Spray-Dried Composite Powder Formulations for Inhalation. Pharm Res 2018; 36:6. [PMID: 30406281 DOI: 10.1007/s11095-018-2527-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/17/2018] [Indexed: 01/26/2023]
Abstract
PURPOSE Dissolution behavior of dry powder inhaler (DPI) antibiotic formulations in the airways may affect their efficacy especially for poorly-soluble antibiotics such as azithromycin. The main objective of this study was to understand the effects of surface composition on the dissolution of spray dried azithromycin powders by itself and in combination with colistin. METHODS Composite formulations of azithromycin (a poorly water-soluble molecule) and colistin (a water-soluble molecule) were produced by spray drying. The resultant formulations were characterized for particle size, morphology, surface composition, solid-state properties, solubility and dissolution. RESULTS The results demonstrate that surfaces composition has critical impacts on the dissolution of composite formulations. Colistin was shown to increase the solubility of azithromycin. For composite formulations with no surface colistin, azithromycin released at a similar dissolution rate as the spray-dried azithromycin alone. An increase in surface colistin concentration was shown to accelerate the dissolution of azithromycin. The dissolution of colistin from the composite formulations was significantly slower than the spray-dried pure colistin. In addition, FTIR spectrum showed intermolecular interactions between azithromycin and colistin in the composite formulations, which could contribute to the enhanced solubility and dissolution of azithromycin. CONCLUSIONS Our study provides fundamental understanding of the effects of surface concentration of colistin on azithromycin dissolution of co-spray-dried composite powder formulations.
Collapse
Affiliation(s)
- Sharad Mangal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Rongkun Xu
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, Indiana, 47907, USA
| | - Nivedita Shetty
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| | - David Morton
- Drug Delivery, Dynamics & Deposition, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
22
|
Mangal S, Park H, Zeng L, Yu HH, Lin YW, Velkov T, Denman JA, Zemlyanov D, Li J, Zhou QT. Composite particle formulations of colistin and meropenem with improved in-vitro bacterial killing and aerosolization for inhalation. Int J Pharm 2018; 548:443-453. [PMID: 30008433 PMCID: PMC6086597 DOI: 10.1016/j.ijpharm.2018.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
Antibiotic combination therapy is promising for the treatment of lower respiratory tract infections caused by multi-drug resistant Gram-negative pathogens. Inhaled antibiotic therapy offers the advantage of direct delivery of the drugs to the site of infection, as compared to the parenteral administrations. In this study, we developed composite particle formulations of colistin and meropenem. The formulations were characterized for particle size, morphology, specific surface area, surface chemical composition, in-vitro aerosolization performance and in-vitro antibacterial activity. The combinations demonstrated enhanced antibacterial activity against clinical isolates of Acinetobacter baumannii N16870 and Pseudomonas aeruginosa 19147, when compared with antibiotic monotherapy. Spray-dried meropenem alone showed a poor aerosolization performance as indicated by a low fine particle fraction (FPF) of 32.5 ± 3.3%. Co-spraying with colistin improved the aerosolization of meropenem with up to a two-fold increase in the FPF. Such improvements in aerosolization can be attributed to the enrichment of colistin on the surface of composite particles as indicated by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), and the increases in particle porosity. Intermolecular interactions between colistin and meropenem were observed for the combination formulations as measured by FT-IR. In conclusion, our results show that co-spray drying with colistin improves the antibacterial activity and aerosol performance of meropenem and produces a formulation with synergistic bacterial killing.
