1
|
Hatami M, Javanbakht MH, Haghighat N, Sohrabi Z, Yavar R, Pazouki A, Farsani GM. Energy expenditure related biomarkers following bariatric surgery: a prospective six-month cohort study. BMC Surg 2024; 24:129. [PMID: 38678284 PMCID: PMC11055239 DOI: 10.1186/s12893-024-02421-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Mitochondria dysfunction is one of the major causes of insulin resistance, and other countless complications of obesity. PGC-1α, and UCP-2 play key roles in energy expenditure regulation in the mitochondrial thermogenesis. However, the effects of bariatric surgery on the level of PGC-1α and UCP-2 and their relationships are unclear. OBJECTIVE This study aimed to investigate the effect of bariatric surgery on key pathways in energy, and to assess the potential predictive role of body composition and metabolic parameters in this regard. SETTINGS Hazrat-e Rasool General Hospital, Center of Excellence of International Federation for Surgery of Obesity. METHODS This prospective cohort study was carried out on 45 patients with morbid obesity who underwent Roux-en-Y gastric bypass surgery. The patients have evaluated three-time points at baseline, three, and six months after the surgery. Body composition components, the levels of PGC-1α, UCP-2, and metabolic parameters were measured three times during this study. RESULTS Significant changes in TWL%, EBMIL%, and metabolic lab tests were observed at three- and six months post-surgery (P < 0.001). The PGC-1α and UCP-2 had a significant increase three and then six-month post-operation compared with the baseline (P < 0.001). Moreover, multivariate linear regression analysis identified that the changing trend of PGC-1α was associated with insulin, uric Acid, HOMA-IR, fat mass and trunk fat mass. UCP-2 was associated with TSH, AST, fat mass and FFM. CONCLUSIONS Bariatric surgery has been shown to have a positive effect on UCP-2 and PGC-1α levels, as well as body composition and metabolic parameters. As a result, it is believed that bariatric surgery could improve thermogenesis and energy expenditure by enhancing mitochondrial biogenesis and function. However, further studies are needed to fully understand the precise mechanisms and possible causal relationship.
Collapse
Affiliation(s)
- Mahsa Hatami
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Javanbakht
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Neda Haghighat
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sohrabi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahman Yavar
- Department of Genetics, Akbar-Abadi Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Pazouki
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
- Center of Excellence of International Federation for Surgery of Obesity, Hazrat-E Rasool Hospital, Tehran, Iran
| | - Gholamreza Mohammadi Farsani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
2
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
3
|
Behrooz AB, Cordani M, Fiore A, Donadelli M, Gordon JW, Klionsky DJ, Ghavami S. The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives. Semin Cancer Biol 2024; 99:24-44. [PMID: 38309540 DOI: 10.1016/j.semcancer.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Saeid Ghavami
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Jin L, Wang D, Zhang J, Liu P, Wang Y, Lin Y, Liu C, Han Z, Long K, Li D, Jiang Y, Li G, Zhang Y, Bai J, Li X, Li J, Lu L, Kong F, Wang X, Li H, Huang Z, Ma J, Fan X, Shen L, Zhu L, Jiang Y, Tang G, Feng B, Zeng B, Ge L, Li X, Tang Q, Zhang Z, Li M. Dynamic chromatin architecture of the porcine adipose tissues with weight gain and loss. Nat Commun 2023; 14:3457. [PMID: 37308492 PMCID: PMC10258790 DOI: 10.1038/s41467-023-39191-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Using an adult female miniature pig model with diet-induced weight gain/weight loss, we investigated the regulatory mechanisms of three-dimensional (3D) genome architecture in adipose tissues (ATs) associated with obesity. We generated 249 high-resolution in situ Hi-C chromatin contact maps of subcutaneous AT and three visceral ATs, analyzing transcriptomic and chromatin architectural changes under different nutritional treatments. We find that chromatin architecture remodeling underpins transcriptomic divergence in ATs, potentially linked to metabolic risks in obesity development. Analysis of chromatin architecture among subcutaneous ATs of different mammals suggests the presence of transcriptional regulatory divergence that could explain phenotypic, physiological, and functional differences in ATs. Regulatory element conservation analysis in pigs and humans reveals similarities in the regulatory circuitry of genes responsible for the obesity phenotype and identified non-conserved elements in species-specific gene sets that underpin AT specialization. This work provides a data-rich tool for discovering obesity-related regulatory elements in humans and pigs.
