1
|
Wang Y, Gao P, Wu Z, Jiang B, Wang Y, He Z, Zhao B, Tian X, Gao H, Cai L, Li W. Exploring the therapeutic potential of Chinese herbs on comorbid type 2 diabetes mellitus and Parkinson's disease: A mechanistic study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119095. [PMID: 39537117 DOI: 10.1016/j.jep.2024.119095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) and Parkinson's disease (PD) are chronic conditions that affect the aging population, with increasing prevalence globally. The rising prevalence of comorbidity between these conditions, driven by demographic shifts, severely impacts the quality of life of patients, posing a significant burden on healthcare resources. Chinese herbal medicine has been used to treat T2DM and PD for millennia. Pharmacological studies have demonstrated that medicinal herbs effectively lower blood glucose levels and exert neuroprotective effects, suggesting their potential as adjunctive therapy for concurrent management of T2DM and PD. AIM OF THE STUDY To elucidate the shared mechanisms underlying T2DM and PD, particularly focusing on the potential mechanisms by which medicinal herbs (including herbal formulas, single herbs, and active compounds) may treat these diseases, to provide valuable insights for developing therapeutics targeting comorbid T2DM and PD. MATERIALS AND METHODS Studies exploring the mechanisms underlying T2DM and PD, as well as the treatment of these conditions with medicinal herbs, were extracted from several electronic databases, including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI). RESULTS Numerous studies have shown that inflammation, oxidative stress, insulin resistance, impaired autophagy, gut microbiota dysbiosis, and ferroptosis are shared mechanisms underlying T2DM and PD mediated through the NLRP3 inflammasome, NF-κB, MAPK, Keap1/Nrf2/ARE, PI3K/AKT, AMPK/SIRT1, and System XC--GSH-GPX4 signaling pathways. Thirty-four medicinal herbs, including 2 herbal formulas, 4 single herbs, and 28 active compounds, have been reported to potentially exert anti-T2DM and anti-PD effects by targeting these shared mechanisms. CONCLUSIONS Traditional Chinese medicine effectively combats T2DM and PD through shared pathological mechanisms, highlighting their potential for application in treating these comorbid conditions.
Collapse
Affiliation(s)
- Yan Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Pengpeng Gao
- Department of Preventive Treatment, Ningxia Integrated Chinese and Western Medicine Hospital, Yinchuan, 750004, China
| | - Zicong Wu
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhaxicao He
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Bing Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinyun Tian
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Han Gao
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Li Cai
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Wentao Li
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
2
|
Ruggieri E, Di Domenico E, Locatelli AG, Isopo F, Damanti S, De Lorenzo R, Milan E, Musco G, Rovere-Querini P, Cenci S, Vénéreau E. HMGB1, an evolving pleiotropic protein critical for cellular and tissue homeostasis: Role in aging and age-related diseases. Ageing Res Rev 2024; 102:102550. [PMID: 39427887 DOI: 10.1016/j.arr.2024.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Aging is a universal biological process characterized by a progressive, cumulative decline in homeostatic capabilities and physiological functions, which inevitably increases vulnerability to diseases. A number of molecular pathomechanisms and hallmarks of aging have been recognized, yet we miss a thorough understanding of their complex interconnectedness. This review explores the molecular and cellular mechanisms underlying human aging, with a focus on the multiple roles of high mobility group Box 1 protein (HMGB1), the archetypal damage-associated molecular pattern (DAMP) molecule. In the nucleus, this non-histone chromatin-associated protein functions as a DNA chaperone and regulator of gene transcription, influencing DNA structure and gene expression. Moreover, this versatile protein can translocate to the cytoplasm to orchestrate other processes, such as autophagy, or be unconventionally secreted into the extracellular environment, where it acts as a DAMP, combining inflammatory and regenerative properties. Notably, lower expression of HMGB1 within the cell and its heightened extracellular release have been associated with diverse age-associated traits, making it a suitable candidate as a universal biomarker of aging. In this review, we outline the evidence implicating HMGB1 in aging, also in light of an evolutionary perspective on its functional pleiotropy, and propose critical issues that need to be addressed to gauge the value of HMGB1 as a potential biomarker across age-related diseases and therapeutic target to promote healthy longevity.
Collapse
Affiliation(s)
- Elena Ruggieri
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Erika Di Domenico
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Flavio Isopo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Enrico Milan
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Patrizia Rovere-Querini
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| | - Emilie Vénéreau
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| |
Collapse
|
3
|
Nixon RA, Rubinsztein DC. Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol 2024; 25:926-946. [PMID: 39107446 DOI: 10.1038/s41580-024-00757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy-lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic-lysosomal function in neuronal health and disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
4
|
Qi LFR, Liu Y, Liu S, Xiang L, Liu Z, Liu Q, Zhao JQ, Xu X. Phillyrin promotes autophagosome formation in A53T-αSyn-induced Parkinson's disease model via modulation of REEP1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155952. [PMID: 39178680 DOI: 10.1016/j.phymed.2024.155952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 08/10/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND The preservation of autophagosome formation presents a promising strategy for tackling neurological disorders, such as Parkinson's disease (PD). Mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) serve not only as a focal point linked to various neurological disorders but also play a crucial role in supporting the biogenesis of autophagosomes. PURPOSE This investigation aimed to elucidate the neuroprotective properties of phillyrin against PD and its underlying mechanisms in promoting autophagosome formation. METHODS ER and mitochondria co-localization was assessed via fluorescent staining. Annexin V-fluorescein isothiocyanate (FITC) fluorescence was employed to quantify accessible cardiolipin (CL) on mitochondrial surfaces. The levels of CL within the MAM fraction of SH-SY5Y cells were evaluated using a CL probe assay kit. Monodansylcadaverine staining was utilized to detect autophagosome formation in SH-SY5Y cells. In an A53T-alpha-synuclein (αSyn)-induced PD mouse model, the anti-PD properties of phillyrin were assessed using open field, pole climbing, and rotarod tests, as well as immunohistochemistry staining of TH+ neurons in the brain sections. RESULTS In A53T-αSyn-treated SH-SY5Y cells, phillyrin facilitated autophagosome formation by suppressing CL externalization and restoring MAM integrity. Phillyrin enhanced the localization of receptor expression-enhancing protein 1 (REEP1) within MAM and mitochondria, bolstering MAM formation. Increased REEP1 levels in mitochondria, attributed to phillyrin, enhanced the interaction between REEP1 and NDPK-D, thereby reducing CL externalization. Furthermore, phillyrin exhibited a dose-dependent enhancement of motor function in mice, accompanied by an increase in the abundance of dopaminergic neurons within the substantia nigra. CONCLUSIONS These findings illuminate phillyrin's ability to enhance MAM formation through upregulation of REEP1 expression within MAM, while concurrently attenuating CL externalization via the REEP1-NDPK-D interaction. These mechanisms bolster autophagosome biogenesis, offering resilience against A53T-αSyn-induced PD. Thus, our study advances the understanding of phillyrin's complex mechanisms and underscores its potential as a therapeutic approach for PD, opening new avenues in natural product pharmacology.
