1
|
Rangel RDCR, Rangel ALR, da Silva KB, Escada ALDA, Chaves JAM, Maia FR, Pina S, Reis RL, Oliveira JM, Rosifini Alves AP. Characterization of Iron Oxide Nanotubes Obtained by Anodic Oxidation for Biomedical Applications-In Vitro Studies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3627. [PMID: 39124291 PMCID: PMC11313345 DOI: 10.3390/ma17153627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/12/2024]
Abstract
To improve the biocompatibility and bioactivity of biodegradable iron-based materials, nanostructured surfaces formed by metal oxides offer a promising strategy for surface functionalization. To explore this potential, iron oxide nanotubes were synthesized on pure iron (Fe) using an anodic oxidation process (50 V-30 min, using an ethylene glycol solution containing 0.3% NH4F and 3% H2O, at a speed of 100 rpm). A nanotube layer composed mainly of α-Fe2O3 with diameters between 60 and 70 nm was obtained. The effect of the Fe-oxide nanotube layer on cell viability and morphology was evaluated by in vitro studies using a human osteosarcoma cell line (SaOs-2 cells). The results showed that the presence of this layer did not harm the viability or morphology of the cells. Furthermore, cells cultured on anodized surfaces showed higher metabolic activity than those on non-anodized surfaces. This research suggests that growing a layer of Fe oxide nanotubes on pure Fe is a promising method for functionalizing and improving the cytocompatibility of iron substrates. This opens up new opportunities for biomedical applications, including the development of cardiovascular stents or osteosynthesis implants.
Collapse
Affiliation(s)
- Rita de Cássia Reis Rangel
- São Paulo State University (UNESP), School of Engineering, Ilha Solteira 15385-007, Brazil; (R.d.C.R.R.); (A.L.R.R.)
| | - André Luiz Reis Rangel
- São Paulo State University (UNESP), School of Engineering, Ilha Solteira 15385-007, Brazil; (R.d.C.R.R.); (A.L.R.R.)
| | - Kerolene Barboza da Silva
- São Paulo State University (UNESP), School of Engineering and Sciences, Guaratinguetá, São Paulo 01049-010, Brazil; (K.B.d.S.); (A.L.d.A.E.)
| | - Ana Lúcia do Amaral Escada
- São Paulo State University (UNESP), School of Engineering and Sciences, Guaratinguetá, São Paulo 01049-010, Brazil; (K.B.d.S.); (A.L.d.A.E.)
| | - Javier Andres Munoz Chaves
- Intelligent System Research Group, Faculty of Engineering, Corporación Universitaria Comfacauca-Unicomfacauca, Popayán 190003, Colombia;
| | - Fátima Raquel Maia
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (F.R.M.); (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Sandra Pina
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (F.R.M.); (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (F.R.M.); (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (F.R.M.); (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Ana Paula Rosifini Alves
- São Paulo State University (UNESP), School of Engineering and Sciences, Guaratinguetá, São Paulo 01049-010, Brazil; (K.B.d.S.); (A.L.d.A.E.)
| |
Collapse
|
2
|
Zhang Y, Roux C, Rouchaud A, Meddahi-Pellé A, Gueguen V, Mangeney C, Sun F, Pavon-Djavid G, Luo Y. Recent advances in Fe-based bioresorbable stents: Materials design and biosafety. Bioact Mater 2024; 31:333-354. [PMID: 37663617 PMCID: PMC10474570 DOI: 10.1016/j.bioactmat.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Fe-based materials have received more and more interests in recent years as candidates to fabricate bioresorbable stents due to their appropriate mechanical properties and biocompatibility. However, the low degradation rate of Fe is a serious limitation for such application. To overcome this critical issue, many efforts have been devoted to accelerate the corrosion rate of Fe-based stents, through the structural and surface modification of Fe matrix. As stents are implantable devices, the released corrosion products (Fe2+ ions) in vessels may alter the metabolism, by generating reactive oxygen species (ROS), which might in turn impact the biosafety of Fe-based stents. These considerations emphasize the importance of combining knowledge in both materials and biological science for the development of efficient and safe Fe-based stents, although there are still only limited numbers of reviews regarding this interdisciplinary field. This review aims to provide a concise overview of the main strategies developed so far to design Fe-based stents with accelerated degradation, highlighting the fundamental mechanisms of corrosion and the methods to study them as well as the reported approaches to accelerate the corrosion rates. These approaches will be divided into four main sections, focusing on (i) increased active surface areas, (ii) tailored microstructures, (iii) creation of galvanic reactions (by alloying, ion implantation or surface coating of noble metals) and (iv) decreased local pH induced by degradable surface organic layers. Recent advances in the evaluation of the in vitro biocompatibility of the final materials and ongoing in vivo tests are also provided.
Collapse
Affiliation(s)
- Yang Zhang
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Charles Roux
- Univ. Limoges, CNRS, XLIM, UMR 7252, Limoges, France
| | | | - Anne Meddahi-Pellé
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Virginie Gueguen
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Claire Mangeney
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
| | - Fan Sun
- PSL Université, Chimie Paris Tech, IRCP, CNRS UMR 8247, 11, Rue Pierre et Marie Curie, 75005, Paris, France
| | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Yun Luo
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
| |
Collapse
|
3
|
Sahu RA, Nashine A, Mudey A, Sahu SA, Prasad R. Cardiovascular Stents: Types and Future Landscape. Cureus 2023; 15:e43438. [PMID: 37711918 PMCID: PMC10499059 DOI: 10.7759/cureus.43438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/12/2023] [Indexed: 09/16/2023] Open
Abstract
One of the prominent reasons for mortality and morbidity worldwide is coronary artery disease (CAD), an ailment that manifests itself by the narrowing of the artery with the deposition of plaque. The definitive mode of action for dealing with this condition is using a medical device known as a stent at the affected location. This extremely important tubular equipment helps tremendously with vessel support. It also helps by keeping the path of blood flow clear for the heart muscle masses, its crucial nutrients, and oxygen supply. Several generations of stents have been continuously developed to improve patient outcomes and reduce side effects post-stent implantation. As we move from bare metal stents (BMSs) to drug-eluting stents (DESs) and, more recently, to bioabsorbable stents, the research area continues to develop. The use of this biomedical device has increased the standard of living in many cases; therefore, it is much needed to work on the possible growth areas in the cardiovascular stents and improve them to such an extent that the patients suffering from cardiovascular ailments get to live a comfortable life. Most articles deal with stents that are available for current use and their various types. They also cover the topic of stent optimization, as it is one of the key factors in enhancing stent usability and plays a prominent role in optimizing stent placement in the vessels of the body. To keep in touch with advances in stent technology over the past few decades, this article reviews advances in the devices, working on how available stents can be optimized to create new stents.