Collapse
Grants
- National Natural Science Foundation of China (National Science Foundation of China)
- the National Key R & D Program of China (2020YFA0509500), the Sichuan Science and Technology Program (2021YFYZ0009 and 2021YFYZ0030)
- the National Key R & D Program of China (2021YFA0805903), the Tackling Project for Agricultural Key Core Technologies of China (NK2022110602), the Sichuan Science and Technology Program (2021ZDZX0008, 2022NZZJ0028 and 2022JDJQ0054), the Ya’an Science and Technology Program (21SXHZ0022)
- the Sichuan Science and Technology Program (2022NSFSC0056)
- the Sichuan Science and Technology Program (2022NSFSC1618)
- the National Key R & D Program of China (2021YFD1300800), the Sichuan Science and Technology Program (2021YFS0008 and 2022YFQ0022)
- the Opening Foundation of Key Laboratory of Pig Industry Sciences (22519C)
- the Sichuan Science and Technology Program (2021YFH0033), the Major Science and Technology Projects of Tibet Autonomous Region (XZ202101ZD0005N)
- the China Agriculture Research System (CARS-35-01A)
- the National Key R & D Program of China (2022YFF1000100), the Sichuan Science and Technology Program (2021ZDZX0008, 2022NZZJ0028 and 2022JDJQ0054)
- the Strategic Priority Research Program of CAS (XDA24020307), the Special Investigation on Science and Technology Basic Resources of the MOST of China (2019FY100102), the Beijing Natural Science Foundation (Z200021)
Collapse
Affiliation(s)
- Long Jin
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Danyang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
- Sars-Fang Centre and MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Jiaman Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pengliang Liu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujie Wang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Lin
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Can Liu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziyin Han
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Molecular Design and Precise Breeding Key Laboratory of Guangdong Province, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Keren Long
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guisen Li
- Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yu Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingyi Bai
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaokai Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lu Lu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fanli Kong
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xun Wang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hua Li
- Animal Molecular Design and Precise Breeding Key Laboratory of Guangdong Province, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jideng Ma
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaolan Fan
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linyuan Shen
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanzhi Jiang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoqing Tang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Feng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Zeng
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Ya'an Digital Economy Operation Company, Ya'an, 625014, China
| | - Liangpeng Ge
- Pig Industry Sciences Key Laboratory of Ministry of Agriculture and Rural Affairs, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Xuewei Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianzi Tang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- School of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Mingzhou Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Topete MV, Andrade S, Bernardino RL, Guimarães M, Pereira AM, Oliveira SB, Costa MM, Nora M, Monteiro MP, Pereira SS. Visceral Adipose Tissue Bioenergetics Varies According to Individuals' Obesity Class. Int J Mol Sci 2023; 24:ijms24021679. [PMID: 36675195 PMCID: PMC9863201 DOI: 10.3390/ijms24021679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Obesity is associated with complex adipose tissue energy metabolism remodeling. Whether AT metabolic reprogramming differs according to body mass index (BMI) and across different obesity classes is unknown. This study’s purpose was to evaluate and compare bioenergetics and energy substrate preference of visceral adipose tissue (VAT) pertaining to individuals with obesity class 2 and class 3. VAT obtained from patients with obesity (n = 15) class 2 (n = 7; BMI 37.53 ± 0.58 kg/m2) or class 3 (n = 8; BMI 47.79 ± 1.52 kg/m2) was used to assess oxygen consumption rate (OCR) bioenergetics and mitochondrial substrate preferences. VAT of patients with obesity class 3 presented significantly higher non-mitochondrial oxygen consumption (p < 0.05). In VAT of patients with obesity class 2, inhibition of pyruvate and glutamine metabolism significantly decreased maximal respiration and spare respiratory capacity (p < 0.05), while pyruvate and fatty acid metabolism inhibition, which renders glutamine the only available substrate, increased the proton leak with a protective role against oxidative stress (p < 0.05). In conclusion, VAT bioenergetics of patients with obesity class 2 depicts a greater dependence on glucose/pyruvate and glutamine metabolism, suggesting that patients within this BMI range are more likely to be responsive to interventions based on energetic substrate modulation for obesity treatment.
Collapse
Affiliation(s)
- Marcelo V. Topete
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Sara Andrade
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Raquel L. Bernardino
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Marta Guimarães
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
- Department of General Surgery, Hospital São Sebastião, Centro Hospitalar de Entre o Douro e Vouga, Rua Dr. Cândido Pinho, 4050-220 Santa Maia da Feira, Portugal
| | - Ana M. Pereira
- Department of General Surgery, Hospital São Sebastião, Centro Hospitalar de Entre o Douro e Vouga, Rua Dr. Cândido Pinho, 4050-220 Santa Maia da Feira, Portugal
- Hospital da Luz Arrábida, Praceta de Henrique Moreira 150, 4400-346 Vila Nova de Gaia, Portugal
| | - Sofia B. Oliveira
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Madalena M. Costa
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Mário Nora
- Department of General Surgery, Hospital São Sebastião, Centro Hospitalar de Entre o Douro e Vouga, Rua Dr. Cândido Pinho, 4050-220 Santa Maia da Feira, Portugal
- Hospital da Luz Arrábida, Praceta de Henrique Moreira 150, 4400-346 Vila Nova de Gaia, Portugal
| | - Mariana P. Monteiro
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
- Hospital da Luz Arrábida, Praceta de Henrique Moreira 150, 4400-346 Vila Nova de Gaia, Portugal
| | - Sofia S. Pereira
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
- Correspondence:
| |
Collapse
|
6
|
Mitochondrial uncoupling protein 2 (UCP2) gene polymorphism - 866 G/A in the promoter region is associated with type 2 diabetes mellitus among Kashmiri population of Northern India. Mol Biol Rep 2023; 50:475-483. [PMID: 36346492 DOI: 10.1007/s11033-022-08055-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The study aimed to evaluate the association of UCP2 gene polymorphism - 866 G/A and its expression with diabetes predisposition in the North Indian population. METHODS The study involved 850 subjects, including 425 each T2DM and control subjects. The serum metabolic and clinical parameters were estimated using standard protocols. The PCR-RFLP based genotyping was performed to determine UCP2 gene polymorphism, while the expression was measured by real-time quantitative PCR. RESULTS The genotypic and allelic frequencies showed a significant difference in cases compared to controls (p < 0.05). The diabetes patients had a 4.2-fold decrease in UCP2 gene expression. The expression was 29.8 and 8.4 fold lower in diabetes patients with homozygous (AA) and heterozygous (GA) mutation at - 866 locus of UCP2 nucleotide sequence, respectively. When categorized according to age and BMI, the T2DM subjects with age ≥ 50 and BMI ≥ 25 had a 5.53 and 8.2-fold decrease in UCP2 expression, respectively. The diabetes subjects with homozygous and heterozygous mutation demonstrated a pathological increase in serum metabolic and clinical parameters, which corroborated with UCP2 gene expression, indicating a strong association between the two. Intriguingly, we did not find any association between - 866 G/A polymorphism of UCP2 with serum insulin levels. CONCLUSION Our investigation is the first among the studies conducted in Jammu and Kashmir to work on adipose tissue and UCP2 gene polymorphism. The association of - 866 G/A SNP of the UCP2 gene with its expression in diabetes patients appears to be an important genetic determinant in the progression of T2DM. Moreover, age ≥ 50 years and BMI ≥ 25 could be considered risk factors for developing T2DM in the studied population.
