1
|
Limone A, Maggisano V, Sarnataro D, Bulotta S. Emerging roles of the cellular prion protein (PrP C) and 37/67 kDa laminin receptor (RPSA) interaction in cancer biology. Cell Mol Life Sci 2023; 80:207. [PMID: 37452879 PMCID: PMC10349719 DOI: 10.1007/s00018-023-04844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
The cellular prion protein (PrPC) is well-known for its involvement, under its pathogenic protease-resistant form (PrPSc), in a group of neurodegenerative diseases, known as prion diseases. PrPC is expressed in nervous system, as well as in other peripheral organs, and has been found overexpressed in several types of solid tumors. Notwithstanding, studies in recent years have disclosed an emerging role for PrPC in various cancer associated processes. PrPC has high binding affinity for 37/67 kDa laminin receptor (RPSA), a molecule that acts as a key player in tumorigenesis, affecting cell growth, adhesion, migration, invasion and cell death processes. Recently, we have characterized at cellular level, small molecules able to antagonize the direct PrPC binding to RPSA and their intracellular trafficking. These findings are very crucial considering that the main function of RPSA is to modulate key events in the metastasis cascade. Elucidation of the role played by PrPC/RPSA interaction in regulating tumor development, progression and response to treatment, represents a very promising challenge to gain pathogenetic information and discover novel specific biomarkers and/or therapeutic targets to be exploited in clinical settings. This review attempts to convey a detailed description of the complexity surrounding these multifaceted proteins from the perspective of cancer hallmarks, but with a specific focus on the role of their interaction in the control of proliferation, migration and invasion, genome instability and mutation, as well as resistance to cell death controlled by autophagic pathway.
Collapse
Affiliation(s)
- Adriana Limone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Valentina Maggisano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - Stefania Bulotta
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| |
Collapse
|
2
|
Oxidative Stress as a Potential Mechanism Underlying Membrane Hyperexcitability in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11081511. [PMID: 36009230 PMCID: PMC9405356 DOI: 10.3390/antiox11081511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Neurodegenerative diseases are characterized by gradually progressive, selective loss of anatomically or physiologically related neuronal systems that produce brain damage from which there is no recovery. Despite the differences in clinical manifestations and neuronal vulnerability, the pathological processes appear to be similar, suggesting common neurodegenerative pathways. It is well known that oxidative stress and the production of reactive oxygen radicals plays a key role in neuronal cell damage. It has been proposed that this stress, among other mechanisms, could contribute to neuronal degeneration and might be one of the factors triggering the development of these pathologies. Another common feature in most neurodegenerative diseases is neuron hyperexcitability, an aberrant electrical activity. This review, focusing mainly on primary motor cortex pyramidal neurons, critically evaluates the idea that oxidative stress and inflammation may be involved in neurodegeneration via their capacity to increase membrane excitability.
Collapse
|
3
|
Draf C, Wyrick T, Chavez E, Pak K, Kurabi A, Leichtle A, Dazert S, Ryan AF. A Screen of Autophagy Compounds Implicates the Proteasome in Mammalian Aminoglycoside-Induced Hair Cell Damage. Front Cell Dev Biol 2021; 9:762751. [PMID: 34765606 PMCID: PMC8576371 DOI: 10.3389/fcell.2021.762751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/05/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction: Autophagy is a degradative pathway to safely break down and recycle dysfunctional cellular components. There is prior evidence of autophagy participation during hair cell (HC) damage. Our goal was to screen compounds targeting different aspects of autophagy for their effects on HC loss due to an ototoxic aminoglycoside, gentamicin (GM). Methods: The SELLECKChem autophagy compound library, consisting of 154 compounds with defined autophagy inducing or inhibitory activity, was used for targeted screening in vitro model of ototoxicity. Organ of Corti from postnatal days 3–5 pou4f3/GFP transgenic mice (HCs express green fluorescent protein) were utilized. The organs were micro-dissected, and basal and middle turns divided into micro-explants individually placed into the single wells of a 96-well plate. Samples were treated with 200 μM of GM plus three dosages of tested compound and cultured for 72 h. Negative controls were treated with media only; positive ototoxicity controls were treated with GM only. Results: The majority of the library compounds had no effect on GM-induced HC loss. However, 18 compounds exhibited a significant, protective effect, two compounds were protective at low dosage but showed enhanced GM toxicity at higher doses and one compound was toxic to HCs in the absence of GM. Conclusions: This study evaluated many autophagy compounds that have not been tested previously on HCs. The disparate results obtained underscore the complexity of autophagy events that can influence HC responses to aminoglycosides, but also implicate the proteosome as an important damage mechanism. The screening results can serve as basis for further studies with protective compounds as potential drug targets.
Collapse
Affiliation(s)
- Clara Draf
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States.,Department of Otolaryngology, St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Taylor Wyrick
- Department of Biology, University of California, San Diego, San Diego, CA, United States
| | - Eduardo Chavez
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Kwang Pak
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Arwa Kurabi
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Anke Leichtle
- Department of Otolaryngology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Stefan Dazert
- Department of Otolaryngology, St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Allen F Ryan
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States.,Department of Neurosciences, University of California, San Diego, San Diego, CA, United States.,VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
4
|
Ding M, Chen Y, Lang Y, Cui L. The Role of Cellular Prion Protein in Cancer Biology: A Potential Therapeutic Target. Front Oncol 2021; 11:742949. [PMID: 34595121 PMCID: PMC8476782 DOI: 10.3389/fonc.2021.742949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Prion protein has two isoforms including cellular prion protein (PrPC) and scrapie prion protein (PrPSc). PrPSc is the pathological aggregated form of prion protein and it plays an important role in neurodegenerative diseases. PrPC is a glycosylphosphatidylinositol (GPI)-anchored protein that can attach to a membrane. Its expression begins at embryogenesis and reaches the highest level in adulthood. PrPC is expressed in the neurons of the nervous system as well as other peripheral organs. Studies in recent years have disclosed the involvement of PrPC in various aspects of cancer biology. In this review, we provide an overview of the current understanding of the roles of PrPC in proliferation, cell survival, invasion/metastasis, and stem cells of cancer cells, as well as its role as a potential therapeutic target.
Collapse
Affiliation(s)
- Manqiu Ding
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yongqiang Chen
- CancerCare Manitoba Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Yue Lang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Arora AS, Zafar S, Latif U, Llorens F, Sabine M, Kumar P, Tahir W, Thüne K, Shafiq M, Schmitz M, Zerr I. The role of cellular prion protein in lipid metabolism in the liver. Prion 2021; 14:95-108. [PMID: 32138593 PMCID: PMC7153832 DOI: 10.1080/19336896.2020.1729074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cellular prion protein (PrPC) is a plasma membrane glycophosphatidylinositol-anchored protein and it is involved in multiple functions, including neuroprotection and oxidative stress. So far, most of the PrPC functional research is done in neuronal tissue or cell lines; the role of PrPC in non-neuronal tissues such as liver is only poorly understood. To characterize the role of PrPC in the liver, a proteomics approach was applied in the liver tissue of PrPC knockout mice. The proteome analysis and biochemical validations showed an excessive fat accumulation in the liver of PrPC knockout mice with a change in mRNA expression of genes linked to lipid metabolism. In addition, the higher Bax to Bcl2 ratio, up-regulation of tgfb1 mRNA expression in PrPC knockout mice liver, further showed the evidences of metabolic disease. Over-expression of PrPC in fatty acid-treated AML12 hepatic cell line caused a reduction in excessive intracellular fat accumulation; shows association of PrPC levels and lipid metabolism. Therefore, based on observation of excessive fat globules in the liver of ageing PrPC knockout mice and the reduction of fat accumulation in AML12 cell line with PrPC over-expression, the role of PrPC in lipid metabolism is described.