Collapse
Affiliation(s)
- Rohit A Sahu
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aparna Nashine
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Abhay Mudey
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shreya A Sahu
- Obstretics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roshan Prasad
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
4
|
Zhang Y, Zhang K, Liu W, Zheng Z, Zhao M. Grain Growth upon Annealing and Its Influence on Biodegradation Rate for Pure Iron. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8030. [PMID: 36431520 PMCID: PMC9692834 DOI: 10.3390/ma15228030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Biodegradable pure iron has gained significant interest as a biomedical material. For biodegradable implant applications, the biodegradation behavior of pure iron is important. In this work, the influence of ferrite grain size on the biodegradation rate for pure iron was studied by means of heat treatment that was annealed below the austenized temperature using as-forged pure iron. Grains were coarsened and a spectrum of ferrite grain sizes was gained by changing the annealed temperature. Biodegradation behavior was studied through weight loss tests, electrochemical measurements and microscopic analyses. Hardness (HV) and biodegradation rate (Pi or Pw) were linearly ferrite grain size-dependent: HV=58.9+383.2d-12, and Pi=-0.023+0.425d-12 or Pw=0.056+0.631d-12. The mechanism by which the role of grain size on biodegradation rate was attributed to the ferrite grain boundary traits.
Collapse
Affiliation(s)
- Yu Zhang
- Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
| | - Ke Zhang
- Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
| | - Weidong Liu
- Xiangya Hospital, Central South University, Changsha 410008, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standards, Changsha 410008, China
| | - Zhongren Zheng
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Mingchun Zhao
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Vallejo-Zamora JA, Vega-Cantu YI, Rodriguez C, Cordell GA, Rodriguez-Garcia A. Drug-Eluting, Bioresorbable Cardiovascular Stents─Challenges and Perspectives. ACS APPLIED BIO MATERIALS 2022; 5:4701-4717. [PMID: 36150217 DOI: 10.1021/acsabm.2c00551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Globally, the leading causes of natural death are attributed to coronary heart disease and type 1 and type 2 diabetes. High blood pressure levels, high cholesterol levels, smoking, and poor eating habits lead to the agglomeration of plaque in the arteries, reducing the blood flow. The implantation of devices used to unclog vessels, known as stents, sometimes results in a lack of irrigation due to the excessive proliferation of endothelial tissue within the blood vessels and is known as restenosis. The use of drug-eluting stents (DESs) to deliver antiproliferative drugs has led to the development of different encapsulation techniques. However, due to the potency of the drugs used in the initial stent designs, a chronic inflammatory reaction of the arterial wall known as thrombosis can cause a myocardial infarction (MI). One of the most promising drugs to reduce this risk is everolimus, which can be encapsulated in lipid systems for controlled release directly into the artery. This review aims to discuss the current status of stent design, fabrication, and functionalization. Variables such as the mechanical properties, metals and their alloys, drug encapsulation and controlled elution, and stent degradation are also addressed. Additionally, this review covers the use of polymeric surface coatings on stents and the recent advances in layer-by-layer coating and drug delivery. The advances in nanoencapsulation techniques such as liposomes and micro- and nanoemulsions and their functionalization in bioresorbable, drug-eluting stents are also highlighted.
Collapse
Affiliation(s)
- Julio A Vallejo-Zamora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
| | - Yadira I Vega-Cantu
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
| | - Ciro Rodriguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADIT), Apodaca, Nuevo León66629, Mexico
| | - Geoffrey A Cordell
- Natural Products, Inc., Evanston, Illinois60201, United States
- College of Pharmacy, University of Florida, Gainesville, Florida32610, United States
| | - Aida Rodriguez-Garcia
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, Ciudad Universitaria, Ave. Pedro de Alba S/N, San Nicolás de los Garza, Nuevo León66455, Mexico
| |
Collapse
|
6
|
Lozhkomoev AS, Kazantsev SO, Bakina OV, Pervikov AV, Sharipova AF, Chymaevskii AV, Lerner MI. Fabrication of strong bioresorbable composites from electroexplosive Fe-Fe 3O 4 nanoparticles by isostatic pressing followed by vacuum sintering. Heliyon 2022; 8:e10663. [PMID: 36164514 PMCID: PMC9508424 DOI: 10.1016/j.heliyon.2022.e10663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/16/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Bulk samples with high mechanical strength reaching 1000 MPa were obtained from electroexplosive Fe-Fe3O4 nanoparticles containing 81 wt. % Fe. Maximum strength is achieved by consolidation of the nanoparticles by isostatic pressing followed by vacuum sintering at 700 °C. A further increase in the sintering temperature leads to the formation of large pores with a size of up to 5 μm and an intense interaction of Fe and Fe3O4 with the formation of FeO leading to the embrittlement of the samples and a decrease in their strength. The degradation rate of Fe- Fe3O4 samples in NaCl (0.9% wt.) and Hank's solution is 7 times higher than that of samples obtained by sintering an electroexplosive Fe nanopowder under the same conditions.
Collapse
Affiliation(s)
- A S Lozhkomoev
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, ISPMS SB RAS, 634021 Tomsk, Russia
| | - S O Kazantsev
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, ISPMS SB RAS, 634021 Tomsk, Russia
| | - O V Bakina
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, ISPMS SB RAS, 634021 Tomsk, Russia
| | - A V Pervikov
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, ISPMS SB RAS, 634021 Tomsk, Russia
| | - A F Sharipova
- Department of Materials Science and Engineering, Technion, 3200003 Haifa, Israel
| | - A V Chymaevskii
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, ISPMS SB RAS, 634021 Tomsk, Russia
| | - M I Lerner
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, ISPMS SB RAS, 634021 Tomsk, Russia
| |
Collapse
|
7
|
Wang C, Tonna C, Mei D, Buhagiar J, Zheludkevich ML, Lamaka SV. Biodegradation behaviour of Fe-based alloys in Hanks' Balanced Salt Solutions: Part II. The evolution of local pH and dissolved oxygen concentration at metal interface. Bioact Mater 2022; 7:412-425. [PMID: 34466742 PMCID: PMC8379426 DOI: 10.1016/j.bioactmat.2021.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
Commercially pure Fe, Fe35Mn, and (Fe35Mn)5Ag alloys were prepared by uniaxial pressing of the mixture of individual powders, followed by sintering. The influence of the alloying elements Mn and Ag on the corrosion behaviour of these Fe-based alloys was investigated in Hanks' Balanced Salt Solution (HBSS). Furthermore, the role of the components in HBSS, particularly Ca2+ ions during alloys degradation was studied. Distribution of local pH and dissolved oxygen concentration was measured 50 μm above the interface of the degrading alloys. The results revealed that 5 wt% Ag addition to Fe35Mn alloy triggered micro-galvanic corrosion, while uniform corrosion dominated in pure Fe and Fe35Mn. Fast precipitation of Ca-P-containing products on the surface of these Fe-based alloys buffered local pH at the metal interface, and blocked oxygen diffusion at the initial stages of immersion. In the (Fe35Mn)5Ag, the detachment or structural changes of Ca-P-containing products gradually diminished their barrier property. These findings provided valuable insights into the degradation mechanism of promising biodegradable Fe-based alloys.