Collapse
|
7
|
Kim SR, Park HJ, Jung UJ. Anti-adiposity and lipid-lowering effects of schisandrol A in diet-induced obese mice. J Food Biochem 2022; 46:e14501. [PMID: 36332134 DOI: 10.1111/jfbc.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Lignan schisandrol A (SolA) is known to have antioxidant and anti-inflammatory effects. However, the impact of SolA on obesity is poorly understood. To test the hypothesis that SolA has anti-obesity effects, C57BL/6J mice were fed a high-fat diet with or without SolA (0.006%, w/w) for 16 weeks. SolA decreased visceral fat mass (10%) by increasing energy expenditure and upregulating white adipose tissue thermogenic genes mRNA expression. Furthermore, SolA upregulated adipose Lpl mRNA expression and decreased plasma free fatty acid (FFA), triglyceride (TG), apolipoprotein (apo) B, aspartate aminotransferase levels and TG/HDL-cholesterol and apoB/apoA1 ratios as well as hepatic lipid droplets. Increased hepatic β-oxidation and fecal FFA and TG levels were observed in the SolA-supplemented mice, suggesting an association of its lipid-lowering effect with increased hepatic β-oxidation, fecal fat excretion and adipose Lpl. Conclusionally, this study provides evidence on the protective effects of SolA against adiposity, dyslipidemia and nonalcoholic fatty liver disease in obese mice.
Collapse
Affiliation(s)
- Sang Ryong Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Institute of Life Science & Biotechnology, Kyungpook National University, Daegu, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Hyo Jin Park
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, South Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan, South Korea
| |
Collapse
|
8
|
Uncoupling Protein 2 Expression Modulates Obesity in Chronic Kidney Disease Patients. Rep Biochem Mol Biol 2021; 10:119-125. [PMID: 34277875 DOI: 10.52547/rbmb.10.1.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 11/18/2022]
Abstract
Background Obesity is a multifactorial metabolic disease resulting from behavioral and genetic factors. Obesity is linked to diabetes mellitus and hypertension, which are considered as major risk factors for chronic kidney disease (CKD); moreover, it has a direct effect on developing CKD and end stage renal disease (ESRD). Here was aimed to examine the association between uncoupling protein 2 (UCP2) gene expression and obesity in CKD patients. Methods UCP2 gene expression was analyzed by real time polymerase chain reaction (RT-PCR) in 93 participants divided into three groups. The groups included 31 non-obese CKD patients, 31 obese CKD patients, and 31 healthy, age-matched, unrelated volunteers as a control group. Results UCP2 gene expression was significantly relevant when comparing the non-obese CKD and obese CKD groups to the control group (p< 0.001). No significant association was found when the groups were compared by gender; Chi-square (X2) was 2.38 and p= 0.304. A significant negative correlation was found between UCP2 gene expression and BMI in CKD (p< 0.05). Conclusion These results indicate that UCP2 gene expression plays a significant role as a risk factor for obesity in CKD patients.
Collapse
|
9
|
de Oliveira MS, Rodrigues M, Rossoni EA, Sortica DA, Rheinheimer J, Moehlecke M, Heredia MLDC, Horvath JDC, Kops NL, Trindade MRM, Viana LV, Leitão CB, Friedman R, Crispim D, de Souza BM. -866G/A and Ins/Del polymorphisms in UCP2 gene are associated with reduced short-term weight loss in patients who underwent Roux-en-Y gastric bypass. Surg Obes Relat Dis 2021; 17:1263-1270. [PMID: 33941479 DOI: 10.1016/j.soard.2021.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/05/2021] [Accepted: 03/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Uncoupling protein 2 (UCP2) plays an important role in energy expenditure regulation. Previous studies have associated the common -866G/A (rs659366) and Ins/Del polymorphisms in the UCP2 gene with metabolic and obesity-related phenotypes. However, it is still unclear whether these polymorphisms influence weight loss after bariatric surgery. OBJECTIVES To investigate whether UCP2 -866G/A and Ins/Del polymorphisms are associated with weight loss outcomes after bariatric surgery. SETTING Longitudinal study in a university hospital. METHODS We retrospectively evaluated 186 patients who underwent Roux-en-Y gastric bypass (RYGB) surgery for clinical and laboratory characteristics in the preoperative period, 6, 12, and 18 months after RYGB. The -866G/A (rs659366) polymorphism was genotyped using real-time PCR, while the Ins/Del polymorphism was genotyped by direct separation of PCR products in 2.5% agarose gels. RESULTS Patients with the -866A/A genotype showed higher body mass index (BMI) after 6, 12, and 18 months of surgery and excess body weight after 6 and 12 months compared with G/G patients. They also showed lower excess weight loss (EWL%) after 6 and 12 months of surgery. Ins allele carriers (Ins/Ins + Ins/Del) had lower delta (Δ) BMI 12 months after surgery compared with Del/Del patients. Accordingly, patients carrying haplotypes with ≥2 risk alleles of these polymorphisms had higher BMI and excess weight and lower EWL% during follow-up. CONCLUSION UCP2 -866A/A genotype is associated with higher BMI and excess weight and lower EWL% during an 18-month follow-up of patients who underwent RYGB, while the Ins allele seems to be associated with lower ΔBMI 12 months after surgery. Further studies are needed to confirm the associations of the -866G/A and Ins/Del polymorphisms with weight loss after bariatric surgery.
Collapse
Affiliation(s)
- Mayara S de Oliveira
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Michelle Rodrigues
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Elis A Rossoni
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Denise A Sortica
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jakeline Rheinheimer
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Milene Moehlecke
- Department of Endocrinology, Faculdade de Medicina, Universidade Luterana do Brasil, Canoas, Brazil
| | | | | | - Natalia L Kops
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Manoel R M Trindade
- Digestive Surgery Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luciana V Viana
- Digestive Surgery Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Cristiane B Leitão
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rogério Friedman
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Daisy Crispim
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bianca M de Souza
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
10
|
Maseroli E, Comeglio P, Corno C, Cellai I, Filippi S, Mello T, Galli A, Rapizzi E, Presenti L, Truglia MC, Lotti F, Facchiano E, Beltrame B, Lucchese M, Saad F, Rastrelli G, Maggi M, Vignozzi L. Testosterone treatment is associated with reduced adipose tissue dysfunction and nonalcoholic fatty liver disease in obese hypogonadal men. J Endocrinol Invest 2021; 44:819-842. [PMID: 32772323 PMCID: PMC7946690 DOI: 10.1007/s40618-020-01381-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE In both preclinical and clinical settings, testosterone treatment (TTh) of hypogonadism has shown beneficial effects on insulin sensitivity and visceral and liver fat accumulation. This prospective, observational study was aimed at assessing the change in markers of fat and liver functioning in obese men scheduled for bariatric surgery. METHODS Hypogonadal patients with consistent symptoms (n = 15) undergoing 27.63 ± 3.64 weeks of TTh were compared to untreated eugonadal (n = 17) or asymptomatic hypogonadal (n = 46) men. A cross-sectional analysis among the different groups was also performed, especially for data derived from liver and fat biopsies. Preadipocytes isolated from adipose tissue biopsies were used to evaluate insulin sensitivity, adipogenic potential and mitochondrial function. NAFLD was evaluated by triglyceride assay and by calculating NAFLD activity score in liver biopsies. RESULTS In TTh-hypogonadal men, histopathological NAFLD activity and steatosis scores, as well as liver triglyceride content were lower than in untreated-hypogonadal men and comparable to eugonadal ones. TTh was also associated with a favorable hepatic expression of lipid handling-related genes. In visceral adipose tissue and preadipocytes, TTh was associated with an increased expression of lipid catabolism and mitochondrial bio-functionality markers. Preadipocytes from TTh men also exhibited a healthier morpho-functional phenotype of mitochondria and higher insulin-sensitivity compared to untreated-hypogonadal ones. CONCLUSIONS The present data suggest that TTh in severely obese, hypogonadal individuals induces metabolically healthier preadipocytes, improving insulin sensitivity, mitochondrial functioning and lipid handling. A potentially protective role for testosterone on the progression of NAFLD, improving hepatic steatosis and reducing intrahepatic triglyceride content, was also envisaged. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02248467, September 25th 2014.
