1
|
Low-dose nano-gel incorporated with bile acids enhanced pharmacology of surgical implants. Ther Deliv 2023; 14:17-29. [PMID: 36919692 DOI: 10.4155/tde-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Aim: Major challenges to islet transplantation in Type 1 diabetes include host-inflammation, which results in failure to maintain survival and functions of transplanted islets. Therefore, this study investigated the applications of encapsulating the bile acid ursodeoxycholic acid (UDCA) with transplanted islets within improved nano-gel systems for Type 1 diabetes treatment. Materials & methods: Islets were harvested from healthy mice, encapsulated using UDCA-nano gel and transplanted into the diabetic mice, while the control group was transplanted encapsulated islets without UDCA. The two groups' survival plot, blood glucose, and inflammation and bile acid profiles were analyzed. Results & conclusion: UDCA-nano gel enhanced survival, glycemia and normalized bile acids' profile, which suggests improved islets functions and potential adjunct treatment for insulin therapy.
Collapse
|
2
|
Novel hydrogel comprising non-ionic copolymer with various concentrations of pharmacologically active bile acids for cellular injectable gel. Colloids Surf B Biointerfaces 2023; 222:113014. [PMID: 36427407 DOI: 10.1016/j.colsurfb.2022.113014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Deoxycholic acid (DCA) is a bile acid capable of forming micelles and modifying the properties of hydrogels. We incorporated DCA in sodium alginate (SA) and poloxamer 407 matrices creating novel DCA-copolymer hydrogel for therapeutic delivery. Hydrogels were assessed for common rheological properties. Biocompatibility and biological effect were examined on various cell lines. Cell viability was determent in normal and various hypoxic conditions, and full mitochondrial bioenergetic parameters were assessed in cell lines in order to illustrate hydrogel effects on survival, and cell metabolic profile within the hydrogels. Obtained data suggest that a low dose of DCA in permeable, biocompatible hydrogels can be beneficial for cells to combat hypoxic conditions.
Collapse
|
3
|
Applications of bile acids as biomaterials-based modulators, in biomedical science and microfluidics. Ther Deliv 2022; 13:591-604. [PMID: 36861306 DOI: 10.4155/tde-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Chronic disorders such as diabetes mellitus are associated with multiple organ dysfunction, including retinopathy, neuropathy, nephropathy, peripheral vascular disease, and vascular disease. Lifelong subcutaneous insulin injections are currently the only treatment option for patients with Type 1 diabetes mellitus, and it poses numerous challenges. Since the breakthrough achieved from the Edmonton protocol in the year 2000, there has been important research to investigate whether islet cell transplantation can achieve long-term normoglycemia in patients without the need for insulin. The use of biopolymeric scaffold to enclose islet cells has also been explored to improve survivability and viability of islet cells. This review paper summarizes the latest research in using biopolymeric scaffolds in islet transplantation and how microfluidic devices can assist.
Collapse
|
4
|
Kovacevic B, Jones M, Ionescu C, Walker D, Wagle S, Chester J, Foster T, Brown D, Mikov M, Mooranian A, Al-Salami H. The emerging role of bile acids as critical components in nanotechnology and bioengineering: Pharmacology, formulation optimizers and hydrogel-biomaterial applications. Biomaterials 2022; 283:121459. [DOI: 10.1016/j.biomaterials.2022.121459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
|
5
|
Pharmacological Dose-Effect Profiles of Various Concentrations of Humanised Primary Bile Acid in Encapsulated Cells. NANOMATERIALS 2022; 12:nano12040647. [PMID: 35214975 PMCID: PMC8879575 DOI: 10.3390/nano12040647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/08/2023]
Abstract
Bile acids (BA)s are known surfactants and well-documented to play a major role in food digestion and absorption. Recently, potential endocrinological and formulation-stabilisation effects of BAs have been explored and their pharmacological effects on supporting cell survival and functions have gained wide interest. Hence, this study aimed to explore the hyper-glycaemic dependent dose-effect of the BA chenodeoxycholic acid (CDCA) when encapsulated with pancreatic β-cells, allowing assessment of CDCA's impacts when encapsulated. Four different concentrations of the BA were prepared, and viable cells were encapsulated and incubated for 2 days. Multiple analyses were carried out including confocal imaging, glucose-induced cellular mitochondrial viability indices, insulin production, inflammatory biomarker analyses and cellular bioenergetics measurements. There was a significant dose-effect with different concentrations of the BA, affecting cellular viability and antioxidant activities, cell functions and insulin release, inflammatory biomarkers, and cellular-bioenergetics at different oxidative stress levels. The results demonstrate that, when encapsulated, the BA CDCA exerts positive pharmacological effects at the cellular level, and such effects are concentration dependent.
Collapse
|
6
|
Taurine Grafted Micro-Implants Improved Functions without Direct Dependency between Interleukin-6 and the Bile Acid Lithocholic Acid in Plasma. Biomedicines 2022; 10:biomedicines10010111. [PMID: 35052790 PMCID: PMC8772949 DOI: 10.3390/biomedicines10010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 01/27/2023] Open
Abstract
A recent study showed an association between diabetes development and the bile acid lithocholic acid (LCA), while another study demonstrated positive biological effects of the conjugated bile acid, taurocholic acid (TCA), on pancreatic cells. Thus, this study aimed to encapsulate TCA with primary islets (graft) and study the biological effects of the graft, post-transplantation, in diabetic mice, including effects on LCA concentrations. Sixteen mature adult mice were made diabetic and randomly divided into two equal groups, control and test (transplanted encapsulated islets without or with TCA). Graft pharmaceutical features pre-transplantation, and biological effects including on LCA concentrations post-transplantation, were measured. TCA-microcapsules had an oval shape and similar size compared with the control. The treatment group survived longer, showed improved glucose and interleukin-6 concentrations, and lower LCA concentrations in plasma, large intestine, faeces, liver and spleen, compared with control. Results suggest that TCA incorporation with islets encapsulated graft exerted beneficial effects, but there was no direct and significant dependency between concentrations of interleukin-6 and LCA.