Collapse
Affiliation(s)
- Cheng Wang
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Geesthacht, 21502, Germany
| | - Christabelle Tonna
- Department of Metallurgy and Materials Engineering, University of Malta, Msida, Malta
| | - Di Mei
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Geesthacht, 21502, Germany
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Joseph Buhagiar
- Department of Metallurgy and Materials Engineering, University of Malta, Msida, Malta
| | - Mikhail L. Zheludkevich
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Geesthacht, 21502, Germany
- Institute for Materials Science, Faculty of Engineering, Kiel University, Kiel, 24103, Germany
| | - Sviatlana V. Lamaka
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Geesthacht, 21502, Germany
| |
Collapse
|
8
|
Md Yusop AH, Al Sakkaf A, Nur H. Modifications on porous absorbable Fe-based scaffolds for bone applications: A review from corrosion and biocompatibility viewpoints. J Biomed Mater Res B Appl Biomater 2022; 110:18-44. [PMID: 34132457 DOI: 10.1002/jbm.b.34893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022]
Abstract
Iron (Fe) and Fe-based scaffolds have become a research frontier in absorbable materials which is inherent to their promising mechanical properties including fatigue strength and ductility. Nevertheless, their slow corrosion rate and low biocompatibility have been their major obstacles to be applied in clinical applications. Over the last decade, various modifications on porous Fe-based scaffolds have been performed to ameliorate both properties encompassing surface coating, microstructural alteration via alloying, and advanced topologically order structural design produced by additive manufacturing (AM) techniques. The recent advent of AM produces topologically ordered porous Fe-based structures with an optimized architecture having controllable pore size and strut thickness, intricate internal design, and larger exposed surface area. This undoubtedly opens up new options for controlling Fe corrosion and its structural strengths. However, the in vitro biocompatibility of the AM porous Fe still needs to be addressed considering its higher corrosion rate due to the larger exposed surface area. This review summarizes the latest progress of the modifications on porous Fe-based scaffolds with a specific focus on their responses on the corrosion behavior and biocompatibility.
Collapse
Affiliation(s)
- Abdul Hakim Md Yusop
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Ahmed Al Sakkaf
- School of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Hadi Nur
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Skudai, Malaysia
- Central Laboratory of Minerals and Advanced Materials, Faculty of Mathematics and Natural Sciences, State University of Malang, Malang, Indonesia
| |
Collapse
|
9
|
Wang Y, Venezuela J, Dargusch M. Biodegradable shape memory alloys: Progress and prospects. Biomaterials 2021; 279:121215. [PMID: 34736144 DOI: 10.1016/j.biomaterials.2021.121215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/20/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023]
Abstract
Shape memory alloys (SMAs) have a wide range of potential novel medical applications due to their superelastic properties and ability to restore and retain a 'memorised' shape. However, most SMAs are permanent and do not degrade in the body when used in implantable devices. The use of non-degrading metals may lead to the requirement for secondary removal surgery and this in turn may introduce both short and long-term health risks, or additional waste disposal requirements. Biodegradable SMAs can effectively eliminate these issues by gradually degrading inside the human body while providing the necessary support for healing purposes, therefore significantly alleviating patient discomfort and improving healing efficiency. This paper reviews the current progress in biodegradable SMAs from the perspective of biodegradability, mechanical properties, and biocompatibility. By providing insights into the status of SMAs and biodegradation mechanisms, the prospects for Mg- and Fe-based biodegradable SMAs to advance biodegradable SMA-based medical devices are explored. Finally, the remaining challenges and potential solutions in the biodegradable SMAs area are discussed, providing suggestions and research frameworks for future studies on this topic.
Collapse
Affiliation(s)
- Yuan Wang
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jeffrey Venezuela
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Matthew Dargusch
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
10
|
Scafa Udriște A, Niculescu AG, Grumezescu AM, Bădilă E. Cardiovascular Stents: A Review of Past, Current, and Emerging Devices. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2498. [PMID: 34065986 PMCID: PMC8151529 DOI: 10.3390/ma14102498] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
One of the leading causes of morbidity and mortality worldwide is coronary artery disease, a condition characterized by the narrowing of the artery due to plaque deposits. The standard of care for treating this disease is the introduction of a stent at the lesion site. This life-saving tubular device ensures vessel support, keeping the blood-flow path open so that the cardiac muscle receives its vital nutrients and oxygen supply. Several generations of stents have been iteratively developed towards improving patient outcomes and diminishing adverse side effects following the implanting procedure. Moving from bare-metal stents to drug-eluting stents, and recently reaching bioresorbable stents, this research field is under continuous development. To keep up with how stent technology has advanced in the past few decades, this paper reviews the evolution of these devices, focusing on how they can be further optimized towards creating an ideal vascular scaffold.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.S.U.); (E.B.)
- Cardiology Department, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Elisabeta Bădilă
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.S.U.); (E.B.)
- Internal Medicine Department, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
11
|
Huang CC, Lam TN, Amalia L, Chen KH, Yang KY, Muslih MR, Singh SS, Tsai PI, Lee YT, Jain J, Lee SY, Lai HJ, Huang WC, Chen SY, Huang EW. Tailoring grain sizes of the biodegradable iron-based alloys by pre-additive manufacturing microalloying. Sci Rep 2021; 11:9610. [PMID: 33953260 PMCID: PMC8100099 DOI: 10.1038/s41598-021-89022-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
We demonstrated the design of pre-additive manufacturing microalloying elements in tuning the microstructure of iron (Fe)-based alloys for their tunable mechanical properties. We tailored the microalloying stoichiometry of the feedstock to control the grain sizes of the metallic alloy systems. Two specific microalloying stoichiometries were reported, namely biodegradable iron powder with 99.5% purity (BDFe) and that with 98.5% (BDFe-Mo). Compared with the BDFe, the BDFe-Mo powder was found to have lower coefficient of thermal expansion (CTE) value and better oxidation resistance during consecutive heating and cooling cycles. The selective laser melting (SLM)-built BDFe-Mo exhibited high ultimate tensile strength (UTS) of 1200 MPa and fair elongation of 13.5%, while the SLM-built BDFe alloy revealed a much lower UTS of 495 MPa and a relatively better elongation of 17.5%, indicating the strength enhancement compared with the other biodegradable systems. Such an enhanced mechanical behavior in the BDFe-Mo was assigned to the dominant mechanism of ferrite grain refinement coupled with precipitate strengthening. Our findings suggest the tunability of outstanding strength-ductility combination by tailoring the pre-additive manufacturing microalloying elements with their proper concentrations.