Collapse
Affiliation(s)
- Li-Feng-Rong Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Yuci Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lin Xiang
- Department of Translational Medicine Research Institute, Jiangsu Yifengrong Biotechnology Co., Ltd., Nanjing, Jiangsu, China
| | - Zhiyuan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qingling Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China.
| |
Collapse
|
5
|
Zheng Y, Zhou Z, Liu M, Chen Z. Targeting selective autophagy in CNS disorders by small-molecule compounds. Pharmacol Ther 2024; 263:108729. [PMID: 39401531 DOI: 10.1016/j.pharmthera.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/27/2024]
Abstract
Autophagy functions as the primary cellular mechanism for clearing unwanted intracellular contents. Emerging evidence suggests that the selective elimination of intracellular organelles through autophagy, compared to the increased bulk autophagic flux, is crucial for the pathological progression of central nervous system (CNS) disorders. Notably, autophagic removal of mitochondria, known as mitophagy, is well-understood in an unhealthy brain. Accumulated data indicate that selective autophagy of other substrates, including protein aggregates, liposomes, and endoplasmic reticulum, plays distinctive roles in various pathological stages. Despite variations in substrates, the molecular mechanisms governing selective autophagy can be broadly categorized into two types: ubiquitin-dependent and -independent pathways, both of which can be subjected to regulation by small-molecule compounds. Notably, natural products provide the remarkable possibility for future structural optimization to regulate the highly selective autophagic clearance of diverse substrates. In this context, we emphasize the selectivity of autophagy in regulating CNS disorders and provide an overview of chemical compounds capable of modulating selective autophagy in these disorders, along with the underlying mechanisms. Further exploration of the functions of these compounds will in turn advance our understanding of autophagic contributions to brain disorders and illuminate precise therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mengting Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
6
|
Cibulka M, Brodnanova M, Halasova E, Kurca E, Kolisek M, Grofik M. The Role of Magnesium in Parkinson's Disease: Status Quo and Implications for Future Research. Int J Mol Sci 2024; 25:8425. [PMID: 39125993 PMCID: PMC11312984 DOI: 10.3390/ijms25158425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Neurodegenerative diseases represent an increasing economic, social, and, above all, medical burden worldwide. The second most prevalent disease in this category is Parkinson's disease, surpassed only by Alzheimer's. It is a treatable but still incurable systemic disease with a pathogenesis that has not yet been elucidated. Several theories are currently being developed to explain the causes and progression of Parkinson's disease. Magnesium is one of the essential macronutrients and is absolutely necessary for life as we know it. The magnesium cation performs several important functions in the cell in the context of energetic metabolism, substrate metabolism, cell signalling, and the regulation of the homeostasis of other ions. Several of these cellular processes have been simultaneously described as being disrupted in the development and progression of Parkinson's disease. The relationship between magnesium homeostasis and the pathogenesis of Parkinson's disease has received little scientific attention to date. The aim of this review is to summarise and critically evaluate the current state of knowledge on the possible role of magnesium in the pathogenesis of Parkinson's disease and to outline possible future directions for research in this area.
Collapse
Affiliation(s)
- Michal Cibulka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Maria Brodnanova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Egon Kurca
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Martin Kolisek
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Milan Grofik
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| |
Collapse
|
7
|
Chen L, Liu Y, Xie J. The beneficial pharmacological effects of Uncaria rhynchophylla in neurodegenerative diseases: focus on alkaloids. Front Pharmacol 2024; 15:1436481. [PMID: 39170707 PMCID: PMC11336414 DOI: 10.3389/fphar.2024.1436481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
With the intensification of aging population, the prevention or treatment of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease, has drawn more and more attention. As a long used traditional Chinese medicine, Uncaria rhynchophylla (Miq.) Jacks., named Gouteng in Chinese, has been reported to have an effective neuroprotective role in neurodegenerative diseases. In this review, the beneficial pharmacological effects and signaling pathways of herbal formulas containing U. rhynchophylla, especially major compounds identified from U. rhynchophylla, such as corynoxine B, corynoxine, rhynchophylline, and isorhynchophylline, in neurodegenerative diseases, were summarized, which not only provide an overview of U. rhynchophylla for the prevention or treatment of neurodegenerative diseases but also give some perspective to the development of new drugs from traditional Chinese medicine.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Guan XJ, Deng ZQ, Liu J, Su CF, Tong BCK, Zhu Z, Sreenivasmurthy SG, Kan YX, Lu KJ, Chu CPK, Pi RB, Cheung KH, Iyaswamy A, Song JX, Li M. Corynoxine promotes TFEB/TFE3-mediated autophagy and alleviates Aβ pathology in Alzheimer's disease models. Acta Pharmacol Sin 2024; 45:900-913. [PMID: 38225393 PMCID: PMC11053156 DOI: 10.1038/s41401-023-01197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/09/2023] [Indexed: 01/17/2024] Open
Abstract
Autophagy impairment is a key factor in Alzheimer's disease (AD) pathogenesis. TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) are nuclear transcription factors that regulate autophagy and lysosomal biogenesis. We previously showed that corynoxine (Cory), a Chinese medicine compound, protects neurons from Parkinson's disease (PD) by activating autophagy. In this study, we investigated the effect of Cory on AD models in vivo and in vitro. We found that Cory improved learning and memory function, increased neuronal autophagy and lysosomal biogenesis, and reduced pathogenic APP-CTFs levels in 5xFAD mice model. Cory activated TFEB/TFE3 by inhibiting AKT/mTOR signaling and stimulating lysosomal calcium release via transient receptor potential mucolipin 1 (TRPML1). Moreover, we demonstrated that TFEB/TFE3 knockdown abolished Cory-induced APP-CTFs degradation in N2aSwedAPP cells. Our findings suggest that Cory promotes TFEB/TFE3-mediated autophagy and alleviates Aβ pathology in AD models.
Collapse
Affiliation(s)
- Xin-Jie Guan
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Zhi-Qiang Deng
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Jia Liu
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Cheng-Fu Su
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Benjamin Chun-Kit Tong
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhou Zhu
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Sravan Gopalkrishnashetty Sreenivasmurthy
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yu-Xuan Kan
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Ke-Jia Lu
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Carol Pui-Kei Chu
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Rong-Biao Pi
- School of Medicine, Sun Yat-sen University (Shenzhen), Shenzhen, 518107, China
| | - King-Ho Cheung
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China.
| | - Ju-Xian Song
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Min Li
- Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research (CPDR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China.
| |
Collapse
|
9
|
Nakamura T, Sugeno N, Hasegawa T, Ikeda K, Yoshida S, Ishiyama S, Sato K, Takeda A, Aoki M. Alpha-synuclein promotes PRMT5-mediated H4R3me2s histone methylation by interacting with the BAF complex. FEBS J 2024; 291:1892-1908. [PMID: 38105619 DOI: 10.1111/febs.17037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/07/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
α-Synuclein (αS) is a key molecule in the pathomechanism of Parkinson's disease. Most studies on αS to date have focused on its function in the neuronal cytosol, but its action in the nucleus has also been postulated. Indeed, several lines of evidence indicate that overexpressed αS leads to epigenomic alterations. To clarify the functional role of αS in the nucleus and its pathological significance, HEK293 cells constitutively expressing αS were used to screen for nuclear proteins that interact with αS by nanoscale liquid chromatography/tandem mass spectrometry. Interactome analysis of the 229 identified nuclear proteins revealed that αS interacts with the BRG1-associated factor (BAF) complex, a family of multi-subunit chromatin remodelers important for neurodevelopment, and protein arginine methyltransferase 5 (PRMT5). Subsequent transcriptomic analysis also suggested a functional link between αS and the BAF complex. Based on these results, we analyzed the effect of αS overexpression on the BAF complex in neuronally differentiated SH-SY5Y cells and found that induction of αS disturbed the BAF maturation process, leading to a global increase in symmetric demethylation of histone H4 on arginine 3 (H4R3me2s) via enhanced BAF-PRMT5 interaction. Chromatin immunoprecipitation sequencing confirmed accumulated H4R3me2s methylation near the transcription start site of the neuronal cell adhesion molecule (NRCAM) gene, which has roles during neuronal differentiation. Transcriptional analyses confirmed the negative regulation of NRCAM by αS and PRMT5, which was reconfirmed by multiple datasets in the Gene Expression Omnibus (GEO) database. Taken together, these findings suggest that the enhanced binding of αS to the BAF complex and PRMT5 may cooperatively affect the neuronal differentiation process.