Collapse
Affiliation(s)
- Amandeep Singh Arora
- Department of Neurology, Clinical Dementia Center, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Umair Latif
- Departments of Gastroenterology Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Franc Llorens
- Department of Neurology, Clinical Dementia Center, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Institute Carlos III, Hospitalet De Llobregat, Spain
| | - Mihm Sabine
- Departments of Gastroenterology Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Prateek Kumar
- Department of Neurology, Clinical Dementia Center, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Waqas Tahir
- Department of Neurology, Clinical Dementia Center, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Katrin Thüne
- Department of Neurology, Clinical Dementia Center, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Mohsin Shafiq
- Department of Neurology, Clinical Dementia Center, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Center, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
6
|
Gao Q, Guo X, Cao Y, Jia X, Xu S, Lu C, Zhu H. Melatonin Protects HT22 Hippocampal Cells from H 2O 2-induced Injury by Increasing Beclin1 and Atg Protein Levels to Activate Autophagy. Curr Pharm Des 2021; 27:446-454. [PMID: 32838711 DOI: 10.2174/1381612826666200824105835] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The aging of hippocampal neurons leads to a substantial decline in memory formation, storage and processing. The neuroprotective effect of melatonin has been confirmed, however, its protective mechanism remains unclear. OBJECTIVE In this study, mouse hippocampus-derived neuronal HT22 cells were used to investigate whether melatonin protects the hippocampus from hydrogen peroxide (H2O2)-induced injury by regulating autophagy. METHODS Rapamycin (an activator of autophagy) and 3-methyladenine (3MA, an inhibitor of autophagy) were used to induce or inhibit autophagy, respectively. HT22 cells were treated with 200 μM H2O2 in the presence or absence of 50 μM melatonin. Cell counting kit 8 (CCK-8), β-galactosidase and Hoechst staining were used to measure the viability, aging and apoptosis of cells, respectively. Western blot analysis was used to detect the levels of autophagy-related proteins. RESULTS The activation of autophagy by rapamycin alleviated H2O2-induced oxidative injury, as evidenced by morphological changes and decreased viability, while the inhibition of autophagy by 3MA exacerbated H2O2- induced injury. The inhibitory effect of melatonin on H2O2-induced injury was similar to that of rapamycin. Melatonin also alleviated H2O2-induced aging and apoptosis. Melatonin activated autophagy in the presence or absence of H2O2, as evidenced by an increased Lc3b 14/16 kd ratio and a decreased P62 level. In addition, H2O2 decreased the levels of Beclin1 and Atg5/12/16, which were reversed by rapamycin or melatonin. The effects of melatonin on H2O2-induced injury, autophagy and protein expressions were effectively reversed by 3MA. CONCLUSION In conclusion, these results demonstrate that melatonin protects HT22 hippocampal neurons from H2O2-induced injury by increasing the levels of the Beclin1 and Atg proteins to activate autophagy.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaocheng Guo
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yang Cao
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaotong Jia
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Shanshan Xu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Chunmei Lu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Cha S, Sin MJ, Kim MJ, Kim HJ, Kim YS, Choi EK, Kim MY. Involvement of Cellular Prion Protein in Invasion and Metastasis of Lung Cancer by Inducing Treg Cell Development. Biomolecules 2021; 11:biom11020285. [PMID: 33671884 PMCID: PMC7918983 DOI: 10.3390/biom11020285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
The cellular prion protein (PrPC) is a cell surface glycoprotein expressed in many cell types that plays an important role in normal cellular processes. However, an increase in PrPC expression has been associated with a variety of human cancers, where it may be involved in resistance to the proliferation and metastasis of cancer cells. PrP-deficient (Prnp0/0) and PrP-overexpressing (Tga20) mice were studied to evaluate the role of PrPC in the invasion and metastasis of cancer. Tga20 mice, with increased PrPC, died more quickly from lung cancer than did the Prnp0/0 mice, and this effect was associated with increased transforming growth factor-beta (TGF-β) and programmed death ligand-1 (PD-L1), which are important for the development and function of regulatory T (Treg) cells. The number of FoxP3+CD25+ Treg cells was increased in Tga20 mice compared to Prnp0/0 mice, but there was no significant difference in either natural killer or cytotoxic T cell numbers. In addition, mice infected with the ME7 scrapie strain had decreased numbers of Treg cells and decreased expression of TGF-β and PD-L1. These results suggest that PrPC plays an important role in invasion and metastasis of cancer cells by inducing Treg cells through upregulation of TGF-β and PD-L1 expression.
Collapse
Affiliation(s)
- Seunghwa Cha
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea; (S.C.); (M.-J.S.)
| | - Mi-Ji Sin
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea; (S.C.); (M.-J.S.)
| | - Mo-Jong Kim
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea; (M.-J.K.); (H.-J.K.); (Y.-S.K.)
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon 24252, Korea
| | - Hee-Jun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea; (M.-J.K.); (H.-J.K.); (Y.-S.K.)
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea; (M.-J.K.); (H.-J.K.); (Y.-S.K.)
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea; (M.-J.K.); (H.-J.K.); (Y.-S.K.)
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon 24252, Korea
- Correspondence: (E.-K.C.); (M.-Y.K.)
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea; (S.C.); (M.-J.S.)
- Correspondence: (E.-K.C.); (M.-Y.K.)
| |
Collapse
|
8
|
Lin J, Wei J, Lv Y, Zhang X, Yi RF, Dai C, Zhang Q, Jia J, Zhang D, Huang Y. H(+)/Cl(‑) exchange transporter 7 promotes lysosomal acidification‑mediated autophagy in mouse cardiomyocytes. Mol Med Rep 2021; 23:222. [PMID: 33495814 PMCID: PMC7845584 DOI: 10.3892/mmr.2021.11861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
Autophagy protects cardiomyocytes in various pathological and physiological conditions; however, the molecular mechanisms underlying its influence and the promotion of autophagic clearance are not completely understood. The present study aimed to explore the role of H(+)/Cl(−) exchange transporter 7 (CLC-7) in cardiomyocyte autophagy. In this study, rapamycin was used to induce autophagy in mouse cardiomyocytes, and the changes in CLC-7 were investigated. The expression levels of CLC-7 and autophagy-related proteins, such as microtubule associated protein 1 light chain 3, autophagy related 5 and Beclin 1, were detected using western blotting or immunofluorescence. Autolysosomes were observed and analyzed using transmission electron microscopy and immunofluorescence following CLC-7 silencing with small interfering RNAs. Cellular viability was assessed using Cell Counting Kit-8 and lactate dehydrogenase assays. Lysosomal acidification was measured using an acidification indicator. Increased CLC-7 co-localization with lysosomes was identified during autophagy. CLC-7 knockdown weakened the acidification of lysosomes, which are the terminal compartments of autophagy flux, and consequently impaired autophagy flux, ultimately resulting in cell injury. Collectively, the present study demonstrated that in cardiomyocytes, CLC-7 may contribute to autophagy via regulation of lysosomal acidification. These findings provide novel insights into the role of CLC-7 in autophagy and cytoprotection.
Collapse
Affiliation(s)
- Jiezhi Lin
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jinyu Wei
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yanling Lv
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xingyue Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Ruo Fan Yi
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Chen Dai
- Orthopedics and Trauma Department, The 963rd (224th) Hospital of People's Liberation Army, 963rd Hospital of Joint Logistics Support Force of PLA, Jiamusi, Heilongjiang 154007, P.R. China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jiezhi Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Dongxia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yuesheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
9
|
Effects of Resvega on Inflammasome Activation in Conjunction with Dysfunctional Intracellular Clearance in Retinal Pigment Epithelial (RPE) Cells. Antioxidants (Basel) 2021; 10:antiox10010067. [PMID: 33430331 PMCID: PMC7825790 DOI: 10.3390/antiox10010067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease in which retinal pigment epithelium (RPE) cells play a crucial role in maintaining retinal homeostasis and photoreceptors’ functionality. During disease progression, there is increased inflammation with nucleotide-binding domain, leucine-rich repeat, and Pyrin domain 3 (NLRP3) inflammasome activation, oxidative stress, and impaired autophagy in RPE cells. Previously, we have shown that the dietary supplement Resvega reduces reactive oxygen species (ROS) production and induces autophagy in RPE cells. Here, we investigated the ability of Resvega to prevent NLRP3 inflammasome activation with impaired protein clearance in human RPE cells. Cell viability was measured using the lactate dehydrogenase (LDH) and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Enzyme-linked immunosorbent assays (ELISA) were utilized to determine the secretion of cytokines, NLRP3, and vascular endothelial growth factor (VEGF). Caspase-1 activity was measured with a fluorescent labeled inhibitor of caspase-1 (FLICA; FAM-YVAD-FMK) and detected microscopically. Resvega improved the cell membrane integrity, which was evident as reduced LDH leakage from cells. In addition, the caspase-1 activity and NLRP3 release were reduced, as was the secretion of two inflammatory cytokines, interleukin (IL)-1β and IL-8, in IL-1α-primed ARPE-19 cells. According to our results, Resvega can potentially reduce NLRP3 inflammasome-mediated inflammation in RPE cells with impaired protein clearance.
