1
|
Jiménez-López D, Xoconostle-Cázares B, Calderón-Pérez B, Vargas-Hernández BY, Núñez-Muñoz LA, Ramírez-Pool JA, Ruiz-Medrano R. Evolutionary and Structural Analysis of PP16 in Viridiplantae. Int J Mol Sci 2024; 25:2839. [PMID: 38474088 DOI: 10.3390/ijms25052839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Members of the phloem protein 16 (PP16) gene family are induced by elicitors in rice and the corresponding proteins from cucurbits, which display RNA binding and intercellular transport activities, are accumulated in phloem sap. These proteins facilitate the movement of protein complexes through the phloem translocation flow and may be involved in the response to water deficit, among other functions. However, there is scant information regarding their function in other plants, including the identification of paralog genes in non-vascular plants and chlorophytes. In the present work, an evolutionary and structural analysis of the PP16 family in green plants (Viridiplantae) was carried out. Data mining in different databases indicated that PP16 likely originated from a larger gene present in an ancestral lineage that gave rise to chlorophytes and multicellular plants. This gene encodes a protein related to synaptotagmin, which is involved in vesicular transport in animal systems, although other members of this family play a role in lipid turnover in endomembranes and organelles. These proteins contain a membrane-binding C2 domain shared with PP16 proteins in vascular plants. In silico analysis of the predicted structure of the PP16 protein family identified several β-sheets, one α-helix, and intrinsically disordered regions. PP16 may have been originally involved in vesicular trafficking and/or membrane maintenance but specialized in long-distance signaling during the emergence of the plant vascular system.
Collapse
Affiliation(s)
- Domingo Jiménez-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Brenda Yazmín Vargas-Hernández
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Leandro Alberto Núñez-Muñoz
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - José Abrahán Ramírez-Pool
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| |
Collapse
|
2
|
Calderón-Pérez B, Ramírez-Pool JA, Núñez-Muñoz LA, Vargas-Hernández BY, Camacho-Romero A, Lara-Villamar M, Jiménez-López D, Xoconostle-Cázares B, Ruiz-Medrano R. Engineering Macromolecular Trafficking Into the Citrus Vasculature. FRONTIERS IN PLANT SCIENCE 2022; 13:818046. [PMID: 35178061 PMCID: PMC8844563 DOI: 10.3389/fpls.2022.818046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The plant vasculature is a central organ for long-distance transport of nutrients and signaling molecules that coordinate vegetative and reproductive processes, and adaptation response mechanisms to biotic and abiotic stress. In angiosperms, the sieve elements are devoid of nuclei, thus depending on the companion cells for the synthesis of RNA and proteins, which constitute some of the systemic signals that coordinate these processes. Massive analysis approaches have identified proteins and RNAs that could function as long-range signals in the phloem translocation stream. The selective translocation of such molecules could occur as ribonucleoprotein complexes. A key molecule facilitating this movement in Cucurbitaceae is the phloem protein CmPP16, which can facilitate the movement of RNA and other proteins into the sieve tube. The CmPP16 ortholog in Citrus CsPP16 was characterized in silico to determine its potential capacity to associate with other mobile proteins and its enrichment in the vascular tissue. The systemic nature of CsPP16 was approached by evaluating its capacity to provide phloem-mobile properties to antimicrobial peptides (AMPs), important in the innate immune defense. The engineering of macromolecular trafficking in the vasculature demonstrated the capacity to mobilize translationally fused peptides into the phloem stream for long-distance transport. The translocation into the phloem of AMPs could mitigate the growth of Candidatus Liberibacter asiaticus, with important implications for crop defense; this system also opens the possibility of translocating other molecules to modulate traits, such as plant growth, defense, and plant productivity.
Collapse
|
3
|
Kamenya SN, Mikwa EO, Song B, Odeny DA. Genetics and breeding for climate change in Orphan crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1787-1815. [PMID: 33486565 PMCID: PMC8205878 DOI: 10.1007/s00122-020-03755-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/16/2020] [Indexed: 05/17/2023]
Abstract
Climate change is rapidly changing how we live, what we eat and produce, the crops we breed and the target traits. Previously underutilized orphan crops that are climate resilient are receiving much attention from the crops research community, as they are often the only crops left in the field after periods of extreme weather conditions. There are several orphan crops with incredible resilience to biotic and abiotic stresses. Some are nutritious, while others provide good sources of biofuel, medicine and other industrial raw materials. Despite these benefits, orphan crops are still lacking in important genetic and genomic resources that could be used to fast track their improvement and make their production profitable. Progress has been made in generating draft genomes of at least 28 orphan crops over the last decade, thanks to the reducing cost of sequencing. The implementation of a structured breeding program that takes advantage of additional modern crop improvement tools such as genomic selection, speed breeding, genome editing, high throughput phenotyping and breeding digitization would make rapid improvement of these orphan crops possible, but would require coordinated research investment. Other production challenges such as lack of adequate germplasm conservation, poor/non-existent seed systems and agricultural extension services, as well as poor marketing channels will also need to be improved if orphan crops were to be profitable. We review the importance of breeding orphan crops under the increasing effects of climate change, highlight existing gaps that need to be addressed and share some lessons to be learned from major crops.