Collapse
Affiliation(s)
- E Maseroli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - P Comeglio
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - C Corno
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - I Cellai
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - S Filippi
- Interdepartmental Laboratory of Functional and Cellular Pharmacology of Reproduction, University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - T Mello
- Gastroenterology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - A Galli
- Gastroenterology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - E Rapizzi
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - L Presenti
- General, Bariatric and Metabolic Surgery Unit, Santa Maria Nuova Hospital, , Piazza Santa Maria Nuova, 1, 50122, Florence, Italy
| | - M C Truglia
- General, Bariatric and Metabolic Surgery Unit, Santa Maria Nuova Hospital, , Piazza Santa Maria Nuova, 1, 50122, Florence, Italy
| | - F Lotti
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - E Facchiano
- General, Bariatric and Metabolic Surgery Unit, Santa Maria Nuova Hospital, , Piazza Santa Maria Nuova, 1, 50122, Florence, Italy
| | - B Beltrame
- General, Bariatric and Metabolic Surgery Unit, Santa Maria Nuova Hospital, , Piazza Santa Maria Nuova, 1, 50122, Florence, Italy
| | - M Lucchese
- General, Bariatric and Metabolic Surgery Unit, Santa Maria Nuova Hospital, , Piazza Santa Maria Nuova, 1, 50122, Florence, Italy
| | - F Saad
- Medical Affairs, Bayer AG, Kaiser-Wilhelm-Allee 1, 51373, Leverkusen, Germany
| | - G Rastrelli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - M Maggi
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
- I.N.B.B. (Istituto Nazionale Biostrutture E Biosistemi), Viale delle Medaglie d'Oro 305, 00136, Rome, Italy
| | - L Vignozzi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy.
- I.N.B.B. (Istituto Nazionale Biostrutture E Biosistemi), Viale delle Medaglie d'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
11
|
Xiao Y, Liu D, Cline MA, Gilbert ER. Chronic stress, epigenetics, and adipose tissue metabolism in the obese state. Nutr Metab (Lond) 2020; 17:88. [PMID: 33088334 PMCID: PMC7574417 DOI: 10.1186/s12986-020-00513-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
In obesity, endocrine and metabolic perturbations, including those induced by chronic activation of the hypothalamus-pituitary-adrenal axis, are associated with the accumulation of adipose tissue and inflammation. Such changes are attributable to a combination of genetic and epigenetic factors that are influenced by the environment and exacerbated by chronic activation of the hypothalamus-pituitary-adrenal axis. Stress exposure at different life stages can alter adipose tissue metabolism directly through epigenetic modification or indirectly through the manipulation of hypothalamic appetite regulation, and thereby contribute to endocrine changes that further disrupt whole-body energy balance. This review synthesizes current knowledge, with an emphasis on human clinical trials, to describe metabolic changes in adipose tissue and associated endocrine, genetic and epigenetic changes in the obese state. In particular, we discuss epigenetic changes induced by stress exposure and their contribution to appetite and adipocyte dysfunction, which collectively promote the pathogenesis of obesity. Such knowledge is critical for providing future directions of metabolism research and targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| |
Collapse
|
12
|
The Transcriptomic Evidence on the Role of Abdominal Visceral vs. Subcutaneous Adipose Tissue in the Pathophysiology of Diabetes in Asian Indians Indicates the Involvement of Both. Biomolecules 2020; 10:biom10091230. [PMID: 32847136 PMCID: PMC7563456 DOI: 10.3390/biom10091230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
The roles of abdominal visceral (VAT) and subcutaneous adipose tissue (SAT) in the molecular pathogenesis type-2 diabetics (T2D) among Asian Indians showing a "thin fat" phenotype largely remains obscure. In this study, we generated transcription profiles in biopsies of these adipose depots obtained during surgery in 19 diabetics (M: F ratio, 8:11) and 16 (M: F ratio 5:11) age- and BMI-matched non-diabetics. Gene set enrichment analysis (GSEA) was used for comparing transcription profile and showed that 19 gene sets, enriching inflammation and immune system-related pathways, were upregulated in diabetics with F.D.R. <25% and >25%, respectively, in VAT and SAT. Moreover, 13 out of the 19 significantly enriched pathways in VAT were among the top 20 pathways in SAT. On comparison of VAT vs. SAT among diabetics, none of the gene sets were found significant at F.D.R. <25%. The Weighted Gene Correlation Analysis (WGCNA) analysis of the correlation between measures of average gene expression and overall connectivity between VAT and SAT was significantly positive. Several modules of co-expressed genes in both the depots showed a bidirectional correlation with various diabetes-related intermediate phenotypic traits. They enriched several diabetes pathogenicity marker pathways, such as inflammation, adipogenesis, etc. It is concluded that, in Asian Indians, diabetes pathology inflicts similar molecular alternations in VAT and SAT, which are more intense in the former. Both adipose depots possibly play a role in the pathophysiology of T2D, and whether it is protective or pathogenic also depends on the nature of modules of co-expressed genes contained in them.