Collapse
Affiliation(s)
- Sharad Mangal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Lingfei Zeng
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Heidi H Yu
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John A Denman
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
23
|
Kukut Hatipoglu M, Hickey AJ, Garcia-Contreras L. Pharmacokinetics and pharmacodynamics of high doses of inhaled dry powder drugs. Int J Pharm 2018; 549:306-316. [PMID: 30077761 DOI: 10.1016/j.ijpharm.2018.07.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/17/2018] [Accepted: 07/22/2018] [Indexed: 12/13/2022]
Abstract
For many years, administration of drugs by inhalation has been the mainstay treatment for obstructive respiratory disorders such as asthma and chronic obstructive pulmonary disease. Antibiotics and other drugs have been administered for decades as aerosols to treat other pulmonary disease in a clinical setting, but it was until the early 1980's that colistin was formally marketed as a solution for nebulization in Europe (Colomycin, Pharmax, Bexley). The solubility of other drugs and the size of the dose required to achieve therapeutic concentrations at the site of action, made treatment times long and difficult to be performed at home. High dose dry powder delivery is a potentially effective way to deliver low potency drugs such as antibiotics. There are three major barriers to achieving the desired pharmacodynamic effect with these compounds: aerosol delivery, lung deposition and clearance. The powder formulation and device technology influence aerosol generation and may influence the size of the dose that can be achieved by inhalation in one puff. The site of deposition in the lungs is dictated by mechanisms of deposition which are influenced by the aerosol properties, particularly aerodynamic particle size distribution and the anatomy and physiology of the lungs. Finally, mechanisms of clearance dictate the local and systemic disposition of the drug, which in turn affects its pharmacokinetics and ultimately the pharmacodynamic effect and efficacy of treatment. Each of these factors will be considered and the implications for antimicrobial agent delivery as a high dose delivery example will be given.
Collapse
Affiliation(s)
- Manolya Kukut Hatipoglu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | | - Lucila Garcia-Contreras
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| |
Collapse
|
24
|
Antimicrobial molecules in the lung: formulation challenges and future directions for innovation. Future Med Chem 2018; 10:575-604. [PMID: 29473765 DOI: 10.4155/fmc-2017-0162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inhaled antimicrobials have been extremely beneficial in treating respiratory infections, particularly chronic infections in a lung with cystic fibrosis. The pulmonary delivery of antibiotics has been demonstrated to improve treatment efficacy, reduce systemic side effects and, critically, reduce drug exposure to commensal bacteria compared with systemic administration, reducing selective pressure for antimicrobial resistance. This review will explore the specific challenges of pulmonary delivery of a number of differing antimicrobial molecules, and the formulation and technological approaches that have been used to overcome these difficulties. It will also explore the future challenges being faced in the development of inhaled products and respiratory infection treatment, and identify future directions of innovation, with a particular focus on respiratory infections caused by multiple drug-resistant pathogens.
Collapse
|
25
|
Cystic Fibrosis Airway Microbiome: Overturning the Old, Opening the Way for the New. J Bacteriol 2018; 200:JB.00561-17. [PMID: 29084859 DOI: 10.1128/jb.00561-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The genetic disease cystic fibrosis (CF) is associated with chronic airway infections that are a proximal cause of death in many patients with this affliction. Classic microbiology studies focusing on canonical pathogens resulted in the development of a common set of views regarding the nature of the airway infections associated with this disease, and these ideas have influenced everything from the way infections are treated to how clinical trials for new CF-targeted antibiotics are designed and the focus of CF-related research topics. Recent culture-independent studies have prompted us to rethink, and in some cases discard, some of these long-held views. In this piece, I argue that an updated view of the complicated chronic infections associated with CF, thanks in large part to culture-independent studies of sputum and bronchoalveolar lavage fluid samples, should be leveraged to develop new strategies to treat these recalcitrant infections.