Collapse
Affiliation(s)
- Chih-Chieh Huang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30013, Taiwan
| | - Tu-Ngoc Lam
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30013, Taiwan
- Department of Physics, College of Education, Can Tho University, Can Tho City, 900000, Vietnam
| | - Lia Amalia
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30013, Taiwan
- Teknik Material dan Metalurgi, Institut Teknologi Kalimantan, Balikpapan, 76127, Indonesia
| | - Kuan-Hung Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30013, Taiwan
| | - Kuo-Yi Yang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, 310, Taiwan
| | - M Rifai Muslih
- Neutron Scattering Lab. PSTBM-BATAN, Kawasan PUSPIPTEK Serpong, 15314, Indonesia
| | - Sudhanshu Shekhar Singh
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Pei-I Tsai
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, 310, Taiwan
| | - Yuan-Tzu Lee
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10607, Taiwan
| | - Jayant Jain
- Department of Materials Science and Engineering, Indian Institute of Technology, New Delhi, 110016, India.
| | - Soo Yeol Lee
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hong-Jen Lai
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, 310, Taiwan
| | - Wei-Chin Huang
- Laser and Additive Manufacturing Technology Center, Industrial Technology Research Institute, Hsinchu, 31040, Taiwan
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30013, Taiwan
| | - E-Wen Huang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
12
|
Cockerill I, See CW, Young ML, Wang Y, Zhu D. Designing Better Cardiovascular Stent Materials - A Learning Curve. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2005361. [PMID: 33708033 PMCID: PMC7942182 DOI: 10.1002/adfm.202005361] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 05/07/2023]
Abstract
Cardiovascular stents are life-saving devices and one of the top 10 medical breakthroughs of the 21st century. Decades of research and clinical trials have taught us about the effects of material (metal or polymer), design (geometry, strut thickness, and the number of connectors), and drug-elution on vasculature mechanics, hemocompatibility, biocompatibility, and patient health. Recently developed novel bioresorbable stents are intended to overcome common issues of chronic inflammation, in-stent restenosis, and stent thrombosis associated with permanent stents, but there is still much to learn. Increased knowledge and advanced methods in material processing have led to new stent formulations aimed at improving the performance of their predecessors but often comes with potential tradeoffs. This review aims to discuss the advantages and disadvantages of stent material interactions with the host within five areas of contrasting characteristics, such as 1) metal or polymer, 2) bioresorbable or permanent, 3) drug elution or no drug elution, 4) bare or surface-modified, and 5) self-expanding or balloon-expanding perspectives, as they relate to pre-clinical and clinical outcomes and concludes with directions for future studies.
Collapse
Affiliation(s)
- Irsalan Cockerill
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA
- Department of Materials Science and Engineering, University of North Texas, Denton, TX 76207, USA
| | - Carmine Wang See
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Marcus L. Young
- Department of Materials Science and Engineering, University of North Texas, Denton, TX 76207, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
13
|
Hong MH, Lee DH, Hanawa T, Kwon TY. Comparison of microstructures and mechanical properties of 3 cobalt-chromium alloys fabricated with soft metal milling technology. J Prosthet Dent 2020; 127:489-496. [PMID: 33303192 DOI: 10.1016/j.prosdent.2020.07.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 10/22/2022]
Abstract
STATEMENT OF PROBLEM Although several manufacturers market soft metal milling blanks and systems, comprehensive comparative studies of differences in properties across commercially available soft metal milling alloys are lacking. PURPOSE The purpose of this in vitro study was to compare the microstructures and mechanical properties of 3 soft metal milling cobalt-chromium (Co-Cr) alloys (Ceramill Sintron, Soft Metal, and Sintermetall). MATERIAL AND METHODS Disk-shaped specimens (for surface characterization and hardness test) and dumbbell-shaped specimens (for tensile test as per International Organization for Standardization (ISO) 22674) were prepared by following each soft metal milling manufacturer's instructions. The crystal structures and microstructures of the 3 alloys were evaluated with optical microscopy, X-ray diffractometry (XRD), and scanning electron microscopy with electron backscattered diffraction (EBSD). The mechanical properties were investigated with a tensile test and Vickers hardness test (n=6). The results of the mechanical (tensile and hardness) tests were analyzed with 1-way ANOVA and the post hoc Tukey multiple comparison test (α=.05). RESULTS The Sintermetall specimen showed a finer microstructure and more porosity than the other 2 alloys. The XRD and EBSD analyses showed that the γ (face-centered cubic, fcc) matrix phase was predominant in the Ceramill Sintron alloy and the ε (hexagonal close-packed, hcp) matrix phase was predominant in the Soft Metal alloy. The Sintermetall alloy showed a slightly higher amount of ε phase than γ phase, with more chromium carbide formation than the other 2 alloys. The Ceramill Sintron alloy showed a significantly higher tensile strength than the other 2 alloys (P<.05), but a significantly lower 2% offset yield strength than the other 2 alloys (P<.05). The highest elongation was found in the Ceramill Sintron alloy, followed by the Sintermetall and Soft Metal alloys. The elastic modulus was the highest in the Sintermetall alloy, followed by the Soft Metal and Ceramill Sintron alloys. No significant differences in Vickers hardness values were detected among the 3 alloys (P=.263). CONCLUSIONS The different commercially available soft metal milling blanks and systems produced dissimilar alloys in terms of crystal structures and microstructures and, as a result, different mechanical properties.