Collapse
|
10
|
López-Pérez Ó, Badiola JJ, Bolea R, Ferrer I, Llorens F, Martín-Burriel I. An Update on Autophagy in Prion Diseases. Front Bioeng Biotechnol 2020; 8:975. [PMID: 32984276 PMCID: PMC7481332 DOI: 10.3389/fbioe.2020.00975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a dynamic intracellular mechanism involved in protein and organelle turnover through lysosomal degradation. When properly regulated, autophagy supports normal cellular and developmental processes, whereas defects in autophagic degradation have been associated with several pathologies, including prion diseases. Prion diseases, or transmissible spongiform encephalopathies (TSE), are a group of fatal neurodegenerative disorders characterized by the accumulation of the pathological misfolded isoform (PrPSc) of the physiological cellular prion protein (PrPc) in the central nervous system. Autophagic vacuoles have been described in experimental models of TSE and in the natural disease in humans. The precise connection of this process with prion-related neuropathology, or even whether autophagy is completely beneficial or pathogenic during neurodegeneration, is poorly understood. Thus, the biological role of autophagy in these diseases is still open to debate. During the last years, researchers have used a wide range of morphological, genetic and biochemical methods to monitor and manipulate the autophagic pathway and thus determine the specific role of this process in TSE. It has been suggested that PrPc could play a crucial role in modulating the autophagic pathway in neuronal cells, and the presence of abnormal autophagic activity has been frequently observed in several models of TSE both in vitro and in vivo, as well as in human prion diseases. Altogether, these findings suggest that autophagy is implicated in prion neuropathology and points to an impairment or failure of the process, potentially contributing to the pathogenesis of the disease. Additionally, autophagy is now emerging as a host defense response in controlling prion infection that plays a protective role by facilitating the clearance of aggregation-prone proteins accumulated within neurons. Since autophagy is one of the pathways of PrPSc degradation, and drug-induced stimulation of autophagic flux (the dynamic process of autophagic degradation activity) produces anti-prion effects, new treatments based on its activation have been tested to develop therapeutic strategies for prion diseases. In this review, we summarize previous and recent findings concerning the role of autophagy in TSE.
Collapse
Affiliation(s)
- Óscar López-Pérez
- Laboratorio de Genética Bioquímica (LAGENBIO), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain
| | - Isidro Ferrer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Franc Llorens
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical School, Göttingen, Germany
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Zaragoza, Spain
| |
Collapse
|
11
|
Wei J, Lin J, Zhang J, Tang D, Xiang F, Cui L, Zhang Q, Yuan H, Song H, Lv Y, Jia J, Zhang D, Huang Y. TRPV1 activation mitigates hypoxic injury in mouse cardiomyocytes by inducing autophagy through the AMPK signaling pathway. Am J Physiol Cell Physiol 2020; 318:C1018-C1029. [PMID: 32293932 DOI: 10.1152/ajpcell.00161.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is a highly conserved self-protection mechanism that plays a crucial role in cardiovascular diseases. Cardiomyocyte hypoxic injury promotes oxidative stress and pathological alterations in the heart, although the interplay between these effects remains elusive. The transient receptor potential vanilloid 1 (TRPV1) ion channel is a nonselective cation channel that is activated in response to a variety of exogenous and endogenous physical and chemical stimuli. Here, we investigated the effects and mechanisms of action of TRPV1 on autophagy in hypoxic cardiomyocytes. In this study, primary cardiomyocytes isolated from C57 mice were subjected to hypoxic stress, and their expression of TRPV1 and adenosine 5'-monophosphate-activated protein kinase (AMPK) was regulated. The autophagy flux was assessed by Western blotting and immunofluorescence staining, and the cell viability was determined through Cell counting kit-8 assay and Lactate dehydrogenase assays. In addition, the calcium influx after the upregulation of TRPV1 expression in cardiomyocytes was examined. The results showed that the number of autophagosomes in cardiomyocytes was higher under hypoxic stress and that the blockade of autophagy flux aggravated hypoxic damage to cardiomyocytes. Moreover, the expression of TRPV1 was induced under hypoxic stress, and its upregulation by capsaicin improved the autophagy flux and protected cardiomyocytes from hypoxic damage, whereas the silencing of TRPV1 significantly attenuated autophagy. Our observations also revealed that AMPK signaling was activated and involved in TRPV1-induced autophagy in cardiomyocytes under hypoxic stress. Overall, this study demonstrates that TRPV1 activation mitigates hypoxic injury in cardiomyocytes by improving autophagy flux through the AMPK signaling pathway and highlights TRPV1 as a novel therapeutic target for the treatment of hypoxic cardiac disease.
Collapse
Affiliation(s)
- Jinyu Wei
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Dermatology, the 920th Hospital of Joint Logistics Support Force of PLA, Kunming, China
| | - Jiezhi Lin
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Military Burn Center, the 963th (224th) Hospital of Joint Logistics Support Force of PLA, Jiamusi, China
| | - Junhui Zhang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Di Tang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Xiang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lin Cui
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiong Zhang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongping Yuan
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huapei Song
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yanling Lv
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiezhi Jia
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongxia Zhang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuesheng Huang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
12
|
Kita-Tomihara T, Sato S, Yamasaki S, Ueno Y, Kimura G, Ketema RM, Kawahara T, Kurasaki M, Saito T. Polyphenol-enriched azuki bean ( Vina angularis) extract reduces the oxidative stress and prevents DNA oxidation in the hearts of streptozotocin-induced early diabetic rats. Int J Food Sci Nutr 2019; 70:845-855. [PMID: 30775937 DOI: 10.1080/09637486.2019.1576598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We examined the changes in the heart of rats at the early stages of streptozotocin (STZ)-induced diabetes, and whether azuki bean extract (ABE) could influence these changes. The experimental diabetic rats received 0 or 40 mg/kg of ABE orally for 4 weeks, whereas the control group rats received distilled water. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and expression of proteins associated with peroxisomal FA β-oxidation as well as oxidative stress markers were examined. The levels of peroxisomal ACOX1 and catalase of the diabetic groups were significantly higher than those in the control group. The levels of p62, phosphorylated-p62 (p-p62) and HO-1 in the STZ group were significantly higher than those in the control group, and the levels of p-p62, HO-1, and 8-OHdG were significantly lower by ABE administration. The STZ-induced early diabetes increases the levels of proteins related to peroxisomal FA β-oxidation and oxidative stress markers in hearts. ABE protects diabetic hearts from oxidative damage.
Collapse
Affiliation(s)
| | - Shin Sato
- Department of Nutrition, Aomori University of Health and Welfare , Aomori , Japan
| | - Shojiro Yamasaki
- Graduate School of Health Sciences, Hokkaido University , Sapporo , Japan
| | - Yukako Ueno
- Graduate School of Health Sciences, Hokkaido University , Sapporo , Japan
| | - Goh Kimura
- Graduate School of Health Sciences, Hokkaido University , Sapporo , Japan
| | - Rahel M Ketema
- Graduate School of Health Sciences, Hokkaido University , Sapporo , Japan
| | - Tae Kawahara
- Graduate School of Medicine, Osaka University , Osaka , Japan
| | - Masaaki Kurasaki
- Faculty of Environmental Earth Science, Hokkaido University , Sapporo , Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University , Sapporo , Japan
| |
Collapse
|
13
|
Jeong JK, Lee JH, Kim SW, Hong JM, Seol JW, Park SY. Cellular prion protein regulates the differentiation and function of adipocytes through autophagy flux. Mol Cell Endocrinol 2019; 481:84-94. [PMID: 30513342 DOI: 10.1016/j.mce.2018.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/06/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023]
Abstract
The role of autophagy modulation in adipogenic differentiation and the possible autophagy modulators targeting adipogenesis remain unclear. In this study, we investigated whether normal cellular prion protein (PrP<C>) is involved in the modulation of autophagy and affects adipogenic differentiation in vivo and in vitro. Surprisingly, autophagy flux signals were activated in the adipose tissue of prion protein-deficient mice and PrP<C>-deleted 3T3-L1 adipocytes. The activation of autophagy flux mediated by PrP<C> deletion was confirmed in the adipose tissue via transmission electron microscopy. Adipocyte differentiation factors were highly induced in prion protein-deficient adipose tissue and 3T3-L1 adipocytes. In addition, deletion of prion protein significantly increased visceral fat volume, body fat weight, adipocyte cell size, and body weight gain in Prnp-knockout mice and increased lipid accumulation in PrP<C> siRNA-transfected 3T3-L1 cells. However, the overexpression of prion protein using adenovirus inhibited the autophagic flux signals, lipid accumulation, and the PPAR-γ and C/EBP-α mRNA and protein expression levels in comparison to those in the control cells. Our results demonstrated that deletion of normal prion protein accelerated adipogenic differentiation and lipid accumulation mediated via autophagy flux activation.