Collapse
|
26
|
Cartlidge MK, Hill AT. Inhaled or nebulised ciprofloxacin for the maintenance treatment of bronchiectasis. Expert Opin Investig Drugs 2017; 26:1091-1097. [DOI: 10.1080/13543784.2017.1364728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Manjit K. Cartlidge
- Department of Respiratory Medicine, Royal Infirmary and University of Edinburgh, 51 Little France Crescent, Old Dalkeith Road, Edinburgh, EH16 4SA, UK
| | - Adam T. Hill
- Department of Respiratory Medicine, Royal Infirmary and University of Edinburgh, 51 Little France Crescent, Old Dalkeith Road, Edinburgh, EH16 4SA, UK
| |
Collapse
|
27
|
Inhaled Antibiotic Therapy in Chronic Respiratory Diseases. Int J Mol Sci 2017; 18:ijms18051062. [PMID: 28509852 PMCID: PMC5454974 DOI: 10.3390/ijms18051062] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 12/31/2022] Open
Abstract
The management of patients with chronic respiratory diseases affected by difficult to treat infections has become a challenge in clinical practice. Conditions such as cystic fibrosis (CF) and non-CF bronchiectasis require extensive treatment strategies to deal with multidrug resistant pathogens that include Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus, Burkholderia species and non-tuberculous Mycobacteria (NTM). These challenges prompted scientists to deliver antimicrobial agents through the pulmonary system by using inhaled, aerosolized or nebulized antibiotics. Subsequent research advances focused on the development of antibiotic agents able to achieve high tissue concentrations capable of reducing the bacterial load of difficult-to-treat organisms in hosts with chronic respiratory conditions. In this review, we focus on the evidence regarding the use of antibiotic therapies administered through the respiratory system via inhalation, nebulization or aerosolization, specifically in patients with chronic respiratory diseases that include CF, non-CF bronchiectasis and NTM. However, further research is required to address the potential benefits, mechanisms of action and applications of inhaled antibiotics for the management of difficult-to-treat infections in patients with chronic respiratory diseases.
Collapse
|
28
|
Akdag Cayli Y, Sahin S, Buttini F, Balducci AG, Montanari S, Vural I, Oner L. Dry powders for the inhalation of ciprofloxacin or levofloxacin combined with a mucolytic agent for cystic fibrosis patients. Drug Dev Ind Pharm 2017; 43:1378-1389. [DOI: 10.1080/03639045.2017.1318902] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Selma Sahin
- Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | | | | | | | - Imran Vural
- Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Levent Oner
- Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
29
|
Giovagnoli S, Schoubben A, Ricci M. The long and winding road to inhaled TB therapy: not only the bug’s fault. Drug Dev Ind Pharm 2017; 43:347-363. [DOI: 10.1080/03639045.2016.1272119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Aurelie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
30
|
Karimi K, Pallagi E, Szabó-Révész P, Csóka I, Ambrus R. Development of a microparticle-based dry powder inhalation formulation of ciprofloxacin hydrochloride applying the quality by design approach. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3331-3343. [PMID: 27784991 PMCID: PMC5066849 DOI: 10.2147/dddt.s116443] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pulmonary drug delivery of ciprofloxacin hydrochloride offers effective local antibacterial activity and convenience of easy application. Spray drying is a trustworthy technique for the production of ciprofloxacin hydrochloride microparticles. Quality by design (QbD), an up-to-date regulatory-based quality management method, was used to predict the final quality of the product. According to the QbD-based theoretical preliminary parameter ranking and priority classification, dry powder inhalation formulation tests were successfully performed in practice. When focusing on the critical parameters, the practical development was more effective and was in correlation with our previous findings. Spray drying produced spherical microparticles. The dry powder formulations prepared were examined by particle size analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray powder diffraction, differential scanning calorimetry, and in vitro drug release and aerodynamic particle size analyses were also performed. These formulations showed an appropriate particle size ranging between 2 and 4 μm and displayed an enhanced aerosol performance with fine particle fraction up to 80%.
Collapse
Affiliation(s)
- Keyhaneh Karimi
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Edina Pallagi
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Piroska Szabó-Révész
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Ildikó Csóka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| |
Collapse
|
31
|
Dhanani J, Fraser JF, Chan HK, Rello J, Cohen J, Roberts JA. Fundamentals of aerosol therapy in critical care. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:269. [PMID: 27716346 PMCID: PMC5054555 DOI: 10.1186/s13054-016-1448-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Drug dosing in critically ill patients is challenging due to the altered drug pharmacokinetics–pharmacodynamics associated with systemic therapies. For many drug therapies, there is potential to use the respiratory system as an alternative route for drug delivery. Aerosol drug delivery can provide many advantages over conventional therapy. Given that respiratory diseases are the commonest causes of critical illness, use of aerosol therapy to provide high local drug concentrations with minimal systemic side effects makes this route an attractive option. To date, limited evidence has restricted its wider application. The efficacy of aerosol drug therapy depends on drug-related factors (particle size, molecular weight), device factors, patient-related factors (airway anatomy, inhalation patterns) and mechanical ventilation-related factors (humidification, airway). This review identifies the relevant factors which require attention for optimization of aerosol drug delivery that can achieve better drug concentrations at the target sites and potentially improve clinical outcomes.