Collapse
Affiliation(s)
- Sandra Ndagire Kamenya
- African Center of Excellence in Agroecology and Livelihood Systems, Uganda Martyrs University, Kampala, Uganda
| | - Erick Owuor Mikwa
- The International Crops Research Institute for the Semi-Arid Tropics - Eastern and Southern Africa, Nairobi, Kenya
| | - Bo Song
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute At Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518060, People's Republic of China.
| | - Damaris Achieng Odeny
- The International Crops Research Institute for the Semi-Arid Tropics - Eastern and Southern Africa, Nairobi, Kenya.
| |
Collapse
|
4
|
Nuñez-Muñoz L, Vargas-Hernández B, Hinojosa-Moya J, Ruiz-Medrano R, Xoconostle-Cázares B. Plant drought tolerance provided through genome editing of the trehalase gene. PLANT SIGNALING & BEHAVIOR 2021; 16:1877005. [PMID: 33570447 PMCID: PMC7971296 DOI: 10.1080/15592324.2021.1877005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 05/25/2023]
Abstract
Drought is one of the main abiotic factors that affect agricultural productivity, jeopardizing food security. Modern biotechnology is a useful tool for the generation of stress-tolerant crops, but its release and field-testing involves complex regulatory frameworks. However, gene editing technology mediated by the CRISPR/Cas9 system is a suitable strategy for plant breeding, which can lead to precise and specific modifications in the plant genome. The aim of the present work is to produce drought-tolerant plant varieties by modifying the trehalase gene. Furthermore, a new vector platform was developed to edit monocot and dicot genomes, by modifying vectors adding a streptomycin resistance marker for use with the hypervirulent Agrobacterium tumefaciens AGL1 strain. The gRNA design was based on the trehalase sequence in several species of the genus Selaginella that show drought tolerance. Arabidopsis thaliana carrying editions in the trehalase substrate-binding domain showed a higher tolerance to drought stress. In addition, a transient transformation system for gene editing in maize leaves was characterized.
Collapse
Affiliation(s)
- Leandro Nuñez-Muñoz
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CDMX, México
| | - Brenda Vargas-Hernández
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CDMX, México
| | - Jesús Hinojosa-Moya
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CDMX, México
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CDMX, México
| |
Collapse
|
5
|
Sun Y, Zhao JY, Li YT, Zhang PG, Wang SP, Guo J, Chen J, Zhou YB, Chen M, Ma YZ, Fang ZW, Xu ZS. Genome-Wide Analysis of the C2 Domain Family in Soybean and Identification of a Putative Abiotic Stress Response Gene GmC2-148. FRONTIERS IN PLANT SCIENCE 2021; 12:620544. [PMID: 33692816 PMCID: PMC7939022 DOI: 10.3389/fpls.2021.620544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/05/2021] [Indexed: 05/24/2023]
Abstract
Plant C2 domain proteins play essential biological functions in numerous plants. In this study, 180 soybean C2 domain genes were identified by screening. Phylogenetic relationship analysis revealed that C2 domain genes fell into three distinct groups with diverged gene structure and conserved functional domain. Chromosomal location analysis indicated that C2 domain genes mapped to 20 chromosomes. The transcript profiles based on RNA-seq data showed that GmC2-58, GmC2-88, and GmC2-148 had higher levels of expression under salt, drought, and abscisic acid (ABA) treatments. GmC2-148, encoding a cell membrane-localized protein, had the highest level of response to various treatments according to real-time quantitative polymerase chain reaction (RT-qPCR) analysis. Under salt and drought stresses, the soybean plants with GmC2-148 transgenic hairy roots showed delayed leaf rolling, a higher content of proline (Pro), and lower contents of H2O2, O2- and malondialdehyde (MDA) compared to those of the empty vector (EV) plants. The results of transgenic Arabidopsis in salt and drought treatments were consistent with those in soybean treatments. In addition, the soybean plants with GmC2-148 transgenic hairy roots increased transcript levels of several abiotic stress-related marker genes, including COR47, NCDE3, NAC11, WRKY13, DREB2A, MYB84, bZIP44, and KIN1 which resulted in enhanced abiotic stress tolerance in soybean. These results indicate that C2 domain genes are involved in response to salt and drought stresses, and this study provides a genome-wide analysis of the C2 domain family in soybean.