Collapse
|
7
|
Mooranian A, Ionescu CM, Walker D, Jones M, Wagle SR, Kovacevic B, Chester J, Foster T, Johnston E, Kuthubutheen J, Brown D, Atlas MD, Mikov M, Al-Salami H. Single-Cellular Biological Effects of Cholesterol-Catabolic Bile Acid-Based Nano/Micro Capsules as Anti-Inflammatory Cell Protective Systems. Biomolecules 2022; 12:biom12010073. [PMID: 35053221 PMCID: PMC8773943 DOI: 10.3390/biom12010073] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 01/27/2023] Open
Abstract
Recent studies in our laboratories have shown promising effects of bile acids in ➀ drug encapsulation for oral targeted delivery (via capsule stabilization) particularly when encapsulated with Eudragit NM30D® and ➁ viable-cell encapsulation and delivery (via supporting cell viability and biological activities, postencapsulation). Accordingly, this study aimed to investigate applications of bile acid-Eudragit NM30D® capsules in viable-cell encapsulation ready for delivery. Mouse-cloned pancreatic β-cell line was cultured and cells encapsulated using bile acid-Eudragit NM30D® capsules, and capsules' images, viability, inflammation, and bioenergetics of encapsulated cells assessed. The capsules' thermal and chemical stability assays were also assessed to ascertain an association between capsules' stability and cellular biological activities. Bile acid-Eudragit NM30D® capsules showed improved cell viability (e.g., F1 < F2 & F8; p < 0.05), insulin, inflammatory profile, and bioenergetics as well as thermal and chemical stability, compared with control. These effects were formulation-dependent and suggest, overall, that changes in ratios of bile acids to Eudragit NM30D® can change the microenvironment of the capsules and subsequent cellular biological activities.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | | | - Daniel Brown
- Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia;
| | - Marcus D. Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21101 Novi Sad, Serbia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
- Correspondence: ; Tel.: +61-8-9266-9816; Fax: +61-8-9266-2769
| |
Collapse
|
8
|
Mooranian A, Jones M, Walker D, Ionescu C, Wagle S, Kovačević B, Chester J, Foster T, Johnston E, Mikov M, Al-Salami H. 'In vitro' assessments of microencapsulated viable cells as a result of primary bile acid-encapsulated formulation for inflammatory disorders. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-36574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background / Aim: Metformin is widely used in type 2 diabetes and exhibits many positive biological effects on pancreatic b-cells and muscle cells, such as supporting insulin release by b-cells and glucose uptake by muscle cells and reducing oxidative stress, particularly due to diabetes-associated hyperglycaemia. Interestingly, for type 1 diabetes, transplantation of healthy b-cells has been proposed as a novel way to replace insulin therapy. Recently, bile acid-formulations containing transplantable b-cells showed best stability. Hence, this study aimed to explore the effects of metformin-bile acid formulations in b-cell encapsulation and on the biological activities of b-cells and muscle-cells. Methods: Two sets of biological effects were examined, using metformin-bile acid formulations, on encapsulated b-cells and on muscle cells exposed to the formulations. Results: Various encapsulated b-cell formulations' cell viability, insulin levels, cellular oxidative stress, cellular inflammatory profile and bioenergetics at the normoand hyperglycaemic states showed differing results based upon the metformin concentration and the inclusion or absence of bile acid. Similar effects were observed with muscle cells. Low ratios of metformin and bile acids showed best biological effects, suggesting a formulation dependent result. The formulations' positive effects were more profound at the hyperglycaemic state suggesting efficient cell protective effects. Conclusion: Overall, metformin had positive impacts on the cells in a concentration-dependent manner, with the addition of chenodeoxycholic acid further improving results.
Collapse
|
9
|
Pharmaceutical formulation and polymer chemistry for cell encapsulation applied to the creation of a lab-on-a-chip bio-microsystem. Ther Deliv 2021; 13:51-65. [PMID: 34821516 DOI: 10.4155/tde-2021-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microencapsulation of formulation designs further expands the field and offers the potential for use in developing bioartificial organs via cell encapsulation. Combining formulation design and encapsulation requires ideal excipients to be determined. In terms of cell encapsulation, an environment which allows growth and functionality is paramount to ensuring cell survival and incorporation into a bioartificial organ. Hence, excipients are examined for both individual properties and benefits, and compatibility with encapsulated active materials. Polymers are commonly used in microencapsulation, offering protection from the immune system. Bile acids are emerging as a tool to enhance delivery, both biologically and pharmaceutically. Therefore, this review will focus on bile acids and polymers in formulation design via microencapsulation, in the field of bioartificial organ development.