Collapse
Affiliation(s)
- Jayesh Dhanani
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia. .,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Level 3, Ned Hanlon Building, Herston, 4029, QLD, Australia.
| | - John F Fraser
- Department of Intensive Care Medicine, The Prince Charles Hospital, Brisbane, Australia.,Critical Care Research Group, The University of Queensland, Brisbane, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Jordi Rello
- Critical Care Department, Hospital Vall d'Hebron, Barcelona, Spain.,CIBERES, Vall d'Hebron Institut of Research, Barcelona, Spain.,Department of Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jeremy Cohen
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia.,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Level 3, Ned Hanlon Building, Herston, 4029, QLD, Australia
| | - Jason A Roberts
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia.,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Level 3, Ned Hanlon Building, Herston, 4029, QLD, Australia.,Pharmacy Department, Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia.,School of Pharmacy, The University of Queensland, Brisbane, Australia
| |
Collapse
|
32
|
Cipolla D, Blanchard J, Gonda I. Development of Liposomal Ciprofloxacin to Treat Lung Infections. Pharmaceutics 2016; 8:pharmaceutics8010006. [PMID: 26938551 PMCID: PMC4810082 DOI: 10.3390/pharmaceutics8010006] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/03/2022] Open
Abstract
Except for management of Pseudomonas aeruginosa (PA) in cystic fibrosis, there are no approved inhaled antibiotic treatments for any other diseases or for infections from other pathogenic microorganisms such as tuberculosis, non-tuberculous mycobacteria, fungal infections or potential inhaled biowarfare agents including Francisella tularensis, Yersinia pestis and Coxiella burnetii (which cause pneumonic tularemia, plague and Q fever, respectively). Delivery of an antibiotic formulation via the inhalation route has the potential to provide high concentrations at the site of infection with reduced systemic exposure to limit side effects. A liposomal formulation may improve tolerability, increase compliance by reducing the dosing frequency, and enhance penetration of biofilms and treatment of intracellular infections. Two liposomal ciprofloxacin formulations (Lipoquin® and Pulmaquin®) that are in development by Aradigm Corporation are described here.
Collapse
|
33
|
Jin L, Zhou QT, Chan HK, Larson IC, Pennington MW, Morales RAV, Boyd BJ, Norton RS, Nicolazzo JA. Pulmonary Delivery of the Kv1.3-Blocking Peptide HsTX1[R14A] for the Treatment of Autoimmune Diseases. J Pharm Sci 2016; 105:650-656. [PMID: 26869426 DOI: 10.1016/j.xphs.2015.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/16/2015] [Indexed: 11/25/2022]
Abstract
HsTX1[R14A] is a potent and selective Kv1.3 channel blocker peptide with the potential to treat autoimmune diseases. Given the typically poor oral bioavailability of peptides, we evaluated pulmonary administration of HsTX1[R14A] in rats as an alternative route for systemic delivery. Plasma concentrations of HsTX1[R14A] were measured by liquid chromatography coupled with tandem mass spectrometry in rats receiving intratracheal administration of HsTX1[R14A] in solution (1-4 mg/kg) or a mannitol-based powder (1 mg/kg) and compared with plasma concentrations after intravenous administration (2 mg/kg). HsTX1[R14A] stability in rat plasma and lung tissue was also determined. HsTX1[R14A] was more stable in plasma than in lung homogenate, with more than 90% of the HsTX1[R14A] remaining intact after 5 h, compared with 40.5% remaining in lung homogenate. The terminal elimination half-life, total clearance, and volume of distribution of HsTX1[R14A] after intravenous administration were 79.6 ± 6.5 min, 8.3 ± 0.6 mL/min/kg, and 949.8 ± 71.0 mL/kg, respectively (mean ± SD). After intratracheal administration, HsTX1[R14A] in solution and dry powder was absorbed to a similar degree, with absolute bioavailability values of 39.2 ± 5.2% and 44.5 ± 12.5%, respectively. This study demonstrated that pulmonary administration is a promising alternative for systemically delivering HsTX1[R14A] for treating autoimmune diseases.