Collapse
Affiliation(s)
- Takaaki Nakamura
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Miyagi National Hospital, Watari, Japan
| | - Naoto Sugeno
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensho Ikeda
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Yoshida
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Yonezawa Hospital, Japan
| | - Shun Ishiyama
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuki Sato
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Japan
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
10
|
Hussain MS, Moglad E, Afzal M, Sharma S, Gupta G, Sivaprasad GV, Deorari M, Almalki WH, Kazmi I, Alzarea SI, Shahwan M, Pant K, Ali H, Singh SK, Dua K, Subramaniyan V. Autophagy-associated non-coding RNAs: Unraveling their impact on Parkinson's disease pathogenesis. CNS Neurosci Ther 2024; 30:e14763. [PMID: 38790149 PMCID: PMC11126788 DOI: 10.1111/cns.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a degenerative neurological condition marked by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta. The precise etiology of PD remains unclear, but emerging evidence suggests a significant role for disrupted autophagy-a crucial cellular process for maintaining protein and organelle integrity. METHODS This review focuses on the role of non-coding RNAs (ncRNAs) in modulating autophagy in PD. We conducted a comprehensive review of recent studies to explore how ncRNAs influence autophagy and contribute to PD pathophysiology. Special attention was given to the examination of ncRNAs' regulatory impacts in various PD models and patient samples. RESULTS Findings reveal that ncRNAs are pivotal in regulating key processes associated with PD progression, including autophagy, α-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation. Dysregulation of specific ncRNAs appears to be closely linked to these pathogenic processes. CONCLUSION ncRNAs hold significant therapeutic potential for addressing autophagy-related mechanisms in PD. The review highlights innovative therapeutic strategies targeting autophagy-related ncRNAs and discusses the challenges and prospective directions for developing ncRNA-based therapies in clinical practice. The insights from this study underline the importance of ncRNAs in the molecular landscape of PD and their potential in novel treatment approaches.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical SciencesJaipur National UniversityJaipurRajasthanIndia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of CollegesMohaliPunjabIndia
| | - Gaurav Gupta
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
- Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
| | - G. V. Sivaprasad
- Department of Basic Science & HumanitiesRaghu Engineering CollegeVisakhapatnamIndia
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaAl‐JoufSaudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health SciencesAjman UniversityAjmanUnited Arab Emirates
| | - Kumud Pant
- Graphic Era (Deemed to be University)DehradunIndia
- Graphic Era Hill UniversityDehradunIndia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of PharmacologyKyrgyz State Medical CollegeBishkekKyrgyzstan
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
11
|
Hou G, Hu W, Sang Y, Gan X, Xu H, Hu Q, Cao X. Corynoxine triggers cell death via activating PP2A and regulating AKT-mTOR/GSK3β axes in NSCLC. Biochem Pharmacol 2024; 222:116110. [PMID: 38460908 DOI: 10.1016/j.bcp.2024.116110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
This study investigates the anticancer activity and pharmacological mechanisms of Corynoxine (Cory) in non-small cell lung cancer (NSCLC). Cory, a natural product derived from the Chinese herbal medicine Uncaria rhynchophylla, demonstrates promising pharmacological activity. Cell proliferation and viability were evaluated via MTT and colony formation assays. Flow cytometry was employed to analyze cell apoptosis, cycle distribution, and mitochondrial membrane potential. Autophagy was detected using fluorescence microscopy and electron microscopy. Western blotting, protein overexpression, gene knockdown, co-immunoprecipitation, and bioinformatics characterized Cory's impact on signaling pathways. The research indicates that Cory inhibits the proliferation of NSCLC cells in vivo and in vitro. Cory enhances PP2A activity, inhibits the AKT/mTOR signaling pathway triggering autophagy, while suppressing the AKT/GSK3β signaling pathway to induce cellular apoptosis in NSCLC. Notably, the activation of PP2A plays a crucial role in Cory's antitumor effects by inhibiting AKT. In vivo experiments validated Cory's efficacy in NSCLC treatment. These findings highlight the promising role of Cory as a lead compound for drug development in NSCLC therapy, providing a viable option for addressing this challenging disease.
Collapse
Affiliation(s)
- Guoqing Hou
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Weihua Hu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yazhou Sang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaocai Gan
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hui Xu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qiongying Hu
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Xuan Cao
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
12
|
Ji J, Cheng X, Du R, Xie Y, Zhang Y. Advances in research on autophagy mechanisms in resistance to endometrial cancer treatment. Front Oncol 2024; 14:1364070. [PMID: 38601753 PMCID: PMC11004244 DOI: 10.3389/fonc.2024.1364070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Administering medication is a crucial strategy in improving the prognosis for advanced endometrial cancer. However, the rise of drug resistance often leads to the resurgence of cancer or less-than-ideal treatment outcomes. Prior studies have shown that autophagy plays a dual role in the development and progression of endometrial cancer, closely associated with drug resistance. As a result, concentrating on autophagy and its combination with medical treatments might be a novel approach to improve the prognosis for endometrial cancer. This study explores the impact of autophagy on drug resistance in endometrial cancer, investigates its core mechanisms, and scrutinizes relevant treatments aimed at autophagy, aiming to illuminate the issue of treatment resistance in advanced endometrial cancer.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
- Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xi Cheng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
- Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Rong Du
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
- Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yuanyuan Xie
- Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
13
|
Li B, Jiang Y, Wang T, Liu W, Chen X, He J, Du Z, Yang R, Miao D, Li Y. MicroRNA-217-5p triggers dopaminergic neuronal degeneration via autophagy activation under Atrazine exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122811. [PMID: 37890694 DOI: 10.1016/j.envpol.2023.122811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/30/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Atrazine (ATR) is a widely used agricultural herbicide, and its accumulation in soil and water can cause various environmental health problems. ATR has neurotoxic effects on dopaminergic neurons, which can lead to a Parkinson's disease (PD)-like syndrome. Epigenetics regulates gene expression dynamically through DNA methylation, histone post-translational modification, microRNA (miRNA) interaction, and RNA methylation. MicroRNA (miRNA), representing one of the primary epigenetic mechanisms responsible for regulating gene expression, plays a crucial role in maintaining normal cellular function, while dysregulation of miRNA expression has been observed in PD. This study aims to investigate the regulatory mechanisms of miRNA in ATR exposure. The results show that ATR-exposure significantly upregulates the expression level of miR-217-5p. Both miR-217-5p overexpression and ATR exposure is able to trigger the autophagy process and apoptosis. Conversely, inhibiting the expression of miR-217-5p can reverse the levels of ATR-induced autophagy and apoptosis. Moreover, ATR causes damage to dopaminergic neurons, as indicated by the altered expression of tyrosine hydroxylase and α-synuclein. Taken together, these results suggest that ATR-induced autophagy can accelerate the progression of neurodegenerative diseases and that miR-217-5p is probably an important target involved in ATR-induced dopaminergic damage, shedding important light on the development of a novel strategy for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Bingyun Li
- College of Public Health, Shantou University, Shantou, 515063, Guangdong Province, China
| | - Yujia Jiang
- College of Public Health, Shantou University, Shantou, 515063, Guangdong Province, China; Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Ting Wang
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Weiwei Liu
- Weihai Municipal Hospital, Weihai, 264299, Shandong Province, China
| | - Xiaojuan Chen
- College of Public Health, Shantou University, Shantou, 515063, Guangdong Province, China
| | - Jinyi He
- College of Public Health, Shantou University, Shantou, 515063, Guangdong Province, China
| | - Zeyu Du
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Ruijiao Yang
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Danxiu Miao
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yanshu Li
- College of Public Health, Shantou University, Shantou, 515063, Guangdong Province, China.