Collapse
|
10
|
Bile acid-permeation enhancement for inner ear cochlear drug - pharmacological uptake: bio-nanotechnologies in chemotherapy-induced hearing loss. Ther Deliv 2021; 12:807-819. [PMID: 34761700 DOI: 10.4155/tde-2021-0048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ototoxicity is the damage to inner ear sensory epithelia due to exposure to certain medications and chemicals. This occurs when toxins enter the tightly controlled inner ear environment inducing hair cell death, resulting in hearing loss. Recent studies have explored hydrogel-based bio-nanotechnologies and new drug delivery formulations to prevent drug-induced hearing loss, with much attention given to administration of antioxidant drugs. Bile acids have been recognized as promising excipients due to their biocompatibility and unique physiochemical properties. As yet bile acids have not been explored in improving drug delivery to the inner ear despite improving drug stability and delivery in other systems and demonstrating positive biological effects in their own right.
Collapse
|
11
|
Polyelectrolytes Formulated with Primary Unconjugated Bile Acid Optimised Pharmacology of Bio-Engineered Implant. Pharmaceutics 2021; 13:pharmaceutics13101713. [PMID: 34684006 PMCID: PMC8538409 DOI: 10.3390/pharmaceutics13101713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/16/2021] [Accepted: 10/03/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction. Several studies have shown that different biomaterials and hydrogels comprising various bile acids such as chenodeoxycholic acid (CDCA), as well as excipients such as poly-(styrene)-sulphonate (PSS) and poly-(allyl)-amine (PAA), exhibited positive biological effects on encapsulated viable pancreatic β-cells. Hence, this study aimed to investigate whether incorporating CDCA with PSS and PAA will optimise the functions of encapsulated pancreatic islets post-transplantation in Type 1 diabetes (T1D). Methods. Mice were made T1D, divided into two equal groups, and transplanted with encapsulated islets in PSS-PAA (control) or with CDCA-PSS-PAA (treatment) microcapsules. The effects of transplanted microcapsules on blood glucose, inflammation and the bile acid profile were measured post-transplantation. Results and Conclusion. Compared with control, the treatment group showed better survival rate, improved glycaemic control, and lower inflammatory profile, illustrated by ↓ interleukin 1-β, interleukin-6, interleukin-12, and tumour-necrosis factor-α, and ↓ levels of the bile acid, as well as lithocholic acid in the plasma, liver, large intestine and faeces. The results suggest that CDCA incorporation with PSS-PAA microcapsules exerted beneficial effects on encapsulated islets and resulted in enhanced diabetes treatment, post-transplantation, at the local and systemic levels.
Collapse
|
12
|
Chenodeoxycholic Acid Pharmacology in Biotechnology and Transplantable Pharmaceutical Applications for Tissue Delivery: An Acute Preclinical Study. Cells 2021; 10:cells10092437. [PMID: 34572086 PMCID: PMC8472107 DOI: 10.3390/cells10092437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Primary bile acids (PBAs) are produced and released into human gut as a result of cholesterol catabolism in the liver. A predominant PBA is chenodeoxycholic acid (CDCA), which in a recent study in our laboratory, showed significant excipient-stabilizing effects on microcapsules carrying insulinoma β-cells, in vitro, resulting in improved cell functions and insulin release, in the hyperglycemic state. Hence, this study aimed to investigate the applications of CDCA in bio-encapsulation and transplantation of primary healthy viable islets, preclinically, in type 1 diabetes. METHODS Healthy islets were harvested from balb/c mice, encapsulated in CDCA microcapsules, and transplanted into the epididymal tissues of 6 syngeneic diabetic mice, post diabetes confirmation. Pre-transplantation, the microcapsules' morphology, size, CDCA-deep layer distribution, and physical features such as swelling ratio and mechanical strength were analyzed. Post-transplantation, animals' weight, bile acids', and proinflammatory biomarkers' concentrations were analyzed. The control group was diabetic mice that were transplanted encapsulated islets (without PBA). RESULTS AND CONCLUSION Islet encapsulation by PBA microcapsules did not compromise the microcapsules' morphology or features. Furthermore, the PBA-graft performed better in terms of glycemic control and resulted in modulation of the bile acid profile in the brain. This is suggestive that the improved glycemic control was mediated via brain-related effects. However, the improvement in graft insulin delivery and glycemic control was short-term.