Collapse
Affiliation(s)
- Liang Jin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Qi Tony Zhou
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Ian C Larson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Rodrigo A V Morales
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
34
|
d’Angelo I, Casciaro B, Miro A, Quaglia F, Mangoni ML, Ungaro F. Overcoming barriers in Pseudomonas aeruginosa lung infections: Engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids Surf B Biointerfaces 2015; 135:717-725. [DOI: 10.1016/j.colsurfb.2015.08.027] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/17/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
|
35
|
Gaggar A, Chen J, Chmiel JF, Dorkin HL, Flume PA, Griffin R, Nichols D, Donaldson SH. Inhaled alpha1-proteinase inhibitor therapy in patients with cystic fibrosis. J Cyst Fibros 2015; 15:227-33. [PMID: 26321218 DOI: 10.1016/j.jcf.2015.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Inhaled alpha1-proteinase inhibitor (PI) is known to reduce neutrophil elastase burden in some patients with CF. This phase 2a study was designed to test inhaled Alpha-1 HC, a new aerosolized alpha1-PI formulation, in CF patients. METHODS We performed a randomized, double-blind, placebo-controlled study and evaluated the safety of 100 or 200mg of inhaled Alpha-1 HC once daily for 3 weeks in subjects with CF. Thirty adult subjects were randomized in a 2:1 ratio to receive Alpha-1 HC or placebo. RESULTS Drug delivery was confirmed by a dose-dependent increase in the sputum alpha1-PI. Seven (20.0%) of the 35 adverse events in the 100-mg dose group, 3 (13.0%) of 23 in the 200-mg dose group, and 4 (14.3%) of 28 in the placebo group were drug-related in these subjects. One serious adverse event occurred in 1 subject within each group. CONCLUSIONS Alpha-1 HC inhalation was safe and well tolerated.
Collapse
Affiliation(s)
- Amit Gaggar
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Junliang Chen
- Clinical Development, Bioscience Industrial Group, Grifols Inc., Research Triangle Park, NC, United States
| | - James F Chmiel
- Division of Pediatric Pulmonology, Case Western Reserve, University School of Medicine and Rainbow Babies and Children's Hospital, Cleveland, OH, United States
| | | | - Patrick A Flume
- Medical University of South Carolina, Charleston, SC, United States
| | - Rhonda Griffin
- Clinical Development, Bioscience Industrial Group, Grifols Inc., Research Triangle Park, NC, United States.