| |
Collapse
|
14
|
Goyal A, Agrawal A, Dubey N, Verma A. High Mobility Group Box 1 Protein: A Plausible Therapeutic Molecular Target in Parkinson's Disease. Curr Pharm Biotechnol 2024; 25:937-943. [PMID: 37670710 DOI: 10.2174/1389201025666230905092218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder that exerts a broad variety of detrimental effects on people's health. Accumulating evidence suggests that mitochondrial dysfunction, neuroinflammation, α-synuclein aggregation and autophagy dysfunction may all play a role in the development of PD. However, the molecular mechanisms behind these pathophysiological processes remain unknown. Currently, research in PD has focussed on high mobility group box 1 (HMGB1), and different laboratory approaches have shown promising outcomes to some level for blocking HMGB1. Given that HMGB1 regulates mitochondrial dysfunction, participates in neuroinflammation, and modulates autophagy and apoptosis, it is hypothesised that HMGB1 has significance in the onset of PD. In the current review, research targeting multiple roles of HMGB1 in PD pathology was integrated, and the issues that need future attention for targeted therapeutic approaches are mentioned.
Collapse
Affiliation(s)
- Ahsas Goyal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
15
|
Iyaswamy A, Thakur A, Guan XJ, Krishnamoorthi S, Fung TY, Lu K, Gaurav I, Yang Z, Su CF, Lau KF, Zhang K, Ng RCL, Lian Q, Cheung KH, Ye K, Chen HJ, Li M. Fe65-engineered neuronal exosomes encapsulating corynoxine-B ameliorate cognition and pathology of Alzheimer's disease. Signal Transduct Target Ther 2023; 8:404. [PMID: 37867176 PMCID: PMC10590775 DOI: 10.1038/s41392-023-01657-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/31/2023] [Accepted: 09/16/2023] [Indexed: 10/24/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the predominant impairment of neurons in the hippocampus and the formation of amyloid plaques, hyperphosphorylated tau protein, and neurofibrillary tangles in the brain. The overexpression of amyloid-β precursor protein (APP) in an AD brain results in the binding of APP intracellular domain (AICD) to Fe65 protein via the C-terminal Fe65-PTB2 interaction, which then triggers the secretion of amyloid-β and the consequent pathogenesis of AD. Apparently, targeting the interaction between APP and Fe65 can offer a promising therapeutic approach for AD. Recently, exosome, a type of extracellular vesicle with diameter around 30-200 nm, has gained much attention as a potential delivery tool for brain diseases, including AD, due to their ability to cross the blood-brain barrier, their efficient uptake by autologous cells, and their ability to be surface-modified with target-specific receptor ligands. Here, the engineering of hippocampus neuron cell-derived exosomes to overexpress Fe65, enabled the development of a novel exosome-based targeted drug delivery system, which carried Corynoxine-B (Cory-B, an autophagy inducer) to the APP overexpressed-neuron cells in the brain of AD mice. The Fe65-engineered HT22 hippocampus neuron cell-derived exosomes (Fe65-EXO) loaded with Cory-B (Fe65-EXO-Cory-B) hijacked the signaling and blocked the natural interaction between Fe65 and APP, enabling APP-targeted delivery of Cory-B. Notably, Fe65-EXO-Cory-B induced autophagy in APP-expressing neuronal cells, leading to amelioration of the cognitive decline and pathogenesis in AD mice, demonstrating the potential of Fe65-EXO-Cory-B as an effective therapeutic intervention for AD.
Collapse
Affiliation(s)
- Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.
| | - Xin-Jie Guan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Senthilkumar Krishnamoorthi
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Tsz Yan Fung
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Kejia Lu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Cheng-Fu Su
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kui Zhang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Roy Chun-Laam Ng
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Qizhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - King-Ho Cheung
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huanhuan Joyce Chen
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
16
|
Nechushtai L, Frenkel D, Pinkas-Kramarski R. Autophagy in Parkinson's Disease. Biomolecules 2023; 13:1435. [PMID: 37892117 PMCID: PMC10604695 DOI: 10.3390/biom13101435] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Parkinson's disease (PD) is a devastating disease associated with accumulation of α-synuclein (α-Syn) within dopaminergic neurons, leading to neuronal death. PD is characterized by both motor and non-motor clinical symptoms. Several studies indicate that autophagy, an important intracellular degradation pathway, may be involved in different neurodegenerative diseases including PD. The autophagic process mediates the degradation of protein aggregates, damaged and unneeded proteins, and organelles, allowing their clearance, and thereby maintaining cell homeostasis. Impaired autophagy may cause the accumulation of abnormal proteins. Incomplete or impaired autophagy may explain the neurotoxic accumulation of protein aggregates in several neurodegenerative diseases including PD. Indeed, studies have suggested the contribution of impaired autophagy to α-Syn accumulation, the death of dopaminergic neurons, and neuroinflammation. In this review, we summarize the recent literature on the involvement of autophagy in PD pathogenesis.
Collapse
Affiliation(s)
| | | | - Ronit Pinkas-Kramarski
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, Tel-Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel; (L.N.); (D.F.)
| |
Collapse
|
17
|
Chen R, Zou J, Kang R, Tang D. The Redox Protein High-Mobility Group Box 1 in Cell Death and Cancer. Antioxid Redox Signal 2023; 39:569-590. [PMID: 36999916 DOI: 10.1089/ars.2023.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Significance: As a redox-sensitive protein, high-mobility group box 1 (HMGB1) is implicated in regulating stress responses to oxidative damage and cell death, which are closely related to the pathology of inflammatory diseases, including cancer. Recent Advances: HMGB1 is a nonhistone nuclear protein that acts as a deoxyribonucleic acid chaperone to control chromosomal structure and function. HMGB1 can also be released into the extracellular space and function as a damage-associated molecular pattern protein during cell death, including during apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis, alkaliptosis, and cuproptosis. Once released, HMGB1 binds to membrane receptors to shape immune and metabolic responses. In addition to subcellular localization, the function and activity of HMGB1 also depend on its redox state and protein posttranslational modifications. Abnormal HMGB1 plays a dual role in tumorigenesis and anticancer therapy (e.g., chemotherapy, radiation therapy, and immunotherapy) depending on the tumor types and stages. Critical Issues: A comprehensive understanding of the role of HMGB1 in cellular redox homeostasis is important for deciphering normal cellular functions and pathological manifestations. In this review, we discuss compartmental-defined roles of HMGB1 in regulating cell death and cancer. Understanding these advances may help us develop potential HMGB1-targeting drugs or approaches to treat oxidative stress-related diseases or pathological conditions. Future Directions: Further studies are required to dissect the mechanism by which HMGB1 maintains redox homeostasis under different stress conditions. A multidisciplinary effort is also required to evaluate the potential applications of precisely targeting the HMGB1 pathway in human health and disease. Antioxid. Redox Signal. 39, 569-590.