Collapse
|
13
|
Mooranian A, Ionescu CM, Wagle SR, Kovacevic B, Walker D, Jones M, Chester J, Foster T, Johnston E, Mikov M, Atlas MD, Al-Salami H. Probucol Pharmacological and Bio-Nanotechnological Effects on Surgically Transplanted Graft Due to Powerful Anti-Inflammatory, Anti-Fibrotic and Potential Bile Acid Modulatory Actions. Pharmaceutics 2021; 13:pharmaceutics13081304. [PMID: 34452266 PMCID: PMC8398853 DOI: 10.3390/pharmaceutics13081304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION A major obstacle in islet transplantation and graft survival pre and post transplantation is islet apoptosis due to mainly inflammatory bio molecules released during islet harvesting and post graft transplantation and hence, subsequent graft fibrosis and failure. This study aimed to investigate if incorporation of the anti-inflammatory anti-hyperlipidaemic drug probucol (PB) would improve islet-graft survival and function, post transplantation in Type 1 diabetes (T1D). METHODS T1D was induced in mice, and biological profiles of the diabetic mice transplanted PB-microencapsulated islets harvested from healthy syngeneic mice were measured. RESULTS AND CONCLUSION Compared with sham (no PB), the treated group showed significant reduction in serum levels of interleukin-1β, interleukin-6, interleukin-12, interleukin-17, and tumour necrosis factor-α, accompanied by a 3-fold increase in survival duration, which suggests PB islet-protective effects, post transplantation.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia;
| | - Marcus D. Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
- Correspondence: ; Tel.: +61-8-9266-9816; Fax: +61-8-9266-2769
| |
Collapse
|
14
|
Mooranian A, Foster T, Ionescu CM, Walker D, Jones M, Wagle SR, Kovacevic B, Chester J, Johnston E, Wong E, Atlas MD, Mikov M, Al-Salami H. Enhanced Bilosomal Properties Resulted in Optimum Pharmacological Effects by Increased Acidification Pathways. Pharmaceutics 2021; 13:pharmaceutics13081184. [PMID: 34452145 PMCID: PMC8398365 DOI: 10.3390/pharmaceutics13081184] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Recent studies in our laboratory have shown that some bile acids, such as chenodeoxycholic acid (CDCA), can exert cellular protective effects when encapsulated with viable β-cells via anti-inflammatory and anti-oxidative stress mechanisms. However, to explore their full potential, formulating such bile acids (that are intrinsically lipophilic) can be challenging, particularly if larger doses are required for optimal pharmacological effects. One promising approach is the development of nano gels. Accordingly, this study aimed to examine biological effects of various concentrations of CDCA using various solubilising nano gel systems on encapsulated β-cells. METHODS Using our established cellular encapsulation system, the Ionic Gelation Vibrational Jet Flow technology, a wide range of CDCA β-cell capsules were produced and examined for morphological, biological, and inflammatory profiles. RESULTS AND CONCLUSION Capsules' morphology and topographic characteristics remained similar, regardless of CDCA or nano gel concentrations. The best pharmacological, anti-inflammatory, and cellular respiration, metabolism, and energy production effects were observed at high CDCA and nano gel concentrations, suggesting dose-dependent cellular protective and positive effects of CDCA when incorporated with high loading nano gel.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Corina M. Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Elaine Wong
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Marcus D. Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
- Correspondence: ; Tel.: +61-8-9266-9816; Fax: +61-8-9266-2769
| |
Collapse
|
15
|
Microencapsulation of Coenzyme Q10 and bile acids using ionic gelation vibrational jet flow technology for oral delivery. Ther Deliv 2020; 11:791-805. [PMID: 33225829 DOI: 10.4155/tde-2020-0082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Developing new delivery dosage forms with robust delivery and safety profiles remains a challenge to the pharmaceutical industry in terms of optimum gut absorption, consistent dosing and bioavailability; particularly for orally administered drugs that are poorly water soluble. Coenzyme Q10 is an example of a poorly water-soluble compound with low bioavailability, and significant inter-individual variation after oral administration; limiting its optimum efficacy, as a powerful antioxidant with significant promise in treating hearing disorders. Microencapsulation technology is one way to optimize drug bioavailability and absorption profile. One example is Ionic Gelation Vibrational Jet Flow techniques, using new encapsulating parameters to determine the nature of formed capsules. Bile acids are an example of an excipient that can be used to improve membrane permeability; and will be examined. This review addresses the applications of microencapsulation technology on oral delivery and efficacy profiles of poorly water-soluble drugs, focusing on Coenzyme Q10.
Collapse
|
16
|
Wagle SR, Kovacevic B, Walker D, Ionescu CM, Shah U, Stojanovic G, Kojic S, Mooranian A, Al-Salami H. Alginate-based drug oral targeting using bio-micro/nano encapsulation technologies. Expert Opin Drug Deliv 2020; 17:1361-1376. [PMID: 32597249 DOI: 10.1080/17425247.2020.1789587] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Oral delivery is the most common administrated drug delivery path. However, oral administration of lipophilic drugs has some limitations: they have poor dose-response due to low and varied dissolution kinetics and oral bioavailability with sub-optimal dissolution within the aqueous gastrointestinal microenvironment. Therefore, there is a need for robust formulating methods that protect the drug until it reaches to its optimum absorption site, allowing its optimum pharmacological effects via increasing its intestinal permeation and bioavailability. AREA COVERED Herein, we provide insights on orally administered lipophilic drug delivery systems. The detailed description of the obstacles associated with the oral bioavailability of lipophilic drugs are also discussed. Following this, techniques to overcome these obstacles with much emphasis on optimal safety and efficacy are addressed. Newly designed ionic vibrational jet flow encapsulation technology has enormous growth in lipophilic drug delivery systems, which is discussed thereafter. EXPERT OPINION Researchers have shown interest in drug's encapsulation. A combination of drug-bile acid and microencapsulation methods can be one promising strategy to improve the oral delivery of lipophilic drugs. However, the most critical aspect of this approach is the selection of bile acids, polymer, and encapsulation technology.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| | - Daniel Walker
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| | - Corina Mihaela Ionescu
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| | - Umar Shah
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia.,School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University , Perth, WA, Australia
| | - Goran Stojanovic
- Faculty of Technical Sciences, University of Novi Sad , Novi Sad, Serbia
| | - Sanja Kojic
- Faculty of Technical Sciences, University of Novi Sad , Novi Sad, Serbia
| | - Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| |
Collapse
|
17
|
Histological effects of pharmacologically active human bile acid nano/micro-particles in Type-1 diabetes. Ther Deliv 2020; 11:157-171. [PMID: 32046598 DOI: 10.4155/tde-2019-0079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Gliclazide (G) is a drug prescribed for Type 2 diabetics, although recent studies suggest it has desirable effects in both types of diabetes, Type 1 diabetes and Type 2 diabetes. G has an inconsistent absorption due to poor formulation and bile acids (BAs) have shown significant promise in drug formulation optimization. Hence, the study aimed to examine G effects on histopathological, anti-inflammatory and antidiabetic effects when encapsulated with BAs. Materials & methods: Rats were randomized into eight groups, of which seven were made Type 1 diabetes and treated with various BA-based treatments. Tissue histopathology, inflammation and the bile acid profile were analyzed. Results & conclusion: G capsules showed no histological but the most anti-inflammatory effects, which suggest significant beneficial effects in diabetes treatment.