| | | | - Scott H Donaldson
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
36
|
Sugianto TD, Chan HK. Inhaled antibiotics in the treatment of non-cystic fibrosis bronchiectasis: clinical and drug delivery perspectives. Expert Opin Drug Deliv 2015; 13:7-22. [DOI: 10.1517/17425247.2015.1078309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Dimer F, de Souza Carvalho-Wodarz C, Haupenthal J, Hartmann R, Lehr CM. Inhalable Clarithromycin Microparticles for Treatment of Respiratory Infections. Pharm Res 2015; 32:3850-61. [PMID: 26113237 DOI: 10.1007/s11095-015-1745-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/17/2015] [Indexed: 01/15/2023]
Abstract
PURPOSE The aim of this work was to develop clarithromycin microparticles (CLARI-MP) and evaluate their aerodynamic behavior, safety in bronchial cells and anti-bacterial efficacy. METHODS Microparticles containing clarithromycin were prepared as dry powder carrier for inhalation, using leucine and chitosan. CLARI-MP were deposited on Calu-3 grown at air-interface condition, using the pharmaceutical aerosol deposition device on cell cultures (PADDOCC). Deposition efficacy, transport across the cells and cytotoxicity were determined. Anti-antibacterial effect was evaluated against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus. RESULTS Microparticles were of spherical shape, smooth surface and size of about 765 nm. Aerosolization performance showed a fine particle fraction (FPF) of 73.3%, and a mass median aerodynamic diameter (MMAD) of 1.8 μm. Deposition on Calu-3 cells using the PADDOCC showed that 8.7 μg/cm(2) of deposited powder were transported to the basolateral compartment after 24 h. The safety of this formulation is supported by the integrity of the cellular epithelial barrier and absence of toxicity, and the antimicrobial activity demonstrated for Gram positive and Gram negative bacteria. CONCLUSIONS The appropriate aerodynamic properties and the excellent deposition on Calu-3 cells indicate that clarithromycin microparticles are suitable for administration via pulmonary route and are efficient to inhibit bacteria proliferation.
Collapse
Affiliation(s)
- Frantiescoli Dimer
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany
| | - Cristiane de Souza Carvalho-Wodarz
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany
| | - Jörg Haupenthal
- Department of Drug Development and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany
| | - Rolf Hartmann
- Department of Drug Development and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany.,Pharmaceutical and Medical Chemistry, Campus C2.3, Saarland University, 66123, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany. .,Biopharmacy and Pharmaceutical Technology, Department of Pharmacy, Saarland University, Saarbrücken, 66123, Germany.
| |
Collapse
|
38
|
Inhaled antimicrobial therapy – Barriers to effective treatment. Adv Drug Deliv Rev 2015; 85:24-43. [DOI: 10.1016/j.addr.2014.08.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 02/08/2023]
|
39
|
Mukker JK, Singh RSP, Derendorf H. Pharmacokinetic and pharmacodynamic implications in inhalable antimicrobial therapy. Adv Drug Deliv Rev 2015; 85:57-64. [PMID: 25770775 DOI: 10.1016/j.addr.2015.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/14/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Inhaled antimicrobials provide a promising alternative to the systemically delivered drugs for the treatment of acute and chronic lung infections. The delivery of antimicrobials via inhalation route decreases the systemic exposure while increasing the local concentration in the lungs, enabling the use of antimicrobials with severe systemic side effects. The inhalation route of administration has several challenges in pharmacokinetic (PK) and pharmacodynamic (PD) assessments. This review discusses various issues that need to be considered during study, data analysis, and interpretation of PK and PD of inhaled antimicrobials. Advancements overcoming the challenges are also discussed.
Collapse
|
40
|
Zhou QT, Leung SSY, Tang P, Parumasivam T, Loh ZH, Chan HK. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev 2015; 85:83-99. [PMID: 25451137 DOI: 10.1016/j.addr.2014.10.022] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 11/16/2022]
Abstract
Respiratory infections represent a major global health problem. They are often treated by parenteral administrations of antimicrobials. Unfortunately, systemic therapies of high-dose antimicrobials can lead to severe adverse effects and this calls for a need to develop inhaled formulations that enable targeted drug delivery to the airways with minimal systemic drug exposure. Recent technological advances facilitate the development of inhaled anti-microbial therapies. The newer mesh nebulisers have achieved minimal drug residue, higher aerosolisation efficiencies and rapid administration compared to traditional jet nebulisers. Novel particle engineering and intelligent device design also make dry powder inhalers appealing for the delivery of high-dose antibiotics. In view of the fact that no new antibiotic entities against multi-drug resistant bacteria have come close to commercialisation, advanced formulation strategies are in high demand for combating respiratory 'super bugs'.