Collapse
Affiliation(s)
- Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis; Central South University, Changsha, China
- Department of Infectious Diseases; Xiangya Hospital, Central South University, Changsha, China
| | - Ju Zou
- Hunan Key Laboratory of Viral Hepatitis; Central South University, Changsha, China
- Department of Infectious Diseases; Xiangya Hospital, Central South University, Changsha, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Gao M, Xiao H, Liang Y, Cai H, Guo X, Lin J, Zhuang S, Xu J, Ye S. The Hyperproliferation Mechanism of Cholesteatoma Based on Proteomics: SNCA Promotes Autophagy-Mediated Cell Proliferation Through the PI3K/AKT/CyclinD1 Signaling Pathway. Mol Cell Proteomics 2023; 22:100628. [PMID: 37532176 PMCID: PMC10495652 DOI: 10.1016/j.mcpro.2023.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023] Open
Abstract
Cholesteatoma is a chronic inflammatory ear disease with abnormal keratinized epithelium proliferation and tissue damage. However, the mechanism of keratinized epithelium hyperproliferation in cholesteatoma remains unknown. Hence, our study sought to shed light on mechanisms affecting the pathology and development of cholesteatoma, which could help develop adjunctive treatments. To investigate molecular changes in cholesteatoma pathogenesis, we analyzed clinical cholesteatoma specimens and paired ear canal skin with mass spectrometry-based proteomics and bioinformatics. From our screen, alpha-synuclein (SNCA) was overexpressed in middle ear cholesteatoma and might be a key hub protein associated with inflammation, proliferation, and autophagy in cholesteatoma. SNCA was more sensitive to lipopolysaccharide-induced inflammation, and autophagy marker increase was accompanied by autophagy activation in middle ear cholesteatoma tissues. Overexpression of SNCA activated autophagy and promoted cell proliferation and migration, especially under lipopolysaccharide inflammatory stimulation. Moreover, inhibiting autophagy impaired SNCA-mediated keratinocyte proliferation and corresponded with inhibition of the PI3K/AKT/CyclinD1 pathways. Also, 740Y-P, a PI3K activator reversed the suppression of autophagy and PI3K signaling by siATG5 in SNCA-overexpressing cells, which restored proliferative activity. Besides, knockdown of SNCA in RHEK-1 and HaCaT cells or knockdown of PI3K in RHEK-1 and HaCaT cells overexpressing SNCA both resulted in attenuated cell proliferation. Our studies indicated that SNCA overexpression in cholesteatoma might maintain the proliferative ability of cholesteatoma keratinocytes by promoting autophagy under inflammatory conditions. This suggests that dual inhibition of SNCA and autophagy may be a promising new target for treating cholesteatoma.
Collapse
Affiliation(s)
- Miao Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Heng Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yonglan Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huimin Cai
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaojing Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jianwei Lin
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Suling Zhuang
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jianhua Xu
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China.
| | - Shengnan Ye
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
19
|
Harraz MM. Selective dopaminergic vulnerability in Parkinson's disease: new insights into the role of DAT. Front Neurosci 2023; 17:1219441. [PMID: 37694119 PMCID: PMC10483232 DOI: 10.3389/fnins.2023.1219441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
One of the hallmarks of Parkinson's disease (PD) is the progressive loss of dopaminergic neurons and associated dopamine depletion. Several mechanisms, previously considered in isolation, have been proposed to contribute to the pathophysiology of dopaminergic degeneration: dopamine oxidation-mediated neurotoxicity, high dopamine transporter (DAT) expression density per neuron, and autophagy-lysosome pathway (ALP) dysfunction. However, the interrelationships among these mechanisms remained unclear. Our recent research bridges this gap, recognizing autophagy as a novel dopamine homeostasis regulator, unifying these concepts. I propose that autophagy modulates dopamine reuptake by selectively degrading DAT. In PD, ALP dysfunction could increase DAT density per neuron, and enhance dopamine reuptake, oxidation, and neurotoxicity, potentially contributing to the progressive loss of dopaminergic neurons. This integrated understanding may provide a more comprehensive view of aspects of PD pathophysiology and opens new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Maged M. Harraz
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
Shen DF, Qi HP, Zhang WN, Sang WX. Resveratrol Promotes Autophagy to Improve neuronal Injury in Parkinson's Disease by Regulating SNHG1/miR-128-3p/SNCA Axis. Brain Sci 2023; 13:1124. [PMID: 37626481 PMCID: PMC10452706 DOI: 10.3390/brainsci13081124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is seriously threatening the health and life quality of the elderly, who have a high incidence and high disability rate. Resveratrol (RES) was reported to play a protective role in PD. However, the functions and potential mechanism of RES in PD remain unclear, which need to be further explored. METHODS Human neuroblastoma cells (SH-SY5Y and SK-N-SH) were subjected to 1-Methyl-4-phenylpyridium (MPP+) induction to construct a cell model of PD. Cell viability was evaluated using CCK-8. The gene expression was evaluated using qRT-PCR and western blot. Luciferase activity assay and RIP were performed to validate interactions among SNHG1, miR-128-3p and SNCA. RESULTS Our results exhibited that RES reduced SNHG1 and SNCA expression but elevated miR-128-3p expression in human neuroblastoma cells upon MPP+ induction. Functionally, RES resulted in the promotion of cell autophagy in MPP+-induced human neuroblastoma cells, while these influences were abolished by SNHG1 overexpression. Mechanistically, SNHG1 could indirectly elevate SNCA expression via sponging miR-128-3p. Moreover, SNCA overexpression reversed SNHG1 silencing-induced cell autophagy in MPP+-induced human neuroblastoma cells upon RES pre-incubation. CONCLUSIONS RES prevented MPP+-induced repression of cell autophagy through inhibiting the SNHG1/miR-128-3p/SNCA axis, suggesting that RES might play a preventive effect on PD progression.
Collapse
Affiliation(s)
- Dong-Fang Shen
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, No.37, Nangang District, Harbin 150001, China; (H.-P.Q.); (W.-N.Z.); (W.-X.S.)
| | | | | | | |
Collapse
|
21
|
Liu S, Xu S, Liu S, Chen H. Importance of DJ-1 in autophagy regulation and disease. Arch Biochem Biophys 2023:109672. [PMID: 37336341 DOI: 10.1016/j.abb.2023.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/28/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Autophagy is a highly conserved biological process that has evolved across evolution. It can be activated by various external stimuli including oxidative stress, amino acid starvation, infection, and hypoxia. Autophagy is the primary mechanism for preserving cellular homeostasis and is implicated in the regulation of metabolism, cell differentiation, tolerance to starvation conditions, and resistance to aging. As a multifunctional protein, DJ-1 is commonly expressed in vivo and is associated with a variety of biological processes. Its most widely studied role is its function as an oxidative stress sensor that inhibits the production of excessive reactive oxygen species (ROS) in the mitochondria and subsequently the cellular damage caused by oxidative stress. In recent years, many studies have identified DJ-1 as another important factor regulating autophagy; it regulates autophagy in various ways, most commonly by regulating the oxidative stress response. In particular, DJ-1-regulated autophagy is involved in cancer progression and plays a key role in alleviating neurodegenerative diseases(NDS) and defective reperfusion diseases. It could serve as a potential target for the regulation of autophagy and participate in disease treatment as a meaningful modality. Therefore, exploring DJ-1-regulated autophagy could provide new avenues for future disease treatment.