Collapse
Affiliation(s)
- Jae-Kyo Jeong
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Ju-Hee Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Sung-Wook Kim
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Jeong-Min Hong
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea.
| |
Collapse
|
14
|
Zhu L, Xu J, Liu Y, Gong T, Liu J, Huang Q, Fischbach S, Zou W, Xiao X. Prion protein is essential for diabetic retinopathy-associated neovascularization. Angiogenesis 2018; 21:767-775. [DOI: 10.1007/s10456-018-9619-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
|
15
|
Role of Autophagy in Auditory System Development and Survival. JOURNAL OF OTORHINOLARYNGOLOGY, HEARING AND BALANCE MEDICINE 2018. [DOI: 10.3390/ohbm1010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
16
|
Reiten MR, Malachin G, Kommisrud E, Østby GC, Waterhouse KE, Krogenæs AK, Kusnierczyk A, Bjørås M, Jalland CMO, Nekså LH, Røed SS, Stenseth EB, Myromslien FD, Zeremichael TT, Bakkebø MK, Espenes A, Tranulis MA. Stress Resilience of Spermatozoa and Blood Mononuclear Cells without Prion Protein. Front Mol Biosci 2018; 5:1. [PMID: 29417049 PMCID: PMC5787566 DOI: 10.3389/fmolb.2018.00001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022] Open
Abstract
The cellular prion protein PrPC is highly expressed in neurons, but also present in non-neuronal tissues, including the testicles and spermatozoa. Most immune cells and their bone marrow precursors also express PrPC. Clearly, this protein operates in highly diverse cellular contexts. Investigations into putative stress-protective roles for PrPC have resulted in an array of functions, such as inhibition of apoptosis, stimulation of anti-oxidant enzymes, scavenging roles, and a role in nuclear DNA repair. We have studied stress resilience of spermatozoa and peripheral blood mononuclear cells (PBMCs) derived from non-transgenic goats that lack PrPC (PRNPTer/Ter) compared with cells from normal (PRNP+/+) goats. Spermatozoa were analyzed for freeze tolerance, DNA integrity, viability, motility, ATP levels, and acrosome intactness at rest and after acute stress, induced by Cu2+ ions, as well as levels of reactive oxygen species (ROS) after exposure to FeSO4 and H2O2. Surprisingly, PrPC-negative spermatozoa reacted similarly to normal spermatozoa in all read-outs. Moreover, in vitro exposure of PBMCs to Doxorubicin, H2O2 and methyl methanesulfonate (MMS), revealed no effect of PrPC on cellular survival or global accumulation of DNA damage. Similar results were obtained with human neuroblastoma (SH-SY5Y) cell lines stably expressing varying levels of PrPC. RNA sequencing of PBMCs (n = 8 of PRNP+/+ and PRNPTer/Ter) showed that basal level expression of genes encoding DNA repair enzymes, ROS scavenging, and antioxidant enzymes were unaffected by the absence of PrPC. Data presented here questions the in vitro cytoprotective roles previously attributed to PrPC, although not excluding such functions in other cell types or tissues during inflammatory stress.
Collapse
Affiliation(s)
- Malin R Reiten
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Giulia Malachin
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Elisabeth Kommisrud
- Faculty of Education and Natural Sciences, Inland University of Applied Sciences, Hamar, Norway
| | - Gunn C Østby
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Karin E Waterhouse
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway.,Spermvital AS Holsetgata, Hamar, Norway
| | - Anette K Krogenæs
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Anna Kusnierczyk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Clara M O Jalland
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Liv Heidi Nekså
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Susan S Røed
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Else-Berit Stenseth
- Faculty of Education and Natural Sciences, Inland University of Applied Sciences, Hamar, Norway
| | - Frøydis D Myromslien
- Faculty of Education and Natural Sciences, Inland University of Applied Sciences, Hamar, Norway
| | - Teklu T Zeremichael
- Faculty of Education and Natural Sciences, Inland University of Applied Sciences, Hamar, Norway
| | - Maren K Bakkebø
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Arild Espenes
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Michael A Tranulis
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
17
|
Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development. Cell Death Dis 2017; 8:e3081. [PMID: 28981117 PMCID: PMC5680575 DOI: 10.1038/cddis.2017.453] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/06/2017] [Accepted: 08/09/2017] [Indexed: 12/15/2022]
Abstract
Oxidative stress-related apoptosis and autophagy play crucial roles in the development of osteoarthritis (OA), a progressive cartilage degenerative disease with multifactorial etiologies. Here, we determined autophagic flux changes and apoptosis in human OA and tert-Butyl hydroperoxide (TBHP)-treated chondrocytes. In addition, we explored the potential protective effects of trehalose, a novel Mammalian Target of Rapamycin (mTOR)-independent autophagic inducer, in TBHP-treated mouse chondrocytes and a destabilized medial meniscus (DMM) mouse OA model. We found aberrant p62 accumulation and increased apoptosis in human OA cartilage and chondrocytes. Consistently, p62 and cleaved caspase-3 levels increased in mouse chondrocytes under oxidative stress. Furthermore, trehalose restored oxidative stress-induced autophagic flux disruption and targeted autophagy selectively by activating BCL2 interacting protein 3 (BNIP3) and Phosphoglycerate mutase family member 5 (PGAM5). Trehalose could ameliorate oxidative stress-mediated mitochondrial membrane potential collapse, ATP level decrease, dynamin-related protein 1 (drp-1) translocation into the mitochondria, and the upregulation of proteins involved in mitochondria and endoplasmic reticulum (ER) stress-related apoptosis pathway. In addition, trehalose suppressed the cleavage of caspase 3 and poly(ADP-ribose) polymerase (PARP) and prevented DNA damage under oxidative stress. However, the anti-apoptotic effects of trehalose in TBHP-treated chondrocytes were partially abolished by autophagic flux inhibitor chloroquine and BNIP3- siRNA. The protective effect of trehalose was also found in mouse OA model. Taken together, these results indicate that trehalose has anti-apoptotic effects through the suppression of oxidative stress-induced mitochondrial injury and ER stress which is dependent on the promotion of autophagic flux and the induction of selective autophagy. Thus, trehalose is a promising therapeutic agent for OA.
Collapse
|
18
|
Guo L, Ding Z, Huang N, Huang Z, Zhang N, Xia Z. Forkhead Box M1 positively regulates UBE2C and protects glioma cells from autophagic death. Cell Cycle 2017; 16:1705-1718. [PMID: 28767320 PMCID: PMC5602297 DOI: 10.1080/15384101.2017.1356507] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ubiquitin-conjugating enzyme E2C (UBE2C) is characterized as a crucial molecule in cancer cell growth that plays an essential role in the development of gliomas, but the detailed mechanisms have not been fully elucidated. In this study, we found that Forkhead box transcription factor M1 (FoxM1) overexpression increased UBE2C expression, whereas FoxM1 suppression inhibited UBE2C expression in glioma cells. In addition, high FoxM1/UBE2C expression was significantly correlated with poor prognosis in glioma. We subsequently demonstrated that UBE2C was a direct transcriptional target of FoxM1, and site-directed mutations markedly down-regulated UBE2C promoter activity. Moreover, UBE2C siRNA (si-UBE2C) significantly induced glioma cell autophagy and increased both mCherry-LC3 punctate fluorescence and LC3B-II/LC3-I expression. Notably, the si-UBE2C-induced decrease in cell viability was markedly inhibited by the autophagy inhibitor bafilomycin A1. The silencing of UBE2C resulted in a distinct inhibition of the PI3K-Akt-mTOR pathway, which functions in the negative modulation of autophagy. Collectively, our findings provide clinical and molecular evidence that FoxM1 promotes glioma progression by enhancing UBE2C transcription and that the inhibition of UBE2C partially induces autophagic glioma cell death. Thus, targeting the FoxM1-UBE2C axis has therapeutic potential in the treatment of gliomas.
Collapse
Affiliation(s)
- Liang Guo
- a Department of Neurosurgery , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Zhiming Ding
- a Department of Neurosurgery , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Nunu Huang
- a Department of Neurosurgery , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Zhengsong Huang
- a Department of Neurosurgery , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Nu Zhang
- a Department of Neurosurgery , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Zhibo Xia
- a Department of Neurosurgery , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong Province , China
| |
Collapse
|
19
|
Pestana CR, Urbaczek AC, Alberici JV, Rodrigues GJ, Carrilho E. Metabolic profiling of human endothelial cells during autophagy assessed in a biomimetic microfluidic device model. Life Sci 2017; 172:42-47. [PMID: 28011226 DOI: 10.1016/j.lfs.2016.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 01/22/2023]
Abstract
AIMS Autophagy is critical to endothelial function. We explored the effects of autophagy induced by serum deprivation on Human Umbilical Vascular Endothelial Cells (HUVEC) metabolome profile and its inhibition by the antimalarial drug chloroquine (CLQ) using a microfluidic biomimetic model. MAIN METHODS The metabolites secreted by HUVEC into the circulating microfluidics were determined by liquid chromatography mass spectrometry (LC-MS) and further analyzed using Metaboanalyst 3.0 multivariate and pathway analysis tools. KEY FINDINGS Principal component analysis showed the discrimination of metabolites between treated and control groups. The results also identified alterations in metabolites relevant to endothelial function such as arginine, glutamate and energy metabolism pathways. Interestingly, CLQ mostly reversed the changes induced by serum deprivation. SIGNIFICANCE The knowledge of endothelial metabolic profile during autophagy may contribute to the identification of clinical biomarkers and potential therapeutic approaches based on the regulation of autophagy.