Collapse
|
13
|
Oliveira MS, Rheinheimer J, Moehlecke M, Rodrigues M, Assmann TS, Leitão CB, Trindade MRM, Crispim D, de Souza BM. UCP2, IL18, and miR-133a-3p are dysregulated in subcutaneous adipose tissue of patients with obesity. Mol Cell Endocrinol 2020; 509:110805. [PMID: 32251712 DOI: 10.1016/j.mce.2020.110805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 01/12/2023]
Abstract
The aim of this study was to compare the expression of UCP2, NLRP3, IL1B, IL18, and miR-133a-3p in subcutaneous adipose tissue (SAT) of 61 patients divided according to BMI: Group 1 (n = 8; BMI<25.0 kg/m2), Group 2 (n = 24; BMI 30.0-39.9 kg/m2), and Group 3 (n = 29; BMI≥40.0 kg/m2). SAT biopsies were obtained from individuals who underwent bariatric surgery or elective abdominal surgery. Gene expressions were quantified using qPCR. Bioinformatics analyses were employed to investigate target genes and pathways related to miR-133a-3p. UCP2 and miR-133a-3p expressions were decreased in SAT of Groups 2 and 3 while IL18 was increased compared to Group 1. NLRP3 and IL1B expressions did not differ between groups; however, NLRP3 was positively correlated with waist circumference and excess weight. Bioinformatics analysis demonstrated that UCP2 and NLRP3 are targets of miR-133a-3p. In conclusion, UCP2 and miR-133a-3p expressions are downregulated in patients with obesity, while IL18 is upregulated. NRLP3 is correlated with waist circumference and weight excess.
Collapse
Affiliation(s)
- Mayara S Oliveira
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil
| | - Jakeline Rheinheimer
- Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil
| | - Milene Moehlecke
- Department of Endocrinology, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil
| | - Michelle Rodrigues
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Taís S Assmann
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil
| | - Cristiane B Leitão
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil
| | - Manoel R M Trindade
- Digestive Surgery Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil
| | - Bianca M de Souza
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil.
| |
Collapse
|
14
|
Grigoraş A, Amalinei C, Balan RA, Giuşcă SE, Avădănei ER, Lozneanu L, Căruntu ID. Adipocytes spectrum - From homeostasia to obesity and its associated pathology. Ann Anat 2018; 219:102-120. [PMID: 30049662 DOI: 10.1016/j.aanat.2018.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023]
Abstract
Firstly identified by anatomists, the fat tissue is nowadays an area of intense research due to increased global prevalence of obesity and its associated diseases. Histologically, there are four types of fat tissue cells which are currently recognized (white, brown, beige, and perivascular adipocytes). Therefore, in this study we are reviewing the most recent data regarding the origin, structure, and molecular mechanisms involved in the development of adipocytes. White adipocytes can store triglycerides as a consequence of lipogenesis, under the regulation of growth hormone or leptin and adiponectin, and release fatty acids resulted from lipolysis, under the regulation of the sympathetic nervous system, glucocorticoids, TNF-α, insulin, and natriuretic peptides. Brown adipocytes possess a mitochondrial transmembrane protein thermogenin or UCP1 which allows heat generation. Recently, thermogenic, UCP positive adipocytes have been identified in the subcutaneous white adipose tissue and have been named beige adipocytes. The nature of these cells is still controversial, as current theories are suggesting their origin either by transdifferentiation of white adipocytes, or by differentiation from an own precursor cell. Perivascular adipocytes surround most of the arteries, exhibiting a supportive role and being involved in the maintenance of intravascular temperature. Thoracic perivascular adipocytes resemble brown adipocytes, while abdominal ones are more similar to white adipocytes and, consequently, are involved in obesity-induced inflammatory reactions. The factors involved in the regulation of adipose stem cells differentiation may represent potential pathways to inhibit or to divert adipogenesis. Several molecules, such as pro-adipogenic factors (FGF21, BMP7, BMP8b, and Cox-2), cell surface proteins or receptors (Asc-1, PAT2, P2RX5), and hypothalamic receptors (MC4R) have been identified as the most promising targets for the development of future therapies. Further investigations are necessary to complete the knowledge about adipose tissue and the development of a new generation of therapeutic tools based on molecular targets.
Collapse
Affiliation(s)
- Adriana Grigoraş
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania; Department of Histopathology, Institute of Legal Medicine, Iasi, Romania.
| | - Cornelia Amalinei
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania; Department of Histopathology, Institute of Legal Medicine, Iasi, Romania.
| | - Raluca Anca Balan
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Simona Eliza Giuşcă
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Elena Roxana Avădănei
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Ludmila Lozneanu
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Irina-Draga Căruntu
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| |
Collapse
|
15
|
Bhaskaran S, Pharaoh G, Ranjit R, Murphy A, Matsuzaki S, Nair BC, Forbes B, Gispert S, Auburger G, Humphries KM, Kinter M, Griffin TM, Deepa SS. Loss of mitochondrial protease ClpP protects mice from diet-induced obesity and insulin resistance. EMBO Rep 2018; 19:embr.201745009. [PMID: 29420235 DOI: 10.15252/embr.201745009] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
Caseinolytic peptidase P (ClpP) is a mammalian quality control protease that is proposed to play an important role in the initiation of the mitochondrial unfolded protein response (UPRmt), a retrograde signaling response that helps to maintain mitochondrial protein homeostasis. Mitochondrial dysfunction is associated with the development of metabolic disorders, and to understand the effect of a defective UPRmt on metabolism, ClpP knockout (ClpP-/-) mice were analyzed. ClpP-/- mice fed ad libitum have reduced adiposity and paradoxically improved insulin sensitivity. Absence of ClpP increased whole-body energy expenditure and markers of mitochondrial biogenesis are selectively up-regulated in the white adipose tissue (WAT) of ClpP-/- mice. When challenged with a metabolic stress such as high-fat diet, despite similar caloric intake, ClpP-/- mice are protected from diet-induced obesity, glucose intolerance, insulin resistance, and hepatic steatosis. Our results show that absence of ClpP triggers compensatory responses in mice and suggest that ClpP might be dispensable for mammalian UPRmt initiation. Thus, we made an unexpected finding that deficiency of ClpP in mice is metabolically beneficial.