Collapse
Affiliation(s)
- Shiyi Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China; Second Clinical Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Sheng Xu
- Second Clinical Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Song Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Heping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
22
|
JIANG B, LI X, WANG M, LI GX, REN PW, WANG YQ, XIN SJ, QIN LF. Trehalose attenuates abdominal aortic aneurysm formation by inducing autophagy in smooth muscle cells. J Geriatr Cardiol 2023; 20:214-222. [PMID: 37091261 PMCID: PMC10114191 DOI: 10.26599/1671-5411.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Trehalose is a naturally occurring disaccharide, which has been identified as an autophagy inducer and exhibits protective effect in cardiovascular diseases such as myocardial infraction and atherosclerosis. However, the functional role of trehalose in abdominal aortic aneurysm (AAA) remains undefined. METHODS To study the effect of trehalose in AAA, trehalose (1 g/kg per day) were given for 14 continuous days in a mouse model of elastase-induced abdominal aortic aneurysm. On day 14, ultrasound was performed to measure aortic diameter before the abdominal aortas were harvested and processed for further analysis. Verhoeff-Van Gieson staining and TUNEL staining were performed on paraffin sections to evaluate vascular histology and apoptosis, immunofluorescence staining and Western-blot were performed to evaluate expression of autophagy markers. RESULTS Echocardiography and in situ pictures demonstrated that trehalose attenuated infrarenal aorta dilation. Verhoeff-Van Gieson staining showed elastin degradation was improved in trehalose-treated group. Compared with vehicle-treated mice, trehalose treatment restored smooth muscle cell contractile phenotype with increased α-SMA, Calponin and Myh11 expression. Furthermore, trehalose also attenuated cell apoptosis and leukocytes infiltration. Importantly, trehalose induced autophagy with decrease SQSTM1/p62 accumulation, increased lamp2 expression and LC3B conversion. CONCLUSION Trehalose attenuated AAA progression with decreased inflammation and restored SMC contractile phenotype by inducing autophagy. These results demonstrated the therapeutic potential of trehalose in AAA.
Collapse
Affiliation(s)
- Bo JIANG
- Department of Vascular Surgery, the First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, China
| | - Xuan LI
- Department of Vascular Surgery, the First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, China
| | - Mo WANG
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Guang-Xin LI
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Peng-Wei REN
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Yu-Qi WANG
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Shi-Jie XIN
- Department of Vascular Surgery, the First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, China
- (XIN SJ)
| | - Ling-Feng QIN
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- (QIN LF)
| |
Collapse
|
23
|
Mo J, Hu J, Cheng X. The role of high mobility group box 1 in neuroinflammatory related diseases. Biomed Pharmacother 2023; 161:114541. [PMID: 36963363 DOI: 10.1016/j.biopha.2023.114541] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a ubiquitous and highly conserved non-histone DNA-binding protein with different biological functions according to its subcellular localization. It is widely believed that HMGB1, which is released into the extracellular space, plays a key role in the inflammatory response. In recent years, numerous studies have shown that the development of various neurological diseases such as epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), cerebrovascular disease and traumatic brain injury (TBI) are inextricably linked to inflammation. We will review the mechanisms of HMGB1 and its receptors in nervous system inflammation to provide a basis for further development of new HMGB1-based therapies.
Collapse
Affiliation(s)
- Jialu Mo
- The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, China
| | - Jiao Hu
- The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, China
| | - Xianglin Cheng
- The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, China.
| |
Collapse
|
24
|
Intracellular DAMPs in Neurodegeneration and Their Role in Clinical Therapeutics. Mol Neurobiol 2023; 60:3600-3616. [PMID: 36859688 DOI: 10.1007/s12035-023-03289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Neuroinflammation is the major implication of neurodegeneration. This is a complex process which initiates from the cellular injury triggering the innate immune system which gives rise to damage-associated molecular patterns (DAMPs) which are also recognized as endogenous danger indicators. These originate from various compartments of the cell under pathological stimulus. These are very popular candidates having their origin in the intracellular compartments and organelles of the cell and may have their site of action itself in the intracellular or at the extracellular spaces. Under the influence of the pathological stimuli, they interact with the pattern-recognition receptor to initiate their pro-inflammatory cascade followed by the cytokine release. This provides a good opportunity for diagnostic and therapeutic interventions creating better conditions for repair and reversal. Since the major contributors arise from the intracellular compartment, in this review, we have attempted to focus on the DAMP molecules arising from the intracellular compartments and their specific roles in the neurodegenerative events explaining their downstream mediators and signaling. Moreover, we have tried to cover the latest interventions in terms of DAMPs as clinical biomarkers which can assist in detecting the disease and also target it to reduce the innate-immune activation response which can help in reducing the sterile neuroinflammation having an integral role in the neurodegenerative processes.
Collapse
|
25
|
Khan MA, Haider N, Singh T, Bandopadhyay R, Ghoneim MM, Alshehri S, Taha M, Ahmad J, Mishra A. Promising biomarkers and therapeutic targets for the management of Parkinson's disease: recent advancements and contemporary research. Metab Brain Dis 2023; 38:873-919. [PMID: 36807081 DOI: 10.1007/s11011-023-01180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Parkinson's disease (PD) is one of the progressive neurological diseases which affect around 10 million population worldwide. The clinical manifestation of motor symptoms in PD patients appears later when most dopaminergic neurons have degenerated. Thus, for better management of PD, the development of accurate biomarkers for the early prognosis of PD is imperative. The present work will discuss the potential biomarkers from various attributes covering biochemical, microRNA, and neuroimaging aspects (α-synuclein, DJ-1, UCH-L1, β-glucocerebrosidase, BDNF, etc.) for diagnosis, recent development in PD management, and major limitations with current and conventional anti-Parkinson therapy. This manuscript summarizes potential biomarkers and therapeutic targets, based on available preclinical and clinical evidence, for better management of PD.
Collapse
Affiliation(s)
- Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murtada Taha
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Sila Katamur (Halugurisuk), Kamrup, Changsari, Assam, 781101, India.
| |
Collapse
|
26
|
Abstract
SIGNIFICANCE As a redox-sensitive protein, high-mobility group box 1 (HMGB1) is implicated in regulating stress responses to oxidative damage and cell death, which are closely related to the pathology of inflammatory diseases, including cancer. RECENT ADVANCES HMGB1 is a non-histone nuclear protein that acts as a DNA chaperone to control chromosomal structure and function. HMGB1 can also be released into the extracellular space and function as a damage-associated molecular pattern protein during cell death, including during apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis, alkaliptosis, and cuproptosis. Once released, HMGB1 binds to membrane receptors to shape immune and metabolic responses. In addition to subcellular localization, the function and activity of HMGB1 also depends on its redox state and protein posttranslational modifications. Abnormal HMGB1 plays a dual role in tumorigenesis and anticancer therapy (e.g., chemotherapy, radiation therapy, and immunotherapy) depending on tumor types and stages. CRITICAL ISSUES A comprehensive understanding of the role of HMGB1 in cellular redox homeostasis is important for deciphering normal cellular functions and pathological manifestations. In this review, we discuss compartmental-defined roles of HMGB1 in regulating cell death and cancer. Understanding these advances may help us develop potential HMGB1-targeting drugs or approaches to treat oxidative stress-related diseases or pathological conditions. FUTURE DIRECTIONS Further studies are required to dissect the mechanism by which HMGB1 maintains redox homeostasis under different stress conditions. A multidisciplinary effort is also required to evaluate the potential applications of precisely targeting the HMGB1 pathway in human health and disease.