Collapse
|
18
|
Mooranian A, Zamani N, Ionescu CM, Takechi R, Luna G, Mikov M, Goločorbin-Kon S, Kovačević B, Al-Salami H. Oral gavage of nano-encapsulated conjugated acrylic acid-bile acid formulation in type 1 diabetes altered pharmacological profile of bile acids, and improved glycaemia and suppressed inflammation. Pharmacol Rep 2020; 72:368-378. [PMID: 32048259 DOI: 10.1007/s43440-019-00030-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/01/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ursodeoxycholic acid (UDCA) is a secondary hydrophilic bile acid, metabolised in the gut, by microbiota. UDCA is currently prescribed for primary biliary cirrhosis, and of recently has shown β-cell protective effects, which suggests potential antidiabetic effects. Thus, this study aimed to design targeted-delivery microcapsules for oral uptake of UDCA and test its effects in type 1 diabetes (T1D). METHODS UDCA microcapsules were produced using alginate-NM30 matrix. Three equal groups of mice (6-7 mice per group) were gavaged daily UDCA powder, empty microcapsules and UDCA microcapsules for 7 days, then T1D was induced by alloxan injection and treatments continued until mice had to be euthanised due to weight loss > 10% or severe symptoms develop. Plasma, tissues, and faeces were collected and analysed for bile acids' concentrations. RESULTS UDCA microcapsules brought about reduction in elevated blood glucose, reduced inflammation and altered concentrations of the primary bile acid chenodeoxycholic acid and the secondary bile acid lithocholic acid, without affecting survival rate of mice. CONCLUSION The findings suggest that UDCA exerted direct protective effects on pancreatic β-cells and this is likely to be associated with alterations of concentrations of primary and secondary bile acids in plasma and tissues. Three equal groups of mice were gavaged daily UDCA (ursodeoxycholic acid) powder, empty microcapsules and UDCA microcapsules for 7 days, then T1D was induced and treatments continued until mice had to be euthanised. UDCA microcapsules brought about reduction in elevated blood glucose, reduced inflammation and altered concentrations of the primary bile acid chenodeoxycholic acid and the secondary bile acid lithocholic acid, without affecting survival rate of mice. The findings suggest that UDCA exerted direct protective effects on pancreatic β-cells and this is likely to be associated with alterations of concentrations of primary and secondary bile acids in plasma and tissues.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, Australia
| | - Nassim Zamani
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, Australia
| | - Corina M Ionescu
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Ryu Takechi
- School of Public Health, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Giuseppe Luna
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Božica Kovačević
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, Australia.
| |
Collapse
|
19
|
Mooranian A, Zamani N, Mikov M, Goločorbin-Kon S, Stojanovic G, Arfuso F, Kovacevic B, Al-Salami H. A second-generation micro/nano capsules of an endogenous primary un-metabolised bile acid, stabilized by Eudragit-alginate complex with antioxidant compounds. Saudi Pharm J 2019; 28:165-171. [PMID: 32042255 PMCID: PMC7000308 DOI: 10.1016/j.jsps.2019.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022] Open
Abstract
Bile acids (BAs) are amphiphilic compounds and of recently have demonstrated wide range of formulation stabilizing effects. A recent study showed that primary un-metabolised bile acids (PUBAs) have β-cell protective effects, and synergistic antidiabetic effects when combined with antioxidant and anti-inflammatory drugs, such as probucol (PB). Thus, this study aimed to design and test microcapsules containing a PUBA incorporated with PB and an alginate-Eudragit matrix. Six types of microcapsules were developed without (control) or with (test) PUBA, and tested for internal and external features and β-cell protective effects. The incorporation of PB-alginate-Eudragit with PUBA produced stable microcapsules but did not exert consistent positive effects on cell viability in the hyperglycaemic state, which suggests that PUBA in alginate-Eudragit matrices did not exhibit synergistic effects with PB nor exerted antidiabetic effects.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Nassim Zamani
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Goran Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Probucol-poly(meth)acrylate-bile acid nanoparticles increase IL-10, and primary bile acids in prediabetic mice. Ther Deliv 2019; 10:563-571. [PMID: 31646943 DOI: 10.4155/tde-2019-0052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Common features in insulin-resistance diabetes include inflammation and liver damage due to bile acid accumulation. Results & methodology: This study aimed to test in vivo pharmacological effects of combining two drugs, ursodeoxycholic acid that has bile acid regulatory effects, and probucol (PB) that has potent anti-oxidative stress effects, using a new poly(meth)acrylate nano-targeting formulation on prediabetic mice. Mice were made diabetic and were fed daily with either PB, nanoencapsulated PB or nanoencapsulated PB-ursodeoxycholic acid before blood, tissues, urine and feces were collected for inflammation and bile acid measurements. The nanoencapsulated PB-ursodeoxycholic acid formulation increased plasma IL-10, and increased the concentration of primary bile acids in the liver and heart. Conclusion: Results suggest potential applications in regulating IL-10 in insulin-resistance prediabetes.