Collapse
Affiliation(s)
- Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Gavin Pharaoh
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rojina Ranjit
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ashley Murphy
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Binoj C Nair
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brittany Forbes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sathyaseelan S Deepa
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
16
|
Taghadomi Masoumi Z, Eshraghian MR, Hedayati M, Pishva H. Association between uncoupling protein 2, adiponectin and resting energy expenditure in obese women with normal and low resting energy expenditure. Gynecol Endocrinol 2018; 34:166-170. [PMID: 29017362 DOI: 10.1080/09513590.2017.1379492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Obesity is recognized as the most prevalent metabolic disease worldwide. Decreases in energy expenditure may increase risk of obesity. One of the key regulators of energy balance is uncoupling protein2 (UCP2), a transporter protein presents in mitochondrial inner membrane. Moreover, adiponectin is the most abundant adipocytokine, it may play a role in energy metabolism and gene expression of UCP2. The aim of this study was to investigate potential associations between the level of uncoupling protein 2 and adiponectin and their relationship with REE (Resting Energy Expenditure) in obese women with normal and low resting energy expenditure. A total of 49 subjects (women, 25-50 years old), were included in current study, 16 subjects with BMI > 30 and low resting energy expenditure, 17 subjects with BMI > 30 and normal resting energy expenditure and 16 non-obese subjects as a control group. Anthropometric, body composition parameters and resting energy expenditure were measured. Plasma adiponectin, UCP2 protein and total protein in PBMC were determined. Measured resting energy expenditure in obese subjects with low REE was significantly lower than other groups. Plasma adiponectin in the obese subjects with low REE was significantly lower compared to normal weight group. There was a significant relationship between 'UCP2 protein/Total protein' ratio and plasma adiponectin in obese group with low REE and in three groups when we pooled. There was a significant association between REE and plasma adiponectin in three groups when we pooled. There was a significant association between plasma adiponectin and REE. Moreover, there was a significant relationship between UCP2 and REE.
Collapse
Affiliation(s)
- Zahra Taghadomi Masoumi
- a Department of cellular-Molecular Nutrition, School of Nutrition Sciences and Dietetics , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Reza Eshraghian
- b Department of Epidemiology and Biostatistics, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Mahdi Hedayati
- c Cellular-Molecular Research Center, Research Institute for Endocrine Sciences , Shahid Beheshti University , Tehran , Iran
| | - Hamideh Pishva
- a Department of cellular-Molecular Nutrition, School of Nutrition Sciences and Dietetics , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
17
|
Dysregulation of mitochondrial function and biogenesis modulators in adipose tissue of obese children. Int J Obes (Lond) 2017; 42:618-624. [PMID: 29158541 DOI: 10.1038/ijo.2017.274] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/01/2017] [Accepted: 10/17/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND/OBJECTIVES We aimed to evaluate mitochondrial biogenesis (MB), structure, metabolism and dysfunction in abdominal adipose tissue from male pediatric patients with obesity. SUBJECTS/METHODS Samples were collected from five children with obesity (percentile ⩾95) and five eutrophic boys (percentile ⩾5/⩽85) (8-12 years old) following parental informed consent. We analyzed the expression of key genes involved in MB (sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor-γ (PPARγ), PPARγ coactivator-1α (PGC1α), nuclear respiratory factors 1 and 2 (NRF1, NRF2) and mitochondrial transcription factor A (TFAM) and surrogates for mitochondrial function/structure/metabolism (porin, TOMM20, complex I and V, UCP1, UCP2, SIRT3, SOD2) by western blot. Citrate synthase (CS), complex I (CI) activity, adenosine triphosphate (ATP) levels, mitochondrial DNA (mtDNA) content and oxidative stress end points were also determined. RESULTS Most MB proteins were significantly decreased in samples from children with obesity except complex I, V and superoxide dismutase-2 (SOD2). Similarly, CS and CI activity showed a significant reduction, as well as ATP levels and mtDNA content. PPARγ, PGC1α, complex I and V and SOD2 were hyperacetylated compared with lean samples. Concurrently, in samples from children with obesity, we found decreased SOD2 activity and redox state imbalance highlighted by decreased reduced glutathione/oxidized glutathione (GSH/GSSG) ratio and significant increases in protein carbonylation. CONCLUSIONS Adipose tissue from children with obesity demonstrates a dysregulation of key modulators of MB and organelle structure, and displays hyperacetylation of key proteins and altered expression of upstream regulators of cell metabolism.
Collapse
|
18
|
Pan HC, Lee CC, Chou KM, Lu SC, Sun CY. Serum levels of uncoupling proteins in patients with differential insulin resistance: A community-based cohort study. Medicine (Baltimore) 2017; 96:e8053. [PMID: 28984759 PMCID: PMC5737995 DOI: 10.1097/md.0000000000008053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The uncoupling protein (UCP) belongs to a family of energy-dissipating proteins in mitochondria. Increasing evidences have indicated that UCPs have immense impact on glucose homeostasis and are key proteins in metabolic syndrome. For applying the findings to clinical practice, we designed a study to explore the association between serum UCPs 1-3 and insulin resistance. This investigation prospectively recorded demographical parameter and collected blood samples of 1071 participants from 4 districts in Northeastern Taiwan during the period from August 2013 to July 2014. Propensity score matching by age and sex in patients with top and bottom third homeostasis model assessment of insulin resistance (HOMA-IR) levels was performed, and 326 subjects were enrolled for further studies. The mean age of the patients was 59.4 years and the majority of them (65.5%) were females. The prevalence of metabolic syndrome was 35.5%. Our results demonstrated that serum UCPs 1-3 were significantly associated with differences in HOMA-IR levels. Multiple logistic regression analysis indicated that low UCP 1 and features of metabolic syndrome, namely hypertension, diabetes, body mass index, and high-density lipoprotein, were independent determinants for high HOMA-IR levels. We thus determined that low serum UCP 1 is a predictor for high resistance to insulin.