Collapse
Affiliation(s)
- Ruochan Chen
- Central South University, 12570, Changsha, Hunan, China;
| | - Ju Zou
- Central South University, 12570, Changsha, Hunan, China;
| | - Rui Kang
- UTSW, 12334, Dallas, Texas, United States;
| | - Doalin Tang
- UTSW, 12334, Surgery, 5323 Harry Hines Blvd, Dallas, Texas, United States, 75390-9096;
| |
Collapse
|
27
|
Zhang ZL, Li YZ, Wu GQ, Li YM, Zhang DD, Wang R. A comprehensive review of phytochemistry, pharmacology and clinical applications of Uncariae Ramulus Cum Uncis. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
28
|
Shang J, Zhao F, Cao Y, Ping F, Wang W, Li Y. HMGB1 mediates lipopolysaccharide-induced macrophage autophagy and pyroptosis. BMC Mol Cell Biol 2023; 24:2. [PMID: 36658496 PMCID: PMC9854035 DOI: 10.1186/s12860-023-00464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Autophagy and pyroptosis of macrophages play important protective or detrimental roles in sepsis. However, the underlying mechanisms remain unclear. High mobility group box protein 1 (HMGB1) is associated with both pyroptosis and autophagy. lipopolysaccharide (LPS) is an important pathogenic factor involved in sepsis. Lentivirus-mediated HMGB1 shRNA was used to inhibit the expression of HMGB1. Macrophages were treated with acetylation inhibitor (AA) to suppress the translocation of HMGB1 from the nucleus to the cytosol. Autophagy and pyroptosis-related protein expressions were detected by Western blot. The levels of caspase-1 activity were detected and the rate of pyroptotic cells was detected by flow cytometry. LPS induced autophagy and pyroptosis of macrophages at different stages, and HMGB1 downregulation decreased LPS-induced autophagy and pyroptosis. Treatment with acetylation inhibitor (anacardic acid) significantly suppressed LPS-induced autophagy, an effect that was not reversed by exogenous HMGB1, suggesting that cytoplasmic HMGB1 mediates LPS-induced autophagy of macrophages. Anacardic acid or an anti-HMGB1 antibody inhibited LPS-induced pyroptosis of macrophages. HMGB1 alone induced pyroptosis of macrophages and this effect was inhibited by anti-HMGB1 antibody, suggesting that extracellular HMGB1 induces macrophage pyroptosis and mediates LPS-induced pyroptosis. In summary, HMGB1 plays different roles in mediating LPS-induced autophagy and triggering pyroptosis according to subcellular localization.
Collapse
Affiliation(s)
- Jiawei Shang
- grid.412528.80000 0004 1798 5117Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, 200233 People’s Republic of China
| | - Feng Zhao
- grid.8547.e0000 0001 0125 2443Department of Critical Care Medicine, Fudan University Huashan Hospital, Shanghai, 200040 China
| | - Yongmei Cao
- grid.412538.90000 0004 0527 0050Department of Critical Care Medicine, School of Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072 China
| | - Feng Ping
- grid.412528.80000 0004 1798 5117Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, 200233 People’s Republic of China
| | - Wei Wang
- grid.412528.80000 0004 1798 5117Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, 200233 People’s Republic of China
| | - Yingchuan Li
- grid.412538.90000 0004 0527 0050Department of Critical Care Medicine, School of Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072 China
| |
Collapse
|
29
|
Tian Y, Chen R, Su Z. HMGB1 is a Potential and Challenging Therapeutic Target for Parkinson's Disease. Cell Mol Neurobiol 2023; 43:47-58. [PMID: 34797463 DOI: 10.1007/s10571-021-01170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/14/2021] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is one of the most common degenerative diseases of the human nervous system and has a wide range of serious impacts on human health and quality of life. Recently, research targeting high mobility group box 1 (HMGB1) in PD has emerged, and a variety of laboratory methods for inhibiting HMGB1 have achieved good results to a certain extent. However, given that HMGB1 undergoes a variety of intracellular modifications and three different forms of extracellular redox, the possible roles of these forms in PD are likely to be different. General inhibition of all forms of HMGB1 is obviously not ideal and has become one of the biggest obstacles in the clinical application of targeting HMGB1. In this review, pure mechanistic research of HMGB1 and in vivo research targeting HMGB1 were combined, the effects of HMGB1 on neurons and immune cell responses in PD are discussed in detail, and the problems that need to be focused on in the future are addressed.
Collapse
Affiliation(s)
- Yu Tian
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Rong Chen
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China. .,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
30
|
Erekat NS. Autophagy and Its Association with Genetic Mutations in Parkinson Disease. Med Sci Monit 2022; 28:e938519. [PMID: 36366737 PMCID: PMC9664771 DOI: 10.12659/msm.938519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 08/07/2023] Open
Abstract
Parkinson disease is the second most common neurodegenerative disorder, affecting 0.1-0.2% of the general population. It is a progressive debilitating disorder caused by degeneration of dopaminergic neurons in the substantia nigra pars compacta. It is characterized by motor and non-motor symptoms. Parkinson disease can be caused by mutations in genes that encode proteins involved in the autophagic process, resulting in impaired autophagy. Indeed, autophagy has been implicated in the pathogenesis of Parkinson disease, particularly because its impairment causes the buildup of proteins. Thus, this review aims to provide an overview of Parkinson disease-related genetic mutations and their association with autophagy impairment in Parkinson disease, which can be helpful in improving the understanding of the pathogenesis of Parkinson disease, illustrating the potential therapeutic implications of agents that can enhance autophagy in Parkinson disease. Additionally, we will highlight the essential need for the development of highly sensitive and specific assays for gene-based diagnostic biomarkers. Finally, we will provide an overview on the potential gene-based therapeutic approaches for Parkinson disease, which have been most advanced and are associated with the most common targets being alpha-synuclein (SNCA), leucine-rich repeat kinase-2 (LRRK2), and glucocerebrosidase (GBA).
Collapse
|
31
|
Ikram FZ, Arulsamy A, Retinasamy T, Shaikh MF. The Role of High Mobility Group Box 1 (HMGB1) in Neurodegeneration: A Systematic Review. Curr Neuropharmacol 2022; 20:2221-2245. [PMID: 35034598 PMCID: PMC9886836 DOI: 10.2174/1570159x20666220114153308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND High mobility group box 1 (HMGB1) protein is a damage-associated molecular pattern (DAMP) that plays an important role in the repair and regeneration of tissue injury. It also acts as a pro-inflammatory cytokine through the activation of toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE), to elicit the neuroinflammatory response. HMGB1 may aggravate several cellular responses, which may lead to pathological inflammation and cellular death. Thus, there have been a considerable amount of research into the pathological role of HMGB1 in diseases. However, whether the mechanism of action of HMGB1 is similar in all neurodegenerative disease pathology remains to be determined. OBJECTIVE Therefore, this systematic review aimed to critically evaluate and elucidate the role of HMGB1 in the pathology of neurodegeneration based on the available literature. METHODS A comprehensive literature search was performed on four databases; EMBASE, PubMed, Scopus, and CINAHL Plus. RESULTS A total of 85 articles were selected for critical appraisal, after subjecting to the inclusion and exclusion criteria in this study. The selected articles revealed that HMGB1 levels were found elevated in most neurodegeneration except in Huntington's disease and Spinocerebellar ataxia, where the levels were found decreased. This review also showcased that HMGB1 may act on distinctive pathways to elicit its pathological response leading to the various neurodegeneration processes/ diseases. CONCLUSION While there have been promising findings in HMGB1 intervention research, further studies may still be required before any HMGB1 intervention may be recommended as a therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Fathimath Zaha Ikram
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia;
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia,Address correspondence to this author at the Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia; Tel/Fax: +60 3 5514 4483; E-mail:
| |
Collapse
|
32
|
Zhu Z, Liu LF, Su CF, Liu J, Tong BCK, Iyaswamy A, Krishnamoorthi S, Sreenivasmurthy SG, Guan XJ, Kan YX, Xie WJ, Zhao CL, Cheung KH, Lu JH, Tan JQ, Zhang HJ, Song JX, Li M. Corynoxine B derivative CB6 prevents Parkinsonian toxicity in mice by inducing PIK3C3 complex-dependent autophagy. Acta Pharmacol Sin 2022; 43:2511-2526. [PMID: 35217810 PMCID: PMC9525707 DOI: 10.1038/s41401-022-00871-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/17/2022] [Indexed: 01/18/2023] Open
Abstract
Increasing evidence shows that autophagy impairment is involved in the pathogenesis and progression of neurodegenerative diseases including Parkinson's disease (PD). We previously identified a natural alkaloid named corynoxine B (Cory B) as a neuronal autophagy inducer. However, its brain permeability is relatively low, which hinders its potential use in treating PD. Thus we synthesized various derivatives of Cory B to find more potent autophagy inducers with improved brain bioavailability. In this study, we evaluated the autophagy-enhancing effect of CB6 derivative and its neuroprotective action against PD in vitro and in vivo. We showed that CB6 (5-40 μM) dose-dependently accelerated autophagy flux in cultured N2a neural cells through activating the PIK3C3 complex and promoting PI3P production. In MPP+-treated PC12 cells, CB6 inhibited cell apoptosis and increased cell viability by inducing autophagy. In MPTP-induced mouse model of PD, oral administration of CB6 (10, 20 mg· kg-1· d-1, for 21 days) significantly improved motor dysfunction and prevented the loss of dopaminergic neurons in the striatum and substantia nigra pars compacta. Collectively, compound CB6 is a brain-permeable autophagy enhancer via PIK3C3 complex activation, which may help the prevention or treatment of PD.