Collapse
Affiliation(s)
- Cezar Rangel Pestana
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, PR, Brazil.
| | - Ana Carolina Urbaczek
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | | | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
20
|
Kim YJ, Tian C, Kim J, Shin B, Choo OS, Kim YS, Choung YH. Autophagic flux, a possible mechanism for delayed gentamicin-induced ototoxicity. Sci Rep 2017; 7:41356. [PMID: 28145495 PMCID: PMC5286410 DOI: 10.1038/srep41356] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics including gentamicin (GM) induce delayed ototoxic effects such as hearing loss after long-term use, unlike the early-onset ototoxicity caused by cisplatin. The purpose of the study was to identify the mechanism of the delayed GM-induced ototoxicity by exploring the role of autophagy in vitro and in vivo. Treating HEI-OC1 auditory cells with GM led to a time-dependent increase of the autophagosome marker LC3-II, which was accompanied by cell death. In contrast, cisplatin and penicillin caused a rapid increase and had no effect on LC3-II levels, respectively. LC3-II-expressing autophagosomes co-localized with the labeled GM. GM-treated autophagosomes expressed reduced levels of Rab7, which is necessary for the fusion of autophagosomes with lysosomes. When the autophagic flux enhancer rapamycin was applied to GM-treated cells, Rab7 and the lysosomal enzyme cathepsin D were upregulated, and increased cell survival was observed. In animal studies, the intraperitoneal injection of GM worsened hearing thresholds and induced the accumulation of LC3 in the organ of Corti. This hearing impairment was attenuated by rapamycin. These findings suggest that the delayed onset-ototoxicity of GM may be closely related to the accumulation of autophagosomes via impaired autophagy. This GM-induced auditory cell death could be inhibited by enhancing autophagic flux.
Collapse
Affiliation(s)
- Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Chunjie Tian
- Department of Otolaryngology, Dali Bai Autonomous Prefecture People's Hospital, Renminnan road 35, Dali, Yunnan 671000, China
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Beomyong Shin
- Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Oak-Sung Choo
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea.,Department of Medical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - You-Sun Kim
- Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea.,Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea.,Department of Medical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
21
|
Vidoni C, Castiglioni A, Seca C, Secomandi E, Melone MAB, Isidoro C. Dopamine exacerbates mutant Huntingtin toxicity via oxidative-mediated inhibition of autophagy in SH-SY5Y neuroblastoma cells: Beneficial effects of anti-oxidant therapeutics. Neurochem Int 2016; 101:132-143. [PMID: 27840125 DOI: 10.1016/j.neuint.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
Abstract
Neuronal cell death in Huntington's Disease (HD) is associated with the abnormal expansions of a polyglutamine (polyQ) tract in the huntingtin protein (Htt) at the N-terminus that causes the misfolding and aggregation of the mutated protein (mHtt). Autophagy-lysosomal degradation of Htt aggregates may protect the neurons in HD. HD patients eventually manifest parkinsonian-like symptoms, which underlie defects in the dopaminergic system. We hypothesized that dopamine (DA) exacerbates the toxicity in affected neurons by over-inducing an oxidative stress that negatively impinges on the autophagy clearance of mHtt and thus precipitating neuronal cell death. Here we show that the hyper-expression of mutant (>113/150) polyQ Htt is per se toxic to dopaminergic human neuroblastoma SH-SY5Y cells, and that DA exacerbates this toxicity leading to apoptosis and secondary necrosis. DA toxicity is mediated by ROS production (mainly anion superoxide) that elicits a block in the formation of autophagosomes. We found that the pre-incubation with N-Acetyl-l-Cysteine (a quinone reductase inducer) or Deferoxamine (an iron chelator) prevents the generation of ROS, restores the autophagy degradation of mHtt and preserves the cell viability in SH-SY5Y cells expressing the polyQ Htt and exposed to DA. The present findings suggest that DA-induced impairment of autophagy underlies the parkinsonism in HD patients. Our data provide a mechanistic explanation of the DA toxicity in dopaminergic neurons expressing the mHtt and support the use of anti-oxidative stress therapeutics to restore protective autophagy in order to slow down the neurodegeneration in HD patients.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Castiglioni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Christian Seca
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Mariarosa A B Melone
- 2° Division of Neurology, Department of Medical Surgical, Neurological, Metabolic Sciences, and Aging, Second University of Naples, Naples, Italy; InterUniversity Center for Research in Neurosciences, Second University of Naples, Naples, Italy.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy; InterUniversity Center for Research in Neurosciences, Second University of Naples, Naples, Italy.
| |
Collapse
|
22
|
Dias MVS, Teixeira BL, Rodrigues BR, Sinigaglia-Coimbra R, Porto-Carreiro I, Roffé M, Hajj GNM, Martins VR. PRNP/prion protein regulates the secretion of exosomes modulating CAV1/caveolin-1-suppressed autophagy. Autophagy 2016; 12:2113-2128. [PMID: 27629560 DOI: 10.1080/15548627.2016.1226735] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Prion protein modulates many cellular functions including the secretion of trophic factors by astrocytes. Some of these factors are found in exosomes, which are formed within multivesicular bodies (MVBs) and secreted into the extracellular space to modulate cell-cell communication. The mechanisms underlying exosome biogenesis were not completely deciphered. Here, we demonstrate that primary cultures of astrocytes and fibroblasts from prnp-null mice secreted lower levels of exosomes than wild-type cells. Furthermore, prnp-null astrocytes exhibited reduced MVB formation and increased autophagosome formation. The reconstitution of PRNP expression at the cell membrane restored exosome secretion in PRNP-deficient astrocytes, whereas macroautophagy/autophagy inhibition via BECN1 depletion reestablished exosome release in these cells. Moreover, the PRNP octapeptide repeat domain was necessary to promote exosome secretion and to impair the formation of the CAV1-dependent ATG12-ATG5 cytoplasmic complex that drives autophagosome formation. Accordingly, higher levels of CAV1 were found in lipid raft domains instead of in the cytoplasm in prnp-null cells. Collectively, these findings demonstrate that PRNP supports CAV1-suppressed autophagy to protect MVBs from sequestration into phagophores, thus facilitating exosome secretion.
Collapse
Affiliation(s)
- Marcos V S Dias
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | - Bianca L Teixeira
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | - Bruna R Rodrigues
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | | | | | - Martín Roffé
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | - Glaucia N M Hajj
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | - Vilma R Martins
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| |
Collapse
|
23
|
Moon JH, Lee JH, Nazim UMD, Lee YJ, Seol JW, Eo SK, Lee JH, Park SY. Human prion protein-induced autophagy flux governs neuron cell damage in primary neuron cells. Oncotarget 2016; 7:29989-30002. [PMID: 27102156 PMCID: PMC5058658 DOI: 10.18632/oncotarget.8802] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/13/2016] [Indexed: 01/09/2023] Open
Abstract
An unusual molecular structure of the prion protein, PrPsc is found only in mammals with transmissible prion diseases. Prion protein stands for either the infectious pathogen itself or a main component of it. Recent studies suggest that autophagy is one of the major functions that keep cells alive and has a protective effect against the neurodegeneration. In this study, we investigated that the effect of human prion protein on autophagy-lysosomal system of primary neuronal cells. The treatment of human prion protein induced primary neuron cell death and decreased both LC3-II and p62 protein amount indicating autophagy flux activation. Electron microscope pictures confirmed the autophagic flux activation in neuron cells treated with prion protein. Inhibition of autophagy flux using pharmacological and genetic tools prevented neuron cell death induced by human prion protein. Autophagy flux induced by prion protein is more activated in prpc expressing cells than in prpc silencing cells. These data demonstrated that prion protein-induced autophagy flux is involved in neuron cell death in prion disease and suggest that autophagy flux might play a critical role in neurodegenerative diseases including prion disease.