Collapse
Affiliation(s)
- Yue Sun
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Juan-Ying Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yi-Tong Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Pei-Gen Zhang
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Shu-Ping Wang
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zheng-Wu Fang
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
6
|
Liu Y, Lin T, Valencia MV, Zhang C, Lv Z. Unraveling the Roles of Vascular Proteins Using Proteomics. Molecules 2021; 26:molecules26030667. [PMID: 33514014 PMCID: PMC7865979 DOI: 10.3390/molecules26030667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/03/2022] Open
Abstract
Vascular bundles play important roles in transporting nutrients, growth signals, amino acids, and proteins between aerial and underground tissues. In order to understand these sophisticated processes, a comprehensive analysis of the roles of the components located in the vascular tissues is required. A great deal of data has been obtained from proteomic analyses of vascular tissues in plants, which mainly aim to identify the proteins moving through the vascular tissues. Here, different aspects of the phloem and xylem proteins are reviewed, including their collection methods, and their main biological roles in growth, and biotic and abiotic stress responses. The study of vascular proteomics shows great potential to contribute to our understanding of the biological mechanisms related to development and defense in plants.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
| | - Tianbao Lin
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
| | - Maria Valderrama Valencia
- Departamento Académico de Biología–Universidad Nacional de San Agustin de Arequipa Nro117, Arequipa 04000, Peru;
| | - Cankui Zhang
- Department of Agronomy and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (C.Z.); (Z.L.)
| | - Zhiqiang Lv
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
- Correspondence: (C.Z.); (Z.L.)
| |
Collapse
|
7
|
Detection and in vitro studies of Cucurbita maxima phloem serpin-1 RNA-binding properties. Biochimie 2020; 170:118-127. [PMID: 31935442 DOI: 10.1016/j.biochi.2020.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/09/2020] [Indexed: 11/22/2022]
Abstract
Apart from being a conduit for photoassimilate transport in plants, the phloem serves as a pathway for transport of proteins and RNAs from sites of their synthesis to distant plant parts. As demonstrated for mRNAs and small RNAs such as miRNA and siRNA, their phloem transport is largely involved in responses to environmental cues including stresses and pathogen attacks. RNA molecules are believed to be transported in the phloem in the form of complexes with RNA-binding proteins; however, proteins forming such complexes are generally poorly studied. Here, we demonstrate that the Cucurbita maxima phloem serpin-1 (CmPS1), which has been previously described as a functional protease inhibitor capable of long-distance transport via the phloem, is able to bind RNA in vitro. Among different RNAs tested, CmPS1 exhibits a preference for imperfect RNA duplexes and the highest affinity to tRNA. A characteristic complex formed by CmPS1 with tRNA is not observed upon CmPS1 binding to tRNA-like structures of plant viruses. Mutational analysis demonstrates that the CmPS1 N-terminal region is not involved in RNA binding. Since antithrombin-III, the human protease inhibitor of serpin family most closely sequence-related to CmPS1, is found to be unable to bind RNA, one can suggest that, in its evolution, CmPS1 has gained the RNA binding capability as an additional function likely relevant to its specific activities in the plant phloem.
Collapse
|
8
|
Localized expression of antimicrobial proteins mitigates huanglongbing symptoms in Mexican lime. J Biotechnol 2018; 285:74-83. [DOI: 10.1016/j.jbiotec.2018.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/16/2018] [Accepted: 08/24/2018] [Indexed: 11/19/2022]
|
9
|
Srivastava VK, Raikwar S, Tuteja R, Tuteja N. Ectopic expression of phloem motor protein pea forisome PsSEO-F1 enhances salinity stress tolerance in tobacco. PLANT CELL REPORTS 2016; 35:1021-41. [PMID: 26825595 DOI: 10.1007/s00299-016-1935-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/16/2015] [Accepted: 01/08/2016] [Indexed: 05/24/2023]
Abstract
KEY MESSAGE PsSEOF-1 binds to calcium and its expression is upregulated by salinity treatment. PsSEOF - 1 -overexpressing transgenic tobacco showed enhanced salinity stress tolerance by maintaining cellular ion homeostasis and modulating ROS-scavenging pathway. Calcium (Ca(2+)) plays important role in growth, development and stress tolerance in plants. Cellular Ca(2+) homeostasis is achieved by the collective action of channels, pumps, antiporters and by Ca(2+) chelators present in the cell like calcium-binding proteins. Forisomes are ATP-independent mechanically active motor proteins known to function in wound sealing of injured sieve elements of phloem tissue. The Ca(2+)-binding activity of forisome and its role in abiotic stress signaling were largely unknown. Here we report the Ca(2+)-binding activity of pea forisome (PsSEO-F1) and its novel function in promoting salinity tolerance in transgenic tobacco. Native PsSEO-F1 promoter positively responded in salinity stress as confirmed using GUS reporter. Overexpression of PsSEO-F1 tobacco plants confers salinity tolerance by alleviating ionic toxicity and increased ROS scavenging activity which probably results in reduced membrane damage and improved yield under salinity stress. Evaluation of several physiological indices shows an increase in relative water content, electrolyte leakage, proline accumulation and chlorophyll content in transgenic lines as compared with null-segregant control. Expression of several genes involved in cellular homeostasis is perturbed by PsSEO-F1 overexpression. These findings suggest that PsSEO-F1 provides salinity tolerance through cellular Ca(2+) homeostasis which in turn modulates ROS machinery providing indirect link between Ca(2+) and ROS signaling under salinity-induced perturbation. PsSEO-F1 most likely functions in salinity stress tolerance by improving antioxidant machinery and mitigating ion toxicity in transgenic lines. This finding should make an important contribution in our better understanding of the significance of calcium signaling in phloem tissue leading to salinity stress tolerance.
Collapse
Affiliation(s)
- Vineet Kumar Srivastava
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shailendra Raikwar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|