Collapse
Affiliation(s)
- Heng-Chih Pan
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chin-Chan Lee
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- School of Medicine, Chang Gung University, Taoyuan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuei-Mei Chou
- Divisions of Endocrinology and Metabolism, Department of Internal Medicine
| | - Shang-Chieh Lu
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chiao-Yin Sun
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- School of Medicine, Chang Gung University, Taoyuan
| |
Collapse
|
19
|
Browning effects of (-)-epicatechin on adipocytes and white adipose tissue. Eur J Pharmacol 2017; 811:48-59. [PMID: 28576408 DOI: 10.1016/j.ejphar.2017.05.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 11/21/2022]
Abstract
In this study, we demonstrate that (-)-epicatechin (Epi), a cacao flavanol, induces the browning of fat by promoting mitochondrial biogenesis, enhancing indicators of mitochondrial structure and function, increasing fatty acid metabolism and upregulating the expression of brown adipose tissue-specific proteins in a high-fat diet mouse model of obesity and in cultured human adipocytes. Epi treatment significantly improved mitochondrial function, as measured by citrate synthase activity, and also reduced protein acetylation of total and specific regulators in both adipose tissue and human adipocytes. Browning of fat via Epi was evidenced by the increased expression of key thermogenic genes, phosphorylation of upstream regulators of fatty acid oxidation, and reduced triglyceride levels. Properly designed clinical trials are needed to explore the potential of Epi as an agent that promotes the browning of fat.
Collapse
|
20
|
Sodhi K, Srikanthan K, Goguet-Rubio P, Nichols A, Mallick A, Nawab A, Martin R, Shah PT, Chaudhry M, Sigdel S, El-Hamdani M, Liu J, Xie Z, Abraham NG, Shapiro JI. pNaKtide Attenuates Steatohepatitis and Atherosclerosis by Blocking Na/K-ATPase/ROS Amplification in C57Bl6 and ApoE Knockout Mice Fed a Western Diet. Sci Rep 2017; 7:193. [PMID: 28298638 PMCID: PMC5428305 DOI: 10.1038/s41598-017-00306-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
We have previously reported that the α1 subunit of sodium potassium adenosine triphosphatase (Na/K-ATPase), acts as a receptor and an amplifier for reactive oxygen species, in addition to its distinct pumping function. On this background, we speculated that blockade of Na/K-ATPase-induced ROS amplification with a specific peptide, pNaKtide, might attenuate the development of steatohepatitis. To test this hypothesis, pNaKtide was administered to a murine model of NASH: the C57Bl6 mouse fed a “western” diet containing high amounts of fat and fructose. The administration of pNaKtide reduced obesity as well as hepatic steatosis, inflammation and fibrosis. Of interest, we also noted marked improvement in mitochondrial fatty acid oxidation, insulin sensitivity, dyslipidemia and aortic streaking in this mouse model. To further elucidate the effects of pNaKtide on atherosclerosis, similar studies were performed in ApoE knockout mice also exposed to the western diet. In these mice, pNaKtide not only improved steatohepatitis, dyslipidemia, and insulin sensitivity, but also ameliorated significant aortic atherosclerosis. Collectively, this study demonstrates that the Na/K-ATPase/ROS amplification loop contributes significantly to the development and progression of steatohepatitis and atherosclerosis. And furthermore, this study presents a potential treatment, the pNaKtide, for the metabolic syndrome phenotype.
Collapse
Affiliation(s)
- Komal Sodhi
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Krithika Srikanthan
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Perrine Goguet-Rubio
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Alexandra Nichols
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Amrita Mallick
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Athar Nawab
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Rebecca Martin
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Preeya T Shah
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Muhammad Chaudhry
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Saroj Sigdel
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Mehiar El-Hamdani
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Jiang Liu
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Zijian Xie
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Nader G Abraham
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA.,Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Joseph I Shapiro
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA.
| |
Collapse
|
21
|
Martinez B, Soñanez-Organis JG, Godoy-Lugo JA, Horin LJ, Crocker DE, Ortiz RM. Thyroid hormone-stimulated increases in PGC-1α and UCP2 promote life history-specific endocrine changes and maintain a lipid-based metabolism. Am J Physiol Regul Integr Comp Physiol 2016; 312:R189-R196. [PMID: 27903512 DOI: 10.1152/ajpregu.00395.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/31/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
Thyroid hormones (THs) regulate metabolism, but are typically suppressed during times of stressful physiological conditions, including fasting. Interestingly, prolonged fasting in northern elephant seal pups is associated with reliance on a lipid-based metabolism and increased levels of circulating THs that are partially attributed to active secretion as opposed to reduced clearance. This apparent paradox is coupled with complementary increases in cellular TH-mediated activity, suggesting that in mammals naturally adapted to prolonged fasting, THs are necessary to support metabolism. However, the functional relevance of this physiological paradox has remained largely unexplored, especially as it relates to the regulation of lipids. To address the hypothesis that TSH-mediated increase in THs contributes to lipid metabolism, we infused early and late-fasted pups with TSH and measured several key genes in adipose and muscle, and plasma hormones associated with regulation of lipid metabolism. TSH infusion increased the mRNA expressions of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) more than 6.5-fold at 60 min in muscle, and expression of uncoupling protein 2 (UCP2) more than 27-fold during the early fast at 60 min, in adipose. Additionally, during the late fast period, the protein content of adipose CD36 increased 1.1-fold, and plasma nonesterified fatty acid (NEFA) concentrations increased 25% at 120 min, with NEFA levels returning to baseline after 24 h. We show that the TSH-induced increases in THs in fasting pups are functional and likely contribute to the maintenance of a lipid-based metabolism.