Collapse
Affiliation(s)
- Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - Ju-Hee Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - Uddin MD Nazim
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - You-Jin Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - Seong-Kug Eo
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - John-hwa Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea
| |
Collapse
|
24
|
Janda E, Lascala A, Carresi C, Parafati M, Aprigliano S, Russo V, Savoia C, Ziviani E, Musolino V, Morani F, Isidoro C, Mollace V. Parkinsonian toxin-induced oxidative stress inhibits basal autophagy in astrocytes via NQO2/quinone oxidoreductase 2: Implications for neuroprotection. Autophagy 2016; 11:1063-80. [PMID: 26046590 PMCID: PMC4590600 DOI: 10.1080/15548627.2015.1058683] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidative stress (OS) stimulates autophagy in different cellular systems, but it remains controversial if this rule can be generalized. We have analyzed the effect of chronic OS induced by the parkinsonian toxin paraquat (PQ) on autophagy in astrocytoma cells and primary astrocytes, which represent the first cellular target of neurotoxins in the brain. PQ decreased the basal levels of LC3-II and LC3-positive vesicles, and its colocalization with lysosomal markers, both in the absence and presence of chloroquine. This was paralleled by increased number and size of SQSTM1/p62 aggregates. Downregulation of autophagy was also observed in cells chronically exposed to hydrogen peroxide or nonlethal concentrations of PQ, and it was associated with a reduced astrocyte capability to protect dopaminergic cells from OS in co-cultures. Surprisingly, PQ treatment led to inhibition of MTOR, activation of MAPK8/JNK1 and MAPK1/ERK2-MAPK3/ERK1 and upregulation of BECN1/Beclin 1 expression, all signals typically correlating with induction of autophagy. Reduction of OS by NMDPEF, a specific NQO2 inhibitor, but not by N-acetylcysteine, abrogated the inhibitory effect of PQ and restored autophagic flux. Activation of NQO2 by PQ or menadione and genetic manipulation of its expression confirmed the role of this enzyme in the inhibitory action of PQ on autophagy. PQ did not induce NFE2L2/NRF2, but when it was co-administered with NMDPEF NFE2L2 activity was enhanced in a SQSTM1-independent fashion. Thus, a prolonged OS in astrocytes inhibits LC3 lipidation and impairs autophagosome formation and autophagic flux, in spite of concomitant activation of several pro-autophagic signals. These findings outline an unanticipated neuroprotective role of astrocyte autophagy and identify in NQO2 a novel pharmacological target for its positive modulation.
Collapse
Key Words
- AVs, autophagic vacuoles
- Ab, antibody
- BNAH, benzyldihydronicotinamide riboside
- CA-DCF-DA, 5(6)-carboxy-2′,7′ dichlorofluorescein diacetate
- CQ, chloroquine
- DMEM, Dulbecco's modified Eagle's medium
- DMSO, dimethyl sulfoxide
- FACS, flow cytometry
- GFAP, glial fibrillary acidic protein
- GFP, green fluorescent protein
- K3, menadione
- MAPK, mitogen-activated protein kinase
- MFI, mean fluorescence intensity
- MPTP, 1-methyl 4-phenyl 1,2,3,6-tetraidro-piridine
- MitoSOX, 3,8-phenanthridinediamine, 5-(6′-triphenylphosphoniumhexyl)-5,6 dihydro-6-phenyl
- NFE2L2, nuclear factor, erythroid 2-like 2
- NMDPEF, N-[2-(2-methoxy-6H-dipyrido[2,3-a:3,2-e]pyrrolizin-11-yl)ethyl]-2-furamide]
- NQO2
- OS, oxidative stress
- PBS, phosphate-buffered saline
- PQ, paraquat
- ROS
- ROS, reactive oxygen species
- RT, room temperature
- SN, substantia nigra
- TTBS, Tween-Tris buffered saline
- WB, western blotting
- astrocytes
- macroautophagy
- p-, phosphorylated
- paraquat
- parkinson disease
- shRNA, short harpin ribonucleic acid
- siRNA, small interfering ribonucleic acid
Collapse
Affiliation(s)
- Elzbieta Janda
- a Department of Health Sciences; University "Magna Graecia"; Campus Germaneto ; Catanzaro , Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pardillo-Díaz R, Carrascal L, Muñoz MF, Ayala A, Nunez-Abades P. Time and dose dependent effects of oxidative stress induced by cumene hydroperoxide in neuronal excitability of rat motor cortex neurons. Neurotoxicology 2016; 53:201-214. [PMID: 26877221 DOI: 10.1016/j.neuro.2016.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 01/22/2016] [Accepted: 02/09/2016] [Indexed: 12/19/2022]
Abstract
It has been claimed that oxidative stress and the production of reactive oxygen radicals can contribute to neuron degeneration and might be one factor in the development of different neurological diseases. In our study, we have attempted to clarify how oxidative damage induces dose dependent changes in functional membrane properties of neurons by means of whole cell patch clamp techniques in brain slices from young adult rats. Our research demonstrates physiological changes in membrane properties of pyramidal motor cortex neurons exposed to 3 concentrations of cumene hydroperoxide (CH; 1, 10 and 100μM) during 30min. Results show that oxidative stress induced by CH evokes important changes, in a concentration and time dependent manner, in the neuronal excitability of motor cortex neurons of the rat: (i) Low concentration of the drug (1μM) already blocks inward rectifications (sag) and decreases action potential amplitude and gain, a drug concentration which has no effects on other neuronal populations, (ii) 10μM of CH depresses the excitability of pyramidal motor cortex neurons by decreasing input resistance, amplitude of the action potential, and gain and maximum frequency of the repetitive firing discharge, and (iii) 100μM completely blocks the capability to produce repetitive discharge of action potentials in all cells. Both larger drug concentrations and/or longer times of exposure to CH narrow the current working range. This happens because of the increase in the rheobase, and the reduction of the cancelation current. The effects caused by oxidative stress, including those produced by the level of lipid peroxidation, are practically irreversible and, this, therefore, indicates that neuroprotective agents should be administered at the first symptoms of alterations to membrane properties. In fact, the pre-treatment with melatonin, acting as an antioxidant, prevented the lipid peroxidation and the physiological changes induced by CH. Larger cells (as estimated by their cell capacitance) were also more susceptible to oxidative stress. Our results provide previously unavailable observations that large size and high sensitivity to oxidative stress (even at low concentrations) make pyramidal neurons of the motor cortex, in particular corticofugal neurons, more susceptible to cell death when compared with other neuronal populations. These results could also shed some light on explaining the causes behind diseases such as Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- R Pardillo-Díaz
- Department of Physiology, School of Pharmacy, University of Seville, Spain
| | - L Carrascal
- Department of Physiology, School of Pharmacy, University of Seville, Spain
| | - M F Muñoz
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Spain
| | - A Ayala
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Spain
| | - P Nunez-Abades
- Department of Physiology, School of Pharmacy, University of Seville, Spain.
| |
Collapse
|
26
|
Cingaram PKR, Nyeste A, Dondapati DT, Fodor E, Welker E. Prion Protein Does Not Confer Resistance to Hippocampus-Derived Zpl Cells against the Toxic Effects of Cu2+, Mn2+, Zn2+ and Co2+ Not Supporting a General Protective Role for PrP in Transition Metal Induced Toxicity. PLoS One 2015; 10:e0139219. [PMID: 26426582 PMCID: PMC4591282 DOI: 10.1371/journal.pone.0139219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 09/10/2015] [Indexed: 01/04/2023] Open
Abstract
The interactions of transition metals with the prion protein (PrP) are well-documented and characterized, however, there is no consensus on their role in either the physiology of PrP or PrP-related neurodegenerative disorders. PrP has been reported to protect cells from the toxic stimuli of metals. By employing a cell viability assay, we examined the effects of various concentrations of Cu2+, Zn2+, Mn2+, and Co2+ on Zpl (Prnp-/-) and ZW (Prnp+/+) hippocampus-derived mouse neuronal cells. Prnp-/- Zpl cells were more sensitive to all four metals than PrP-expressing Zw cells. However, when we introduced PrP or only the empty vector into Zpl cells, we could not discern any protective effect associated with the presence of PrP. This observation was further corroborated when assessing the toxic effect of metals by propidium-iodide staining and fluorescence activated cell sorting analysis. Thus, our results on this mouse cell culture model do not seem to support a strong protective role for PrP against transition metal toxicity and also emphasize the necessity of extreme care when comparing cells derived from PrP knock-out and wild type mice.