Collapse
|
21
|
Mathavan S, Chen-Tan N, Arfuso F, Al-Salami H. Morphological, Stability, and Hypoglycemic Effects of New Gliclazide-Bile Acid Microcapsules for Type 1 Diabetes Treatment: the Microencapsulation of Anti-diabetics Using a Microcapsule-Stabilizing Bile Acid. AAPS PharmSciTech 2018; 19:3009-3018. [PMID: 30062539 DOI: 10.1208/s12249-018-1127-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/17/2018] [Indexed: 02/08/2023] Open
Abstract
When we administered orally a mixture of the anti-diabetic drug, gliclazide (G) and a primary bile acid, they exerted a hypoglycemic effect in a rat model of type 1 diabetes (T1D), but stability of mixture was limited. We aimed to develop and characterize microcapsules incorporating G with a microcapsule-stabilizing bile acid, ursodeoxycholic acid (UDCA). Sodium alginate (SA)-based microcapsules were prepared with either G or G with UDCA and analyzed in terms of morphological, physico-chemical, and electro-chemical characteristics at different pH and temperatures. The microcapsules' effects on viability on muscle cell line (C2C12) and on diabetic rats' blood glucose levels and inflammatory profiles were also examined. Bile acid-based microcapsules maintained their morphology, showed good stability, and compatibility profiles, and the incorporation of UDCA resulted in less G content per microcapsule (p < 0.01) and production of stronger microcapsules that were more resistant to mechanical pressure (p < 0.01). G-UDCA-SA microcapsules enhanced muscle cell viability at higher glucose concentrations compared with control (G-SA and UDCA-SA), and they had strong anti-inflammatory effects on diabetic rats. In addition, the incorporation of UDCA into G microcapsules enhanced the physical characteristics of the microcapsules and optimized G delivery after oral administration.
Collapse
|
22
|
Choe G, Park J, Park H, Lee JY. Hydrogel Biomaterials for Stem Cell Microencapsulation. Polymers (Basel) 2018; 10:E997. [PMID: 30960922 PMCID: PMC6403586 DOI: 10.3390/polym10090997] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Stem cell transplantation has been recognized as a promising strategy to induce the regeneration of injured and diseased tissues and sustain therapeutic molecules for prolonged periods in vivo. However, stem cell-based therapy is often ineffective due to low survival, poor engraftment, and a lack of site-specificity. Hydrogels can offer several advantages as cell delivery vehicles, including cell stabilization and the provision of tissue-like environments with specific cellular signals; however, the administration of bulk hydrogels is still not appropriate to obtain safe and effective outcomes. Hence, stem cell encapsulation in uniform micro-sized hydrogels and their transplantation in vivo have recently garnered great attention for minimally invasive administration and the enhancement of therapeutic activities of the transplanted stem cells. Several important methods for stem cell microencapsulation are described in this review. In addition, various natural and synthetic polymers, which have been employed for the microencapsulation of stem cells, are reviewed in this article.
Collapse
Affiliation(s)
- Goeun Choe
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.
| | - Junha Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.
| |
Collapse
|
23
|
Influence of Biotechnological Processes, Speed of Formulation Flow and Cellular Concurrent Stream-Integration on Insulin Production from β-cells as a Result of Co-Encapsulation with a Highly Lipophilic Bile Acid. Cell Mol Bioeng 2017; 11:65-75. [PMID: 31719879 DOI: 10.1007/s12195-017-0510-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/26/2017] [Indexed: 12/20/2022] Open
Abstract
Introduction We have shown that incorporation of the hydrophilic bile acid, ursodeoxycholic acid, into β-cell microcapsules exerted positive effects on microcapsules' morphology and size, but these effects were excipient and method dependent. Cell viability remained low which suggests low octane-water solubility and formation of highly hydrophilic dispersion, which resulted in low lipophilicity dispersion and compromised cellular permeation of the incorporated bile acid. Thus, this study aimed at investigating various microencapsulating methodologies using highly lipophilic bile acid (LPBA), in order to optimise viability and functions of microencapsulated β-cells. Methods Four different types of microcapsules were produced with (test) and without (control) LPBA, totalling eight different microcapsules. Microencapsulating methodologies were screened for best microcapsule-cell functions and microencapsulating processes were examined in terms of frequency, formulation flow, total bath-gelation time and cellular concurrent stream-integration rate, cell-viability, insulin production and inflammatory profile. Results Optimum biotechnological processes include formation frequency (Hz) of 2350, formulation flow (ml/min) of 1.2, total gelation time (min) of 18 and cellular concurrent stream-integration rate (ml/min) of 0.7. In all formulations, LPBA consistently improved cell viability, insulin production, mitochondrial activities and ameliorated inflammation. Conclusion The deployed biotechnological processes and LPBA optimised formation and functions of β-cell microcapsules, which suggests potential applications in diabetes mellitus via the creation of more stable β-cell microcapsules capable of delivering adequate levels of insulin to control glycaemia and potentially curing diabetes.