Collapse
Affiliation(s)
- Min-Ho Hong
- Assistant Professor, Department of Dental Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, Republic of Korea
| | - Du-Hyeong Lee
- Associate Professor, Department of Prosthodontics, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Takao Hanawa
- Professor, Department of Metallic Materials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tae-Yub Kwon
- Professor, Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
14
|
Future Balloon-Expandable Stents: High or Low-Strength Materials? Cardiovasc Eng Technol 2019; 11:188-204. [PMID: 31836964 DOI: 10.1007/s13239-019-00450-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Recent progress in material science allows researchers to use novel materials with enhanced capabilities like optimum biodegradability, higher strength, and flexibility in the design of coronary stents. Considering the wide range of mechanical properties of existing and newfangled materials, finding the influence of variations in mechanical properties of stent materials is critical for developing a practical design. METHODS The sensitivity of stent functional characteristics to variations in its material plastic properties is obtained through FEM modeling. Balloon-expandable coronary stent designs: Absorb BVS, and Xience are examined for artificial and commercial polymeric, and metallic materials, respectively. Standard tests including (1) the crimping process followed by stent implantation in an atherosclerotic artery and (2) the three-point bending test, have been simulated according to ASTM standards. RESULTS In Absorb BVS, materials with higher yield stress than PLLA have similar residual deflection and maximum bending force to PLLA, which is not the case for Xience stent and Co-Cr. Moreover, elevated yield stress significantly reduces stent flexibility only in Xience stent. For both stents, with different degree of influence, an increase in yield or ultimate stress improves stent radial strength and stiffness and reduces arterial stress and plastic strain of stent, which consequently enhances the stent mechanical performance. Contrarily, yield or ultimate stress elevation increases stent recoil which adversely affects stent performance. CONCLUSION Using high-strength materials has a double-edged sword effect on the stent performance and existing uncertainty in the precise estimate of stent mechanical properties adversely affects the reliability of numerical models' predictions.
Collapse
|
15
|
Frattolin J, Roy R, Rajagopalan S, Walsh M, Yue S, Bertrand OF, Mongrain R. A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material. Acta Biomater 2019; 99:479-494. [PMID: 31449928 DOI: 10.1016/j.actbio.2019.08.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Biodegradable stents show promise to revolutionize coronary artery disease treatment. Its successful implementation in the global market remains limited due to the constraints of current generation biodegradable materials. Cold gas dynamic spraying (CGDS) has been proposed as a manufacturing approach to fabricate a metallic biodegradable amalgamate for stent application. Iron and 316L stainless steel powders are combined in a 4:1 ratio to create a novel biomaterial through cold spray. Cold spray processing however, produces a coating in a work hardened state, with limited ductility, which is a critical mechanical property in stent design. To this end, the influence of annealing temperature on the mechanical and corrosion performances of the proposed Fe-316L amalgamate is investigated. It was found that annealing at 1300 °C yielded a complex material microstructure, with an ultimate tensile strength of approximately 280 MPa and ductility of 23%. The static corrosion rate determined at this annealing temperature was equal to 0.22 mg cm-2 day-1, with multiple corrosion species identified within the degradation layers. Precipitates were observed throughout the microstructure, which appeared to accelerate the overall corrosion behaviour. It was shown that cold-sprayed Fe-316L has significant potential to be implemented in a clinical setting. STATEMENT OF SIGNIFICANCE: Biodegradable stents have potential to significantly improve treatment of coronary artery disease by decreasing or potentially eliminating late-term complications, including stent fracture and in-stent restenosis. Current generation polymer biodegradable stents have led to poorer patient outcomes in comparison to drug-eluting stents, however, and it is evident that metallic biomaterials are required, which have increased strength. To this end, a novel iron and stainless steel 316L biomaterial is proposed, fabricated through cold-gas dynamic spraying. This study analyses the effect of annealing on the Fe-316L biomaterial through corrosion, mechanical, and microstructural investigations. The quantitative data presented in this work suggests that Fe-316L, in its annealed condition, has the mechanical and corrosion properties necessary for biodegradable stent application.
Collapse
|
16
|
Qin Y, Wen P, Guo H, Xia D, Zheng Y, Jauer L, Poprawe R, Voshage M, Schleifenbaum JH. Additive manufacturing of biodegradable metals: Current research status and future perspectives. Acta Biomater 2019; 98:3-22. [PMID: 31029830 DOI: 10.1016/j.actbio.2019.04.046] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 12/23/2022]
Abstract
The combination of biodegradable metals and additive manufacturing (AM) leads to a revolutionary change of metal implants in many aspects including materials, design, manufacturing, and clinical applications. The AM of nondegradable metals such as titanium and CoCr alloys has proven to be a tremendous success in clinical applications. The AM of biodegradable metals including magnesium (Mg), iron (Fe), and zinc (Zn) is still in its infancy, although much progress has been made in the research field. Element loss and porosity are common processing problems for AM of biodegradable metals like Zn and Mg, which are mainly caused by evaporation during melting under a high-energy beam. The resulting formation quality and properties are closely related to material, design, and processing, making AM of biodegradable metals a typical interdisciplinary subject involving biomaterials, mechanical engineering, and medicine. This work reviews the state of research and future perspective on AM of biodegradable metals from extensive viewpoints such as material, processing, formation quality, design, microstructure, and properties. Effects of powder properties and processing parameters on formation quality are characterized in detail. The microstructure and metallurgical defects encountered in the AM parts are described. Mechanical and biodegradable properties of AM samples are introduced. Design principles and potential applications of biodegradable metal implants produced by AM are discussed. Finally, current research status is summarized together with some proposed future perspectives for advancing knowledge about AM of biodegradable metals. STATEMENT OF SIGNIFICANCE: Rapid development of research and applications on biodegradable metals and additive manufacturing (AM) has been made in recent years. Customized geometric shapes of medical metals with porous structure can be realized accurately and efficiently by laser powder bed fusion (L-PBF), which is beneficial to achieve reliable stress conduction and balanced properties. This review introduces the development history and current status of AM of biodegradable metals and then critically surveys L-PBF of Mg-, Fe-, and Zn-based metals from multiple viewpoints including materials, processing, formation quality, structural design, microstructure, and mechanical and biological properties. The present findings are summarized together with some proposed future challenges for advancing AM of biodegradable metals into real clinical applications.