Collapse
Affiliation(s)
| | - Antal Nyeste
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Divya Teja Dondapati
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Elfrieda Fodor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ervin Welker
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
27
|
Jeong JK, Park SY. Neuroprotective effect of cellular prion protein (PrPC) is related with activation of alpha7 nicotinic acetylcholine receptor (α7nAchR)-mediated autophagy flux. Oncotarget 2015; 6:24660-74. [PMID: 26295309 PMCID: PMC4694786 DOI: 10.18632/oncotarget.4953] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/28/2015] [Indexed: 01/08/2023] Open
Abstract
Activation of the alpha7 nicotinic acetylcholine receptor (α7nAchR) is regulated by prion protein (PrPC) expression and has a neuroprotective effect by modulating autophagic flux. In this study, we hypothesized that PrPC may regulate α7nAchR activation and that may prevent prion-related neurodegenerative diseases by regulating autophagic flux. PrP(106-126) treatment decreased α7nAchR expression and activation of autophagic flux. In addition, the α7nAchR activator PNU-282987 enhanced autophagic flux and protected neuron cells against PrP(106-126)-induced apoptosis. However, activation of autophagy and the protective effects of PNU-282987 were inhibited in PrPC knockout hippocampal neuron cells. In addition, PrPC knockout hippocampal neuron cells showed decreased α7nAchR expression levels. Adenoviral overexpression of PrPC in PrPC knockout hippocampal neuron cells resulted in activation of autophagic flux and inhibition of prion peptide-mediated cell death via α7nAchR activation. This is the first report demonstrating that activation of α7nAchR-mediated autophagic flux is regulated by PrPC, and that activation of α7nAchR regulated by PrPC expression may play a pivotal role in protection of neuron cells against prion peptide-induced neuron cell death by autophagy. These results suggest that α7nAchR-mediated autophagic flux may be involved in the pathogenesis of prion-related diseases and may be a therapeutic target for prion-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Jae-Kyo Jeong
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
28
|
Zhao LR, Du YJ, Chen L, Liu ZG, Jia XY, Pan YH, Liu JF, Liu B. Omentin-1 promotes the growth of neural stem cells via activation of Akt signaling. Mol Med Rep 2014; 11:1859-64. [PMID: 25394413 DOI: 10.3892/mmr.2014.2937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 08/22/2014] [Indexed: 11/05/2022] Open
Abstract
Omentin is a novel adipokine, which is expressed in and released from omental adipose tissue. In the present study, the effect of omentin on neural stem cells (NSCs) was investigated. NSCs are a subtype of stem cell in the nervous system, which are able to self‑renew and generate neurons and glia for repairing neural lesions. Mouse NSCs were isolated and cultured in vitro. Treatment with recombinant omentin for 3 and 5 days significantly increased the size of NSC neurospheres (P<0.01) and enhanced NSC cell viability in normal conditions. In addition, omentin protected against the decrease in cell viability induced by the pro‑inflammatory cytokine tumor necrosis factor‑α. In the NSCs, incubation of omentin for 2, 4, 6, 8 and 16 h enhanced the phosphorylation of Akt at the Thr308 site and of AS160 at the Ser318 site, peaking 6 h after treatment. Additionally, treatment with LY294002 (10 µM), a specific inhibitor of phosphatidylinositol 3‑kinase/Akt signaling, eliminated the omentin‑induced increase in neurosphere size and cell viability. Overall, the present study provided the first evidence, to the best of our knowledge, that omentin promotes the growth and survival of NSCs in vitro through activation of the Akt signaling pathway. These results may contribute to the understanding of the role of omentin in the nervous system.
Collapse
Affiliation(s)
- Li-Rong Zhao
- Department of Ultrasound, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yu-Jun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Chen
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhi-Gang Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiao-Yan Jia
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yue-Hai Pan
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jian-Feng Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bin Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
29
|
Weikel KA, Cacicedo JM, Ruderman NB, Ido Y. Glucose and palmitate uncouple AMPK from autophagy in human aortic endothelial cells. Am J Physiol Cell Physiol 2014; 308:C249-63. [PMID: 25354528 DOI: 10.1152/ajpcell.00265.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Dysregulated autophagy and decreased AMP-activated protein kinase (AMPK) activity are each associated with atherogenesis. Atherogenesis is preceded by high circulating concentrations of glucose and fatty acids, yet the mechanism by which these nutrients regulate autophagy in human aortic endothelial cells (HAECs) is not known. Furthermore, whereas AMPK is recognized as an activator of autophagy in cells with few nutrients, its effects on autophagy in nutrient-rich HAECs has not been investigated. We maintained and passaged primary HAECs in media containing 25 mM glucose and incubated them subsequently with 0.4 mM palmitate. These conditions impaired basal autophagy and rendered HAECs more susceptible to apoptosis and adhesion of monocytes, outcomes attenuated by the autophagy activator rapamycin. Glucose and palmitate diminished AMPK activity and phosphorylation of the uncoordinated-51-like kinase 1 (ULK1) at Ser555, an autophagy-activating site targeted by AMPK. 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR)-mediated activation of AMPK phosphorylated acetyl-CoA carboxylase, but treatment with AICAR or other AMPK activators (A769662, phenformin) did not restore ULK1 phosphorylation or autophagosome formation. To determine whether palmitate-induced ceramide accumulation contributed to this finding, we overexpressed a ceramide-metabolizing enzyme, acid ceramidase. The increase in acid ceramidase expression ameliorated the effects of excess nutrients on ULK1 phosphorylation, without altering the effects of the AMPK activators. Thus, unlike low nutrient conditions, AMPK becomes uncoupled from autophagy in HAECs in a nutrient-rich environment, such as that found in patients with increased cardiovascular risk. These findings suggest that combinations of AMPK-independent and AMPK-dependent therapies may be more effective alternatives than either therapy alone for treating nutrient-induced cellular dysfunction.
Collapse
Affiliation(s)
- Karen A Weikel
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - José M Cacicedo
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Neil B Ruderman
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Yasuo Ido
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
30
|
Nah J, Pyo JO, Jung S, Yoo SM, Kam TI, Chang J, Han J, Soo A An S, Onodera T, Jung YK. BECN1/Beclin 1 is recruited into lipid rafts by prion to activate autophagy in response to amyloid β 42. Autophagy 2014; 9:2009-21. [PMID: 24145555 DOI: 10.4161/auto.26118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Prion protein (PRNP) has been implicated in various types of neurodegenerative diseases. Although much is known about prion diseases, the function of cellular PRNP remains cryptic. Here, we show that PRNP mediates amyloid β1–42 (Aβ42)-induced autophagy activation through its interaction with BECN1. Treatment with Aβ42 enhanced autophagy flux in neuronal cells. Aβ42-induced autophagy activation, however, was impaired in prnp-knockout primary cortical neurons and Prnp-knockdown or prnp-knockout neuronal cells. Immunoprecipitation assays revealed that PRNP interacted with BECN1 via the BCL2-binding domain of BECN1. This interaction promoted the subcellular localization of BECN1 into lipid rafts of the plasma membrane and enhanced activity of PtdIns3K (whose catalytic subunit is termed PIK3C3, mammalian ortholog of yeast VPS34) in lipid rafts by generating PtdIns3P in response to Aβ42. Further, the levels of lipid rafts that colocalized with BECN1, decreased in the brains of aged C57BL/6 mice, as did PRNP. These results suggested that PRNP interacts with BECN1 to recruit the PIK3C3 complex into lipid rafts and thus activates autophagy in response to Aβ42, defining a novel role of PRNP in the regulation of autophagy.
Collapse
|
31
|
Shin HY, Park JH, Carp RI, Choi EK, Kim YS. Deficiency of prion protein induces impaired autophagic flux in neurons. Front Aging Neurosci 2014; 6:207. [PMID: 25202268 PMCID: PMC4142790 DOI: 10.3389/fnagi.2014.00207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/25/2014] [Indexed: 12/22/2022] Open
Abstract
Normal cellular prion protein (PrPC) is highly expressed in the central nervous system. The Zürich I Prnp-deficient mouse strain did not show an abnormal phenotype in initial studies, however, in later studies, deficits in exploratory behavior and short- and long-term memory have been revealed. In the present study, numerous autophagic vacuoles were found in neurons from Zürich I Prnp-deficient mice. The autophagic accumulation in the soma of cortical neurons in Zürich I Prnp-deficient mice was observed as early as 3 months of age, and in the hippocampal neurons at 6 months of age. Specifically, there is accumulation of electron dense pigments associated with autophagy in the neurons of Zürich I Prnp-deficient mice. Furthermore, autophagic accumulations were observed as early as 3 months of age in the CA3 region of hippocampal and cerebral cortical neuropils. The autophagic vacuoles increased with age in the hippocampus of Zürich I Prnp-deficient mice at a faster rate and to a greater extent than in normal C57BL/6J mice, whereas the cortex exhibited high levels that were maintained from 3 months old in Zürich I Prnp-deficient mice. The pigmented autophagic accumulation is due to the incompletely digested material from autophagic vacuoles. Furthermore, a deficiency in PrPC may disrupt the autophagic flux by inhibiting autophagosome-lysosomal fusion. Overall, our results provide insight into the protective role of PrPC in neurons, which may play a role in normal behavior and other brain functions.