Collapse
|
24
|
Mooranian A, Negrulj R, Takechi R, Jamieson E, Morahan G, Al-Salami H. Electrokinetic potential-stabilization by bile acid-microencapsulating formulation of pancreatic β-cells cultured in high ratio poly-L-ornithine-gel hydrogel colloidal dispersion: applications in cell-biomaterials, tissue engineering and biotechnological applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1156-1162. [PMID: 28776395 DOI: 10.1080/21691401.2017.1362416] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Current trials for β-cell transplantation have been hindered by poor cell viability and function post-transplantation. Recently, electric charges of the microencapsulating formulation carrying β-cells have shown significant effects on cell survival and function. Thus, this study aimed at investigating the effects of electric charge, of novel colloidal formulation containing β-cells, on cell viability, biological activity and insulin release. METHODS A new formulation, containing high ratios of poly-L-ornithine, suspending electrical-stimulation hydrogel and polystyrene sulphone (1:1:0.1 ratio), was used to form microcapsules utilizing 800 V and 2000 Hz encapsulating conditions. The bile acid, ursodeoxycholic acid, was added into the microcapsules to measure its effects on electric charges. RESULTS The electric charge of the microencapsulating formulation was enhanced by bile acid addition, and resulted in better cell viability and function. CONCLUSION Ursodeoxycholic acid microencapsulated with poly-L-ornithine, suspending electrical-stimulation hydrogel and polystyrene sulphone at 1:1:0.1 ratio, using 800 V and 2000 Hz microencapsulating conditions, produced enhanced electrokinetic parameters of microcapsules with optimized cell functions. This suggests that electric charge of formulations containing pancreatic β-cell may have significant effects on cell mass and functions, post-transplantation.
Collapse
Affiliation(s)
- Armin Mooranian
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy , Curtin Health Innovation Research Institute, Curtin University , Perth , WA , Australia
| | - Rebecca Negrulj
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy , Curtin Health Innovation Research Institute, Curtin University , Perth , WA , Australia
| | - Ryu Takechi
- b School of Public Health , Curtin Health Innovation Research Institute, Curtin University , Perth , WA , Australia
| | - Emma Jamieson
- c Centre for Medical Research , University of Western Australia , Perth , WA , Australia.,d Clinical Sciences Division , The Harry Perkins Institute of Medical Research , Perth , WA , Australia
| | - Grant Morahan
- c Centre for Medical Research , University of Western Australia , Perth , WA , Australia.,d Clinical Sciences Division , The Harry Perkins Institute of Medical Research , Perth , WA , Australia
| | - Hani Al-Salami
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy , Curtin Health Innovation Research Institute, Curtin University , Perth , WA , Australia
| |
Collapse
|
25
|
Mooranian A, Negrulj R, Takechi R, Jamieson E, Morahan G, Al-Salami H. New Biotechnological Microencapsulating Methodology Utilizing Individualized Gradient-Screened Jet Laminar Flow Techniques for Pancreatic β-Cell Delivery: Bile Acids Support Cell Energy-Generating Mechanisms. Mol Pharm 2017; 14:2711-2718. [DOI: 10.1021/acs.molpharmaceut.7b00220] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Armin Mooranian
- Biotechnology
and Drug Development Research Laboratory, School of Pharmacy, Curtin
Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Rebecca Negrulj
- Biotechnology
and Drug Development Research Laboratory, School of Pharmacy, Curtin
Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ryu Takechi
- School
of Public Health, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Emma Jamieson
- Centre
for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, Western Australia 6009, Australia
| | - Grant Morahan
- Centre
for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, Western Australia 6009, Australia
| | - Hani Al-Salami
- Biotechnology
and Drug Development Research Laboratory, School of Pharmacy, Curtin
Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| |
Collapse
|
26
|
Mooranian A, Takechi R, Jamieson E, Morahan G, Al-Salami H. The effect of molecular weights of microencapsulating polymers on viability of mouse-cloned pancreatic β-cells: biomaterials, osmotic forces and potential applications in diabetes treatment. Pharm Dev Technol 2017; 23:145-150. [PMID: 28425308 DOI: 10.1080/10837450.2017.1321664] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Ideal cell-containing microcapsules should be capable of maintaining cell viability and exhibit significant structural stability to support cellular functionality. To date, such microcapsules remain unavailable; thus, this study used our well-established microencapsulating methods to examine a total of 32 different microencapsulating formulations and correlate polymers' molecular weights (Mwt) and UDCA addition, with cell viability and microcapsules' stability, postmicroencapsulation. METHODS MIN6 mouse-cloned pancreatic β-cells were microencapsulated using control (n = 16; without UDCA) and test (n = 16; with UDCA) different polymers. Confocal microscopic imaging, cell viability, and microcapsules' stability were assessed. RESULTS Best cell viability (>50%) was obtained at average Mwt of 50,000 g/mol (poly-l-ornithine), followed by 110,000 g/mol (poly-l-lysine). There was no linear correlation between Mwt and viability. Confocal imagining showed similar microcapsules' shape and cell distribution among all different polymers' molecular weights, which suggests that the microencapsulating method was efficient and maintained microcapsules' uniformity. UDCA addition resulted in enhanced osmotic stability of the microcapsules and improved cell viability, when the formulation contained 1% polylornithine, 1% polyethylene glycol, 20% Eudragit® NM30D, 1% polytetrafluoroethylene, or 5% pentamethylcyclopentasiloxane. CONCLUSIONS UDCA addition improved microenvironmental conditions within the microcapsules but this effect was largely dependent on the polymer systems used.