Collapse
|
17
|
In vitro degradation behaviour, cytocompatibility and hemocompatibility of topologically ordered porous iron scaffold prepared using 3D printing and pressureless microwave sintering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110247. [PMID: 31753401 DOI: 10.1016/j.msec.2019.110247] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/01/2019] [Accepted: 09/23/2019] [Indexed: 01/04/2023]
Abstract
Biodegradable porous iron having topologically ordered porosity and tailorable properties as per the required application has been the major requirement in the field of biodegradable biomaterials. Hence, in the present study, iron scaffolds with the topologically ordered porous structure were developed and for the first time, the effect of the variation in the topology on the in vitro degradation behaviour, cytocompatibility and hemocompatibility were investigated. Iron scaffold samples were fabricated using a novel process based on the combination of 3D printing and pressureless microwave sintering. To investigate the effect of topology, two different types of topological structures namely Truncated Octahedron (TO) (with variable strut size) and Cubic (C) were used. From the morphological characterization, it was found that fabricated iron scaffold possessed interconnected porosity varying from 50.70%-80.97% which included the random microporosities in the strut and designed macroporosity. Furthermore, it was inferred that the topology of the iron scaffold significantly affected its degradation properties and cytocompatibility. Increase in the weight loss, corrosion rate and reduction in cell viability with the reduction in porosity were obtained. The maximum corrosion rate and weight loss achieved was 1.64 mmpy and 6.4% respectively. Direct cytotoxicity test results revealed cytotoxicity, while prepared iron scaffold samples exhibited excellent hemocompatibility and anti-platelet adhesion property. A comparative study with relevant literature was performed and it was established that the developed iron scaffold exhibited favorable degradation and biological properties which could be tailored to suit appropriate bone tissue engineering applications.
Collapse
|
18
|
Li Y, Jahr H, Pavanram P, Bobbert FSL, Paggi U, Zhang XY, Pouran B, Leeflang MA, Weinans H, Zhou J, Zadpoor AA. Additively manufactured functionally graded biodegradable porous iron. Acta Biomater 2019; 96:646-661. [PMID: 31302295 DOI: 10.1016/j.actbio.2019.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 11/28/2022]
Abstract
Additively manufactured (AM) functionally graded porous metallic biomaterials offer unique opportunities to satisfy the contradictory design requirements of an ideal bone substitute. However, no functionally graded porous structures have ever been 3D-printed from biodegradable metals, even though biodegradability is crucial both for full tissue regeneration and for the prevention of implant-associated infections in the long term. Here, we present the first ever report on AM functionally graded biodegradable porous metallic biomaterials. We made use of a diamond unit cell for the topological design of four different types of porous structures including two functionally graded structures and two reference uniform structures. Specimens were then fabricated from pure iron powder using selective laser melting (SLM), followed by experimental and computational analyses of their permeability, dynamic biodegradation behavior, mechanical properties, and cytocompatibility. It was found that the topological design with functional gradients controlled the fluid flow, mass transport properties and biodegradation behavior of the AM porous iron specimens, as up to 4-fold variations in permeability and up to 3-fold variations in biodegradation rate were observed for the different experimental groups. After 4 weeks of in vitro biodegradation, the AM porous scaffolds lost 5-16% of their weight. This falls into the desired range of biodegradation rates for bone substitution and confirms our hypothesis that topological design could indeed accelerate the biodegradation of otherwise slowly degrading metals, like iron. Even after 4 weeks of biodegradation, the mechanical properties of the specimens (i.e., E = 0.5-2.1 GPa, σy = 8-48 MPa) remained within the range of the values reported for trabecular bone. Design-dependent cell viability did not differ from gold standard controls for up to 48 h. This study clearly shows the great potential of AM functionally graded porous iron as a bone substituting material. Moreover, we demonstrate that complex topological design permits the control of mechanical properties, degradation behavior of AM porous metallic biomaterials. STATEMENT OF SIGNIFICANCE: No functionally graded porous structures have ever been 3D-printed from biodegradable metals, even though biodegradability is crucial both for full tissue regeneration and for the prevention of implant-associated infections in the long term. Here, we present the first report on 3D-printed functionally graded biodegradable porous metallic biomaterials. Our results suggest that topological design in general, and functional gradients in particular can be used as an important tool for adjusting the biodegradation behavior of AM porous metallic biomaterials. The biodegradation rate and mass transport properties of AM porous iron can be increased while maintaining the bone-mimicking mechanical properties of these biomaterials. The observations reported here underline the importance of proper topological design in the development of AM porous biodegradable metals.
Collapse
Affiliation(s)
- Y Li
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - H Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen 52074, Germany; Department of Orthopedic Surgery, Maastricht UMC+, Maastricht 6202 AZ, The Netherlands
| | - P Pavanram
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - F S L Bobbert
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - U Paggi
- 3D Systems - LayerWise NV, Grauwmeer 14, Leuven 3001, Belgium; KU Leuven Department of Mechanical Engineering, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - X-Y Zhang
- Department of Mechanical Engineering, Tsinghua University, Beijing 10004, China
| | - B Pouran
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands; Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - M A Leeflang
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - H Weinans
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands; Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - J Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - A A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| |
Collapse
|
19
|
Effect of Different Post-Sintering Temperatures on the Microstructures and Mechanical Properties of a Pre-Sintered Co–Cr Alloy. METALS 2018. [DOI: 10.3390/met8121036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although a cobalt–chromium (Co–Cr) blank in a pre-sintered state has been developed, there are few data on the optimal temperature for the alloy in terms of the desired mechanical properties. A metal block (Soft Metal, LHK, Chilgok, Korea) was milled to produce either disc-shaped or dumbbell-shaped specimens. All the milled specimens were post-sintered in a furnace at 1250, 1350 or 1450 °C. The microstructures, shrinkage and density of the three different alloys were investigated using the disc-shaped specimens. The mechanical properties were investigated with a tensile test according to ISO 22674 (n = 6). The number and size of the pores in the alloys decreased with increased temperature. The shrinkage and density of the alloys increased with temperature. In the 1250 °C alloy, the formation of the ε (hexagonal close-packed) phase was more predominant than that of the γ (face-centered cubic) phase. The 1350 °C and 1450 °C alloys showed γ phase formation more predominantly. Carbide formation was increased along with temperature. The 1450 °C group showed the largest grain size among the three groups. In general, the 1350 °C group exhibited mechanical properties superior to the 1250 °C and 1450 °C groups. These findings suggest that 1350 °C was the most optimal post-sintering temperature for the pre-sintered blank.
Collapse
|
20
|
Investigation of the Localized Corrosion and Passive Behavior of Type 304 Stainless Steels with 0.2⁻1.8 wt % B. MATERIALS 2018; 11:ma11112097. [PMID: 30366447 PMCID: PMC6267041 DOI: 10.3390/ma11112097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/17/2022]
Abstract
The pitting corrosion resistance and passive behavior of type 304 borated stainless steels (Febalance–18Cr–12Ni–1.5Mn–(0.19, 0.78, and 1.76 wt %)B) manufactured through conventional ingot metallurgy were investigated. The alloys were composed of an austenitic matrix and Cr2B phase, and the volume fraction of Cr2B increased from 1.68 to 22.66 vol % as the B content increased from 0.19 to 1.76 wt %. Potentiodynamic polarization tests measured in aqueous NaCl solutions revealed that the pitting corrosion resistance was reduced as the B content increased and the pits were initiated at the matrix adjacent to the Cr2B phase. It was found that the reduced resistance to pitting corrosion by B addition was due to the formation of more defective and thinner passive film and increased pit initiation sites in the matrix.