Collapse
Affiliation(s)
- Bridget Martinez
- Molecular and Cellular Biology, University of California Merced, Merced, California;
| | - José G Soñanez-Organis
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Francisco Villa, Navojoa Sonora, México
| | - José Arquimides Godoy-Lugo
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Francisco Villa, Navojoa Sonora, México
| | - Lillian J Horin
- W. M. Keck Science Department, Pitzer College, Claremont, California; and
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, California
| | - Rudy M Ortiz
- Molecular and Cellular Biology, University of California Merced, Merced, California
| |
Collapse
|
22
|
Cortes-Oliveira C, Nicoletti CF, de Souza Pinhel MA, de Oliveira BAP, Quinhoneiro DCG, Noronha NY, Marchini JS, da Silva Júnior WA, Júnior WS, Nonino CB. UCP2 expression is associated with weight loss after hypocaloric diet intervention. Eur J Clin Nutr 2016; 71:402-406. [PMID: 27759071 DOI: 10.1038/ejcn.2016.185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND/OBJECTIVES Although energy restriction contributes to weight loss, it may also reduce energy expenditure, limiting the success of weight loss in the long term. Studies have described how genetics contributes to the development of obesity, and uncoupling proteins 1 and 2 (UCP1 and UCP2) and beta-3-adrenoceptor (ADRB3) have been implicated in the metabolic pathways that culminate in this condition. This study aimed to evaluate how the UCP1, UCP2 and ADRB3 genes influence weight loss in severely obese women submitted to hypocaloric dietary intervention. SUBJECTS/METHODS This longitudinal study included 21 women divided into two groups: Group 1 (Dietary intervention (G1)) consisted of 11 individuals with severe obesity (body mass index (BMI) ⩾40 kg/m2), selected for dietary intervention and Group 2 (Control (G2)) consisted of 10 normal-weight women (BMI between 18.5 and 24.9 kg/m2). Evaluation included weight (kg), height (m), waist circumference (cm), body composition, resting metabolic rate (RMR, kcal) and abdominal subcutaneous adipose tissue collection. The dietary intervention required that G1 patients remained hospitalized in the university hospital for 6 weeks receiving a hypocaloric diet (1200 kcal per day). The statistical analyses included t-test for paired samples, Spearman correlation and multivariate linear regressions, with the level of significance set at P<0.05. RESULTS Weight (155.0±31.4-146.5±27.8 kg), BMI (58.5±10.5-55.3±9.2 kg/m2), fat-free mass (65.4±8.6-63.1±7.1 kg), fat mass (89.5±23.0-83.4±21.0 kg) and RMR (2511.6±386.1-2324.0±416.4 kcal per day) decreased significantly after dietary intervention. Multiple regression analyses showed that UCP2 expression contributed to weight loss after dietary intervention (P=0.05). CONCLUSIONS UCP2 expression is associated with weight loss after hypocaloric diet intervention.
Collapse
Affiliation(s)
- C Cortes-Oliveira
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - C F Nicoletti
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - M A de Souza Pinhel
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - B A P de Oliveira
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - D C G Quinhoneiro
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - N Y Noronha
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - J S Marchini
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - W A da Silva Júnior
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - W S Júnior
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - C B Nonino
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
23
|
UCP2 and PLIN1 Expression Affects the Resting Metabolic Rate and Weight Loss on Obese Patients. Obes Surg 2016; 27:343-348. [DOI: 10.1007/s11695-016-2275-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Schneider K, Valdez J, Nguyen J, Vawter M, Galke B, Kurtz TW, Chan JY. Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2). J Biol Chem 2016; 291:7754-66. [PMID: 26841864 DOI: 10.1074/jbc.m115.673756] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 12/12/2022] Open
Abstract
The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest thatNrf2plays a role in adipogenesisin vitro, and deletion of theNrf2gene protects against diet-induced obesity in mice. Here, we demonstrate that resistance to diet-induced obesity inNrf2(-/-)mice is associated with a 20-30% increase in energy expenditure. Analysis of bioenergetics revealed thatNrf2(-/-)white adipose tissues exhibit greater oxygen consumption. White adipose tissue showed a >2-fold increase inUcp1gene expression. Oxygen consumption is also increased nearly 2.5-fold inNrf2-deficient fibroblasts. Oxidative stress induced by glucose oxidase resulted in increasedUcp1expression. Conversely, antioxidant chemicals (such asN-acetylcysteine and Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) and SB203580 (a known suppressor ofUcp1expression) decreasedUcp1and oxygen consumption inNrf2-deficient fibroblasts. These findings suggest that increasing oxidative stress by limitingNrf2function in white adipocytes may be a novel means to modulate energy balance as a treatment of obesity and related clinical disorders.
Collapse
Affiliation(s)
- Kevin Schneider
- From the Department of Laboratory Medicine and Pathology and
| | - Joshua Valdez
- From the Department of Laboratory Medicine and Pathology and
| | - Janice Nguyen
- From the Department of Laboratory Medicine and Pathology and
| | - Marquis Vawter
- the Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697 and
| | - Brandi Galke
- the Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697 and
| | - Theodore W Kurtz
- the Department of Laboratory Medicine, University of California, San Francisco, California 94107
| | | |
Collapse
|
25
|
Park A, Kim WK, Bae KH. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J Stem Cells 2014; 6:33-42. [PMID: 24567786 PMCID: PMC3927012 DOI: 10.4252/wjsc.v6.i1.33] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/05/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue is a major metabolic organ, and it has been traditionally classified as either white adipose tissue (WAT) or brown adipose tissue (BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and regulations. WAT and BAT are both involved in energy balance. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides, whereas BAT specializes in dissipating energy as heat during cold- or diet-induced thermogenesis. Recently, brown-like adipocytes were discovered in WAT. These brown-like adipocytes that appear in WAT are called beige or brite adipocytes. Interestingly, these beige/brite cells resemble white fat cells in the basal state, but they respond to thermogenic stimuli with increased levels of thermogenic genes and increased respiration rates. In addition, beige/brite cells have a gene expression pattern distinct from that of either white or brown fat cells. The current epidemic of obesity has increased the interest in studying adipocyte formation (adipogenesis), especially in beige/brite cells. This review summarizes the developmental process of adipose tissues that originate from the mesenchymal stem cells and the features of these three different types of adipocytes.
Collapse
Affiliation(s)
- Anna Park
- Anna Park, Won Kon Kim, Kwang-Hee Bae, Research Center for Integrated Cellulomics, KRIBB, Daejeon 305-806, South Korea
| | - Won Kon Kim
- Anna Park, Won Kon Kim, Kwang-Hee Bae, Research Center for Integrated Cellulomics, KRIBB, Daejeon 305-806, South Korea
| | - Kwang-Hee Bae
- Anna Park, Won Kon Kim, Kwang-Hee Bae, Research Center for Integrated Cellulomics, KRIBB, Daejeon 305-806, South Korea
| |
Collapse
|