Collapse
Affiliation(s)
- Qi Tony Zhou
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sharon Shui Yee Leung
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Patricia Tang
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Thaigarajan Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zhi Hui Loh
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
41
|
Zhou Q(T, Sun SP, Chan JGY, Wang P, Barraud N, Rice SA, Wang J, Li J, Chan HK. Novel Inhaled Combination Powder Containing Amorphous Colistin and Crystalline Rifapentine with Enhanced Antimicrobial Activities against Planktonic Cells and Biofilm of Pseudomonas aeruginosa for Respiratory Infections. Mol Pharm 2014; 12:2594-603. [DOI: 10.1021/mp500586p] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Qi (Tony) Zhou
- Advanced
Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Si-Ping Sun
- Advanced
Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - John Gar Yan Chan
- Advanced
Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
- JHL Biotech, Inc., Zhubei City, Hsinchu County 302, Taiwan, R.O.C
| | - Ping Wang
- Advanced
Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nicolas Barraud
- Centre
for Marine Bio-Innovation and School of Biotechnology and Biomolecular
Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Scott A. Rice
- Centre
for Marine Bio-Innovation and School of Biotechnology and Biomolecular
Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- Singapore
Centre on Environmental Life Sciences Engineering, and the School
of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jiping Wang
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jian Li
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Hak-Kim Chan
- Advanced
Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
42
|
Abstract
INTRODUCTION Nebulizers are the oldest modern method of delivering aerosols to the lungs for the purpose of respiratory drug delivery. While use of nebulizers remains widespread in the hospital and home setting, certain newer nebulization technologies have enabled more portable use. Varied fundamental processes of droplet formation and breakup are used in modern nebulizers, and these processes impact device performance and suitability for nebulization of various formulations. AREAS COVERED This review first describes basic aspects of nebulization technologies, including jet nebulizers, various high-frequency vibration techniques, and the use of colliding liquid jets. Nebulizer use in hospital and home settings is discussed next. Complications in aerosol droplet size measurement owing to the changes in nebulized droplet diameters due to evaporation or condensation are discussed, as is nebulization during mechanical ventilation. EXPERT OPINION While the limelight may often appear to be focused on other delivery devices, such as pressurized metered dose and dry powder inhalers, the ease of formulating many drugs in water and delivering them as aqueous aerosols ensures that nebulizers will remain as a viable and relevant method of respiratory drug delivery. This is particularly true given recent improvements in nebulizer droplet production technology.
Collapse
Affiliation(s)
- Andrew R Martin
- University of Alberta, Department of Mechanical Engineering , Edmonton, Alberta, T6G 2G8 , Canada
| | | |
Collapse
|
43
|
Cipolla D, Wu H, Gonda I, Chan HK. Aerosol performance and long-term stability of surfactant-associated liposomal ciprofloxacin formulations with modified encapsulation and release properties. AAPS PharmSciTech 2014; 15:1218-27. [PMID: 24889736 PMCID: PMC4179662 DOI: 10.1208/s12249-014-0155-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 05/14/2014] [Indexed: 01/12/2023] Open
Abstract
Previously, we showed that the encapsulation and release properties of a liposomal ciprofloxacin formulation could be modified post manufacture, by addition of surfactant in concert with osmotic swelling of the liposomes. This strategy may provide more flexibility and convenience than the alternative of manufacturing multiple batches of liposomes differing in composition to cover a wide range of release profiles. The goal of this study was to develop a surfactant-associated liposomal ciprofloxacin (CFI) formulation possessing good long-term stability which could be delivered as an inhaled aerosol. Preparations of 12.5 mg/ml CFI containing 0.4% polysorbate 20 were formulated between pH 4.7 and 5.5. These formulations, before and after mesh nebulization, and after refrigerated storage for up to 2 years, were characterized in terms of liposome structure by cryogenic transmission electron microscopy (cryo-TEM) imaging, vesicle size by dynamic light scattering, pH, drug encapsulation by centrifugation-filtration, and in vitro release (IVR) performance. Within the narrower pH range of 4.9 to 5.2, these formulations retained their physicochemical stability after 2-year refrigerated storage, were robust to mesh nebulization, and formed respirable aerosols with a volume mean diameter (VMD) of 3.7 μm and a geometric standard deviation (GSD) of 1.7. This study demonstrates that it may be possible to provide a range of release profiles by simple addition of surfactant to a liposomal formulation post manufacture, and that these formulations may retain their physicochemical properties after long-term refrigerated storage and following aerosolization by mesh nebulizer.