Collapse
|
21
|
Li Y, Jahr H, Lietaert K, Pavanram P, Yilmaz A, Fockaert LI, Leeflang MA, Pouran B, Gonzalez-Garcia Y, Weinans H, Mol JMC, Zhou J, Zadpoor AA. Additively manufactured biodegradable porous iron. Acta Biomater 2018; 77:380-393. [PMID: 29981948 DOI: 10.1016/j.actbio.2018.07.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 01/14/2023]
Abstract
Additively manufactured (AM) topologically ordered porous metallic biomaterials with the proper biodegradation profile offer a unique combination of properties ideal for bone regeneration. These include a fully interconnected porous structure, bone-mimicking mechanical properties, and the possibility of fully regenerating bony defects. Most of such biomaterials are, however, based on magnesium and, thus, degrade too fast. Here, we present the first report on topologically ordered porous iron made by Direct Metal Printing (DMP). The topological design was based on a repetitive diamond unit cell. We conducted a comprehensive study on the in vitro biodegradation behavior (up to 28 days), electrochemical performance, time-dependent mechanical properties, and biocompatibility of the scaffolds. The mechanical properties of AM porous iron (E = 1600-1800 MPa) were still within the range of the values reported for trabecular bone after 28 days of biodegradation. Electrochemical tests showed up to ≈12 times higher rates of biodegradation for AM porous iron as compared to that of cold-rolled (CR) iron, while only 3.1% of weight loss was measured after 4 weeks of immersion tests. The biodegradation mechanisms were found to be topology-dependent and different between the periphery and central parts of the scaffolds. While direct contact between MG-63 cells and scaffolds revealed substantial and almost instant cytotoxicity in static cell culture, as compared to Ti-6Al-4V, the cytocompatibility according to ISO 10993 was reasonable in in vitro assays for up to 72 h. This study shows how DMP could be used to increase the surface area and decrease the grain sizes of topologically ordered porous metallic biomaterials made from metals that are usually considered to degrade too slowly (e.g., iron), opening up many new opportunities for the development of biodegradable metallic biomaterials. STATEMENT OF SIGNIFICANCE Biodegradation in general and proper biodegradation profile in particular are perhaps the most important requirements that additively manufactured (AM) topologically ordered porous metallic biomaterials should offer in order to become the ideal biomaterial for bone regeneration. Currently, most biodegradable metallic biomaterials are based on magnesium, which degrade fast with gas generation. Here, we present the first report on topologically ordered porous iron made by Direct Metal Printing (DMP). We also conducted a comprehensive study on the biodegradation behavior, electrochemical performance, biocompatibility, and the time evolution of the mechanical properties of the implants. We show that these implants possess bone-mimicking mechanical properties, accelerated degradation rate, and reasonable cytocompatibility, opening up many new opportunities for the development of iron-based biodegradable materials.
Collapse
Affiliation(s)
- Y Li
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - H Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen 52074, Germany; Department of Orthopedic Surgery, Maastricht UMC+, Maastricht 6202 AZ, The Netherlands
| | - K Lietaert
- 3D Systems - LayerWise NV, Grauwmeer 14, Leuven 3001, Belgium; KU Leuven Department of Materials Engineering, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - P Pavanram
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - A Yilmaz
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - L I Fockaert
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - M A Leeflang
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - B Pouran
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands; Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Y Gonzalez-Garcia
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - H Weinans
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands; Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands; Department of Rheumatology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| | - J M C Mol
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - J Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - A A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| |
Collapse
|
22
|
Jurgeleit T, Quandt E, Zamponi C. Magnetron Sputtering as a Fabrication Method for a Biodegradable Fe32Mn Alloy. MATERIALS 2017; 10:ma10101196. [PMID: 29057837 PMCID: PMC5667002 DOI: 10.3390/ma10101196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/22/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022]
Abstract
Biodegradable metals are a topic of great interest and Fe-based materials are prominent examples. The research task is to find a suitable compromise between mechanical, corrosion, and magnetic properties. For this purpose, investigations regarding alternative fabrication processes are important. In the present study, magnetron sputtering technology in combination with UV-lithography was used in order to fabricate freestanding, microstructured Fe32Mn films. To adjust the microstructure and crystalline phase composition with respect to the requirements, the foils were post-deposition annealed under a reducing atmosphere. The microstructure and crystalline phase composition were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Furthermore, for mechanical characterization, uniaxial tensile tests were performed. The in vitro corrosion rates were determined by electrochemical polarization measurements in pseudo-physiological solution. Additionally, the magnetic properties were measured via vibrating sample magnetometry. The foils showed a fine-grained structure and a tensile strength of 712 MPa, which is approximately a factor of two higher compared to the sputtered pure Fe reference material. The yield strength was observed to be even higher than values reported in literature for alloys with similar composition. Against expectations, the corrosion rates were found to be lower in comparison to pure Fe. Since the annealed foils exist in the austenitic, and antiferromagnetic γ-phase, an additional advantage of the FeMn foils is the low magnetic saturation polarization of 0.003 T, compared to Fe with 1.978 T. This value is even lower compared to the SS 316L steel acting as a gold standard for implants, and thus enhances the MRI compatibility of the material. The study demonstrates that magnetron sputtering in combination with UV-lithography is a new concept for the fabrication of already in situ geometrically structured FeMn-based foils with promising mechanical and magnetic properties.
Collapse
Affiliation(s)
- Till Jurgeleit
- Chair for Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel, Kaiserstrasse 2, 24143 Kiel, Germany.
| | - Eckhard Quandt
- Chair for Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel, Kaiserstrasse 2, 24143 Kiel, Germany.
| | - Christiane Zamponi
- Chair for Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel, Kaiserstrasse 2, 24143 Kiel, Germany.