Collapse
Affiliation(s)
- Hae-Young Shin
- Ilsong Institute of Life Science, Hallym University Anyang, Gyeonggi-do, South Korea
| | - Jeong-Ho Park
- Ilsong Institute of Life Science, Hallym University Anyang, Gyeonggi-do, South Korea
| | - Richard I Carp
- New York State Institute for Basic Research in Developmental Disabilities Staten Island, NY, USA
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University Anyang, Gyeonggi-do, South Korea ; Department of Biomedical Gerontology, Graduate School of Hallym University Chuncheon, Gangwon-do, South Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University Anyang, Gyeonggi-do, South Korea ; Department of Microbiology, College of Medicine, Hallym University Chuncheon, Gangwon-do, South Korea
| |
Collapse
|
32
|
ZHAO LIRONG, DU YUJUN, CHEN LEI, LIU ZHIGANG, PAN YUEHAI, LIU JIANFENG, LIU BIN. Quercetin protects against high glucose-induced damage in bone marrow-derived endothelial progenitor cells. Int J Mol Med 2014; 34:1025-31. [DOI: 10.3892/ijmm.2014.1852] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/04/2014] [Indexed: 11/05/2022] Open
|
33
|
Yang X, Zhang Y, Zhang L, He T, Zhang J, Li C. Prion protein and cancers. Acta Biochim Biophys Sin (Shanghai) 2014; 46:431-40. [PMID: 24681883 DOI: 10.1093/abbs/gmu019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The normal cellular prion protein, PrP(C) is a highly conserved and widely expressed cell surface glycoprotein in all mammals. The expression of PrP is pivotal in the pathogenesis of prion diseases; however, the normal physiological functions of PrP(C) remain incompletely understood. Based on the studies in cell models, a plethora of functions have been attributed to PrP(C). In this paper, we reviewed the potential roles that PrP(C) plays in cell physiology and focused on its contribution to tumorigenesis.
Collapse
Affiliation(s)
- Xiaowen Yang
- Department of the First Abdominal Surgery, Jiangxi Tumor Hospital, Nanchang 330029, China
| | - Yan Zhang
- Department of Molecular Endocrinology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lihua Zhang
- Department of Pathology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Tianlin He
- Department of General Surgery, Changhai Hospital of Second Military Medical University, Shanghai 200433, China
| | - Jie Zhang
- Department of Stomatology, The First Affiliated Hospital of Shihezi University Medical College, Shihezi 832000, China
| | - Chaoyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
34
|
Wang B, Yang Q, Sun YY, Xing YF, Wang YB, Lu XT, Bai WW, Liu XQ, Zhao YX. Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice. J Cell Mol Med 2014; 18:1599-611. [PMID: 24889822 PMCID: PMC4190906 DOI: 10.1111/jcmm.12312] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/31/2014] [Indexed: 01/02/2023] Open
Abstract
Autophagic dysfunction is observed in diabetes mellitus. Resveratrol has a beneficial effect on diabetic cardiomyopathy. Whether the resveratrol-induced improvement in cardiac function in diabetes is via regulating autophagy remains unclear. We investigated the mechanisms underlying resveratrol-mediated protection against heart failure in diabetic mice, with a focus on the role of sirtuin 1 (SIRT1) in regulating autophagic flux. Diabetic cardiomyopathy in mice was induced by streptozotocin (STZ). Long-term resveratrol treatment improved cardiac function, ameliorated oxidative injury and reduced apoptosis in the diabetic mouse heart. Western blot analysis revealed that resveratrol decreased p62 protein expression and promoted SIRT1 activity and Rab7 expression. Inhibiting autophagic flux with bafilomycin A1 increased diabetic mouse mortality and attenuated resveratrol-induced down-regulation of p62, but not SIRT1 activity or Rab7 expression in diabetic mouse hearts. In cultured H9C2 cells, redundant or overactive H2O2 increased p62 and cleaved caspase 3 expression as well as acetylated forkhead box protein O1 (FOXO1) and inhibited SIRT1 expression. Sirtinol, SIRT1 and Rab7 siRNA impaired the resveratrol amelioration of dysfunctional autophagic flux and reduced apoptosis under oxidative conditions. Furthermore, resveratrol enhanced FOXO1 DNA binding at the Rab7 promoter region through a SIRT1-dependent pathway. These results highlight the role of the SIRT1/FOXO1/Rab7 axis in the effect of resveratrol on autophagic flux in vivo and in vitro, which suggests a therapeutic strategy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Bo Wang
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nuvolone M, Kana V, Hutter G, Sakata D, Mortin-Toth SM, Russo G, Danska JS, Aguzzi A. SIRPα polymorphisms, but not the prion protein, control phagocytosis of apoptotic cells. ACTA ACUST UNITED AC 2013; 210:2539-52. [PMID: 24145514 PMCID: PMC3832919 DOI: 10.1084/jem.20131274] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prnp(-/-) mice lack the prion protein PrP(C) and are resistant to prion infections, but variable phenotypes have been reported in Prnp(-/-) mice and the physiological function of PrP(C) remains poorly understood. Here we examined a cell-autonomous phenotype, inhibition of macrophage phagocytosis of apoptotic cells, previously reported in Prnp(-/-) mice. Using formal genetic, genomic, and immunological analyses, we found that the regulation of phagocytosis previously ascribed to PrP(C) is instead controlled by a linked locus encoding the signal regulatory protein α (Sirpa). These findings indicate that control of phagocytosis was previously misattributed to the prion protein and illustrate the requirement for stringent approaches to eliminate confounding effects of flanking genes in studies modeling human disease in gene-targeted mice. The plethora of seemingly unrelated functions attributed to PrP(C) suggests that additional phenotypes reported in Prnp(-/-) mice may actually relate to Sirpa or other genetic confounders.
Collapse
Affiliation(s)
- Mario Nuvolone
- Institute of Neuropathology, University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Calderón-Garcidueñas L, Cross JV, Franco-Lira M, Aragón-Flores M, Kavanaugh M, Torres-Jardón R, Chao CK, Thompson C, Chang J, Zhu H, D'Angiulli A. Brain immune interactions and air pollution: macrophage inhibitory factor (MIF), prion cellular protein (PrP(C)), Interleukin-6 (IL-6), interleukin 1 receptor antagonist (IL-1Ra), and interleukin-2 (IL-2) in cerebrospinal fluid and MIF in serum differentiate urban children exposed to severe vs. low air pollution. Front Neurosci 2013; 7:183. [PMID: 24133408 PMCID: PMC3794301 DOI: 10.3389/fnins.2013.00183] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/23/2013] [Indexed: 02/05/2023] Open
Abstract
Mexico City Metropolitan Area children chronically exposed to high concentrations of air pollutants exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, innate and adaptive immune responses along with accumulation of misfolded proteins observed in the early stages of Alzheimer and Parkinson's diseases. A complex modulation of serum cytokines and chemokines influences children's brain structural and gray/white matter volumetric responses to air pollution. The search for biomarkers associating systemic and CNS inflammation to brain growth and cognitive deficits in the short term and neurodegeneration in the long-term is our principal aim. We explored and compared a profile of cytokines, chemokines (Multiplexing LASER Bead Technology) and Cellular prion protein (PrP(C)) in normal cerebro-spinal-fluid (CSF) of urban children with high vs. low air pollution exposures. PrP(C) and macrophage inhibitory factor (MIF) were also measured in serum. Samples from 139 children ages 11.91 ± 4.2 years were measured. Highly exposed children exhibited significant increases in CSF MIF (p = 0.002), IL6 (p = 0.006), IL1ra (p = 0.014), IL-2 (p = 0.04), and PrP(C) (p = 0.039) vs. controls. MIF serum concentrations were higher in exposed children (p = 0.009). Our results suggest CSF as a MIF, IL6, IL1Ra, IL-2, and PrP(C) compartment that can possibly differentiate air pollution exposures in children. MIF, a key neuro-immune mediator, is a potential biomarker bridge to identify children with CNS inflammation. Fine tuning of immune-to-brain communication is crucial to neural networks appropriate functioning, thus the short and long term effects of systemic inflammation and dysregulated neural immune responses are of deep concern for millions of exposed children. Defining the linkage and the health consequences of the brain / immune system interactions in the developing brain chronically exposed to air pollutants ought to be of pressing importance for public health.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Department of Biomedical Sciences, The Center for Structural and Functional Neurosciences, The University of Montana Missoula, MT, USA ; Hospital Central Militar, Secretaria de la Defensa Nacional Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The Functional Role of Prion Protein (PrPC) on Autophagy. Pathogens 2013; 2:436-45. [PMID: 25437200 PMCID: PMC4235692 DOI: 10.3390/pathogens2030436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 12/19/2022] Open
Abstract
Cellular prion protein (PrPC) plays an important role in the cellular defense against oxidative stress. However, the exact protective mechanism of PrPC is unclear. Autophagy is essential for survival, differentiation, development, and homeostasis in several organisms. Although the role that autophagy plays in neurodegenerative disease has yet to be established, it is clear that autophagy-induced cell death is observed in neurodegenerative disorders that exhibit protein aggregations. Moreover, autophagy can promote cell survival and cell death under various conditions. In this review, we describe the involvement of autophagy in prion disease and the effects of PrPC.
Collapse
|