Collapse
|
44
|
Cipolla D, Shekunov B, Blanchard J, Hickey A. Lipid-based carriers for pulmonary products: preclinical development and case studies in humans. Adv Drug Deliv Rev 2014; 75:53-80. [PMID: 24819218 DOI: 10.1016/j.addr.2014.05.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 12/31/2022]
Abstract
A number of lipid-based technologies have been applied to pharmaceuticals to modify their drug release characteristics, and additionally, to improve the drug loading for poorly soluble drugs. These technologies, including solid-state lipid microparticles, many of which are porous in nature, liposomes, solid lipid nanoparticles and nanostructured lipid carriers, are increasingly being developed for inhalation applications. This article provides a review of the rationale for the use of these technologies in the pulmonary delivery of drugs, and summarizes the manufacturing processes and their limitations, the in vitro and in vivo performance of these systems, the safety of these lipid-based systems in the lung, and their promise for commercialization.
Collapse
Affiliation(s)
- David Cipolla
- Aradigm Corporation, 3929 Point Eden Way, Hayward, CA 94545, USA.
| | - Boris Shekunov
- Shire Corporation, 725 Chesterbrook Blvd, Wayne, PA 19087, USA
| | - Jim Blanchard
- Aradigm Corporation, 3929 Point Eden Way, Hayward, CA 94545, USA
| | - Anthony Hickey
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
45
|
Chan JGY, Wong J, Zhou QT, Leung SSY, Chan HK. Advances in device and formulation technologies for pulmonary drug delivery. AAPS PharmSciTech 2014; 15:882-97. [PMID: 24728868 DOI: 10.1208/s12249-014-0114-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/13/2014] [Indexed: 12/31/2022] Open
Abstract
Inhaled pharmaceuticals are formulated and delivered differently according to the therapeutic indication. However, specific device-formulation coupling is often fickle, and new medications or indications also demand new strategies. The discontinuation of chlorofluorocarbon propellants has seen replacement of older metered dose inhalers with dry powder inhaler formulations. High-dose dry powder inhalers are increasingly seen as an alternative dosage form for nebulised medications. In other cases, new medications have completely bypassed conventional inhalers and been formulated for use with unique inhalers such as the Staccato® device. Among these different devices, integration of software and electronic assistance has become a shared trend. This review covers recent device and formulation advances that are forming the current landscape of inhaled therapeutics.
Collapse
|
46
|
Zhou Q(T, Tang P, Leung SSY, Chan JGY, Chan HK. Emerging inhalation aerosol devices and strategies: where are we headed? Adv Drug Deliv Rev 2014; 75:3-17. [PMID: 24732364 DOI: 10.1016/j.addr.2014.03.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 02/07/2023]
Abstract
Novel inhaled therapeutics including antibiotics, vaccines and anti-hypertensives, have led to innovations in designing suitable delivery systems. These emerging design technologies are in urgent demand to ensure high aerosolisation performance, consistent efficacy and satisfactory patient adherence. Recent vibrating-mesh and software technologies have resulted in nebulisers that have remarkably accurate dosing and portability. Alternatively, dry powder inhalers (DPIs) have become highly favourable for delivering high-dose and single-dose drugs with the aid of advanced particle engineering. In contrast, innovations are needed to overcome the technical constrains in drug-propellant incompatibility and delivering high-dose drugs with pressurised metered dose inhalers (pMDIs). This review discusses recent and emerging trends in pulmonary drug delivery systems.
Collapse
|
47
|
Cipolla D, Wu H, Eastman S, Redelmeier T, Gonda I, Chan H. Development and Characterization of an In Vitro Release Assay for Liposomal Ciprofloxacin for Inhalation. J Pharm Sci 2014. [DOI: 10.1002/jps.23795] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|