| |
Collapse
|
23
|
A novel high-strength and highly corrosive biodegradable Fe-Pd alloy: Structural, mechanical and in vitro corrosion and cytotoxicity study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.100] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold. Acta Biomater 2017; 54:454-468. [PMID: 28315492 DOI: 10.1016/j.actbio.2017.03.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/11/2017] [Accepted: 03/13/2017] [Indexed: 01/05/2023]
Abstract
Pure iron as a potential bioresorbable material for bioresorbable coronary scaffold has major disadvantages of slow corrosion and bioresorption. However, so far, there are neither quantitative data of long-term in vivo corrosion nor direct experimental evidence for bioresorption of pure iron and its alloys, which are fundamental and vital for developing novel Fe-based alloys overcoming the intrinsic drawbacks of pure iron. This work systemically investigated scaffold performance, long-term in vivo corrosion behavior and biocompatibility of a nitrided iron coronary scaffold and explored its bioresorption mechanism. It was found that the 70μm Fe-based scaffold was superior to a state of the art Co-Cr alloy stent (Xience Prime™) in terms of crossing profile, recoil and radial strength. Mass loss was 76.0±8.5wt% for the nitrided iron scaffold and 44.2±11.4wt% for the pure iron scaffold after 36months implantation in rabbit abdominal aorta (p<0.05). The Fe-based scaffold showed good long-term biocompatibility in both rabbit and porcine model. Its insoluble corrosion products were demonstrated biosafe and could be cleared away by macrophages from in situ to adventitia to be indiscernible by Micro Computed Tomography and probably finally enter the lymphatics and travel to lymph nodes after 53months implantion in porcine coronary artery. The results indicate that the nitrided iron scaffold with further improvements shall be promising for coronary application. STATEMENT OF SIGNIFICANCE Pure iron as a potential bioresorbable material has major disadvantages of slow corrosion and bioresorption. However, so far, there are neither quantitative data of long-term in vivo corrosion nor direct experimental evidence for bioresorption of pure iron and its alloys. Only this work systemically investigated long-term in vivo corrosion behavior and biocompatibility of a nitrided iron coronary scaffold up to 53months after implantation and explored its bioresorption mechanism. These are fundamental and vital for developing novel Fe-based alloys overcoming the intrinsic drawbacks of pure iron. Novel testing and section-preparing methods were also provided in this work to facilitate future research and development of novel Fe-based alloy scaffolds.
Collapse
|
25
|
The Potential Role of Graphene in Developing the Next Generation of Endomaterials. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3180954. [PMID: 28025640 PMCID: PMC5153502 DOI: 10.1155/2016/3180954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/24/2016] [Indexed: 01/10/2023]
Abstract
Graphene is the first 2-dimensional material and possesses a plethora of original properties. Graphene and its derivatives have exhibited a great potential in a number of fields, both medical and nonmedical. The aim of this review is to set the theoretical basis for further research in developing graphene-based endovascular materials. An extensive search was performed in medical and bioengineering literature. Published data on other carbon materials, as well as limited data from medical use of graphene, are promising. Graphene is a promising future material for developing novel endovascular materials. Certain issues as biocompatibility, biotoxicity, and biostability should be explored further.
Collapse
|
26
|
He J, He FL, Li DW, Liu YL, Liu YY, Ye YJ, Yin DC. Advances in Fe-based biodegradable metallic materials. RSC Adv 2016. [DOI: 10.1039/c6ra20594a] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This review systematically summarizes recent studies on Fe-based biodegradable metallic materials and discusses these findings in terms of their processing methods, mechanical properties, degradability and biocompatibility.
Collapse
Affiliation(s)
- Jin He
- Institute of Special Environmental Biophysics
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an 710072
| | - Feng-Li He
- Institute of Special Environmental Biophysics
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an 710072
| | - Da-Wei Li
- Institute of Special Environmental Biophysics
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an 710072
| | - Ya-Li Liu
- Institute of Special Environmental Biophysics
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an 710072
| | - Yang-Yang Liu
- Institute of Special Environmental Biophysics
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an 710072
| | - Ya-Jing Ye
- Institute of Special Environmental Biophysics
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an 710072
| | - Da-Chuan Yin
- Institute of Special Environmental Biophysics
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an 710072
| |
Collapse
|
27
|
Obayi CS, Tolouei R, Paternoster C, Turgeon S, Okorie BA, Obikwelu DO, Cassar G, Buhagiar J, Mantovani D. Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants. Acta Biomater 2015; 17:68-77. [PMID: 25644452 DOI: 10.1016/j.actbio.2015.01.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 01/01/2015] [Accepted: 01/19/2015] [Indexed: 11/16/2022]
Abstract
Iron-based biodegradable metals have been shown to present high potential in cardiac, vascular, orthopaedic and dental in adults, as well as paediatric, applications. These require suitable mechanical properties, adequate biocompatibility while guaranteeing a low toxicity of degradation products. For example, in cardiac applications, stents need to be made by homogeneous and isotropic materials in order to prevent sudden failures which would impair the deployment site. Besides, the presence of precipitates and pores, chemical inhomogeneity or other anisotropic microstructural defects may trigger stress concentration phenomena responsible for the early collapse of the device. Metal manufacturing processes play a fundamental role towards the final microstructure and mechanical properties of the materials. The present work assesses the effect of mode of rolling on the micro-texture evolution, mechanical properties and biodegradation behaviour of polycrystalline pure iron. Results indicated that cross-rolled samples recrystallized with lower rates than the straight-rolled ones due to a reduction in dislocation density content and an increase in intensity of {100} crystallographic plane which stores less energy of deformation responsible for primary recrystallization. The degradation resulted to be more uniform for cross-rolled samples, while the corrosion rates of cross-rolled and straight-rolled samples did not show relevant differences in simulated body solution. Finally, this work shows that an adequate compromise between biodegradation rate, strength and ductility could be achieved by modulating the deformation mode during cold rolling.
Collapse
Affiliation(s)
- Camillus Sunday Obayi
- Department of Metallurgical & Materials Engineering, University of Nigeria, Nsukka, Nigeria; Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Mining, Metallurgical and Materials Engineering & CHU de Quebec Research Centre, Laval University, Quebec City, Canada
| | - Ranna Tolouei
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Mining, Metallurgical and Materials Engineering & CHU de Quebec Research Centre, Laval University, Quebec City, Canada
| | - Carlo Paternoster
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Mining, Metallurgical and Materials Engineering & CHU de Quebec Research Centre, Laval University, Quebec City, Canada
| | - Stephane Turgeon
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Mining, Metallurgical and Materials Engineering & CHU de Quebec Research Centre, Laval University, Quebec City, Canada
| | - Boniface Adeleh Okorie
- Department of Metallurgical & Materials Engineering, University of Nigeria, Nsukka, Nigeria
| | - Daniel Oray Obikwelu
- Department of Metallurgical & Materials Engineering, University of Nigeria, Nsukka, Nigeria
| | - Glenn Cassar
- Department of Metallurgy and Materials Engineering, University of Malta, Malta
| | - Joseph Buhagiar
- Department of Metallurgy and Materials Engineering, University of Malta, Malta
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Mining, Metallurgical and Materials Engineering & CHU de Quebec Research Centre, Laval University, Quebec City, Canada.
| |
Collapse
|