Collapse
Affiliation(s)
- Armin Mooranian
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy , Curtin Health Innovation Research Institute, Curtin University , Perth , Western Australia , Australia
| | - Ryu Takechi
- b School of Public Health , Curtin Health Innovation Research Institute, Curtin University , Perth , Western Australia , Australia
| | - Emma Jamieson
- c Harry Perkins Institute of Medical Research , Centre for Diabetes Research , Perth , Western Australia , Australia
| | - Grant Morahan
- c Harry Perkins Institute of Medical Research , Centre for Diabetes Research , Perth , Western Australia , Australia
| | - Hani Al-Salami
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy , Curtin Health Innovation Research Institute, Curtin University , Perth , Western Australia , Australia
| |
Collapse
|
27
|
Mooranian A, Tackechi R, Jamieson E, Morahan G, Al-Salami H. Innovative Microcapsules for Pancreatic β-Cells Harvested from Mature Double-Transgenic Mice: Cell Imaging, Viability, Induced Glucose-Stimulated Insulin Measurements and Proinflammatory Cytokines Analysis. Pharm Res 2017; 34:1217-1223. [PMID: 28289997 DOI: 10.1007/s11095-017-2138-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/01/2017] [Indexed: 01/24/2023]
Abstract
PURPOSE Recently we demonstrated that microencapsulation of a murine pancreatic β-cell line using an alginate-ursodeoxycholic acid (UDCA) matrix produced microcapsules with good stability and cell viability. In this study, we investigated if translation of this formulation to microencapsulation of primary β-cells harvested from mature double-transgenic healthy mice would also generate stable microcapsules with good cell viability. METHODS Islets of Langerhans were isolated from Ngn3-GFP/RIP-DsRED mice by intraductal collagenase P digestion and density gradient centrifugation, dissociated into single cells and the β-cell population purified by Fluorescence Activated Cell Sorting. β-cells were microencapsulated using either alginate-poly-l-ornithine (F1; control) or alginate-poly-l-ornithine-UDCA (F2; test) formulations. Microcapsules were microscopically examined and microencapsulated cells were analyzed for viability, insulin and cytokine release, 2 days post-microencapsulation. RESULTS Microcapsules showed good uniformity and morphological characteristics and even cell distribution within microcapsules with or without UDCA. Two days post microencapsulation cell viability, mitochondrial ATP and insulin production were shown to be optimized in the presence of UDCA whilst production of the proinflammatory cytokine IL-1β was reduced. Contradictory to our previous studies, UDCA did not reduce production of any other pro-inflammatory biomarkers. CONCLUSIONS These results suggest that UDCA incorporation improves microcapsules' physical and morphological characteristics and improves the viability and function of encapsulated mature primary pancreatic β-cells.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, Australia
| | - Ryu Tackechi
- School of Public Health, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Emma Jamieson
- Harry Perkins Institute of Medical Research, Centre for Diabetes Research, Perth, WA, Australia
| | - Grant Morahan
- Harry Perkins Institute of Medical Research, Centre for Diabetes Research, Perth, WA, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, Australia.
| |
Collapse
|
28
|
Mooranian A, Negrulj R, Al-Salami H. The impact of allylamine-bile acid combinations on cell delivery microcapsules in diabetes. J Microencapsul 2016; 33:569-574. [PMID: 27574968 DOI: 10.1080/02652048.2016.1228703] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE In a recent study, we developed a new microencapsulating method for β-cell microencapsulation, but cell viability declined rapidly, post microencapsulation, due to potential polymer-polyelectrolyte chelation and non-porous microcapsules' membranes resulting in cell apoptosis. Thus, this study tested the effects of incorporating cationic polyamine at 1% w/v, on microcapsule strength and cell viability, in the absence or presence of an anionic tertiary bile acid (ATBA) with potential cell-protective effects. METHODS 1% w/v polyamine was used without or with ATBA, to form β-cell microcapsules and physical and biological analyses was carried out 50 h post microencapsulation. RESULTS Microcapsules containing 1% w/v polyamine showed weak physical properties and low cell viability and ATBA incorporation resulted in >30% reduction in cell viability and increased levels of pro-inflammatory cytokines. CONCLUSION Neither 1% w/v polyamine nor the presence of ATBA resulted in optimised cell viability, but rather reduced cell viability, enhanced inflammation and lowered insulin secretion.
Collapse
Affiliation(s)
- Armin Mooranian
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy , Curtin Health Innovation Research Institute, Curtin University , Perth , Western Australia , Australia
| | - Rebecca Negrulj
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy , Curtin Health Innovation Research Institute, Curtin University , Perth , Western Australia , Australia
| | - Hani Al-Salami
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy , Curtin Health Innovation Research Institute, Curtin University , Perth , Western Australia , Australia
| |
Collapse
|
29
|
Biological Assessments of Encapsulated Pancreatic β-Cells: Their Potential Transplantation in Diabetes. Cell Mol Bioeng 2016. [DOI: 10.1007/s12195-016-0441-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
30
|
Mooranian A, Negrulj R, Al-Salami H. Alginate-deoxycholic Acid Interaction and Its Impact on Pancreatic Β-Cells and Insulin Secretion and Potential Treatment of Type 1 Diabetes. J Pharm Innov 2016. [DOI: 10.1007/s12247-016-9248-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
31
|
Mooranian A, Negrulj R, Al-Salami H. Primary Bile Acid Chenodeoxycholic Acid-Based Microcapsules to Examine β-cell Survival and the Inflammatory Response. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0198-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|