Collapse
Affiliation(s)
- Zhou Zhu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Liang-Feng Liu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Limin Pharmaceutical Factory, Livzon Group Limited, Shaoguan, 512028, China
| | - Cheng-Fu Su
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Jia Liu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Benjamin Chun-Kit Tong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Senthilkumar Krishnamoorthi
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Sravan Gopalkrishnashetty Sreenivasmurthy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Xin-Jie Guan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Yu-Xuan Kan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Wen-Jian Xie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Chen-Liang Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - King-Ho Cheung
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
| | - Jie-Qiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Animal Model for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Ju-Xian Song
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China.
| |
Collapse
|
33
|
Sanchez-Mirasierra I, Ghimire S, Hernandez-Diaz S, Soukup SF. Targeting Macroautophagy as a Therapeutic Opportunity to Treat Parkinson's Disease. Front Cell Dev Biol 2022; 10:921314. [PMID: 35874822 PMCID: PMC9298504 DOI: 10.3389/fcell.2022.921314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Macroautophagy, an evolutionary conserved catabolic process in the eukaryotic cell, regulates cellular homeostasis and plays a decisive role in self-engulfing proteins, protein aggregates, dysfunctional or damaged organelles, and invading pathogens. Growing evidence from in vivo and in vitro models shows that autophagy dysfunction plays decisive role in the pathogenesis of various neurodegenerative diseases, including Parkinson's disease (PD). PD is an incurable and second most common neurodegenerative disease characterised by neurological and motor dysfunction accompanied of non-motor symptoms that can also reduce the life quality of patients. Despite the investment in research, the aetiology of the disease is still unknown and the therapies available are aimed mostly at ameliorating motor symptoms. Hence, therapeutics regulating the autophagy pathway might play an important role controlling the disease progression, reducing neuronal loss and even ameliorating non-motor symptoms. In this review, we highlight potential therapeutic opportunities involved in different targeting options like an initiation of autophagy, Leucine-rich repeat kinase 2 (LRRK2) inhibition, mitophagy, lysosomes, lipid metabolism, immune system, gene expression, biomarkers, and also non-pharmacological interventions. Thus, strategies to identify therapeutics targeting the pathways modulating autophagy might hold a future for therapy development against PD.
Collapse
Affiliation(s)
| | - Saurav Ghimire
- Universite Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | | |
Collapse
|
34
|
Rakowski M, Porębski S, Grzelak A. Nutraceuticals as Modulators of Autophagy: Relevance in Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23073625. [PMID: 35408992 PMCID: PMC8998447 DOI: 10.3390/ijms23073625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022] Open
Abstract
Dietary supplements and nutraceuticals have entered the mainstream. Especially in the media, they are strongly advertised as safe and even recommended for certain diseases. Although they may support conventional therapy, sometimes these substances can have unexpected side effects. This review is particularly focused on the modulation of autophagy by selected vitamins and nutraceuticals, and their relevance in the treatment of neurodegenerative diseases, especially Parkinson’s disease (PD). Autophagy is crucial in PD; thus, the induction of autophagy may alleviate the course of the disease by reducing the so-called Lewy bodies. Hence, we believe that those substances could be used in prevention and support of conventional therapy of neurodegenerative diseases. This review will shed some light on their ability to modulate the autophagy.
Collapse
Affiliation(s)
- Michał Rakowski
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
- Correspondence:
| | - Szymon Porębski
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
| | - Agnieszka Grzelak
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
| |
Collapse
|
35
|
Paraquat Inhibits Autophagy Via Intensifying the Interaction Between HMGB1 and α-Synuclein. Neurotox Res 2022; 40:520-529. [PMID: 35316522 DOI: 10.1007/s12640-022-00490-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
Paraquat, a widely used herbicide, is associated with an increased risk of Parkinson's disease (PD). PQ induces upregulation and accumulation of α-synuclein in neurons, which is one of the major pathological hallmarks of PD. Autophagy, as the major mechanism for the clearance of α-synuclein, is disrupted upon pesticide exposure as well as in PD patients. Meanwhile, HMGB1 is involved in autophagy dysfunction and particularly relevant to PD. However, whether PQ exposure affects HMGB1, α-synuclein, and autophagy function have rarely been reported. In this study, we found that PQ exposure impaired autophagy function via disturbing the complex formation of HMGB1 and Beclin1. Moreover, the expression of α-synuclein is modulated by HMGB1 and the interaction between HMGB1 and α-synuclein was intensified by PQ exposure. Taken together, our results revealed that HMGB1-mediated α-synuclein accumulation could competitively perturb the complex formation of HMGB1 and Beclin1, thereby inhibiting the autophagy function in SH-SY5Y cells.
Collapse
|
36
|
Kim BS, Song JA, Jang KH, Jang T, Jung B, Yoo SE, Lee JM, Kim E. Pharmacological Intervention Targeting FAF1 Restores Autophagic Flux for α-Synuclein Degradation in the Brain of a Parkinson's Disease Mouse Model. ACS Chem Neurosci 2022; 13:806-817. [PMID: 35230076 DOI: 10.1021/acschemneuro.1c00828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
α-Synuclein accumulation is implicated in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). Previously, we reported that Fas-associated factor 1 (FAF1), which plays a role in PD pathogenesis, potentiates α-synuclein accumulation through autophagy impairment in dopaminergic neurons. In this study, we show that KM-819, a FAF1-targeting compound, which has completed phase I clinical trials, interferes with α-synuclein accumulation in the mouse brain, as well as in human neuronal cells (SH-SY5Ys). KM-819 suppressed the accumulation of monomeric, oligomeric, and aggregated forms of α-synuclein in neuronal cells. Furthermore, KM-819 restored the turnover rate of α-synuclein in FAF1-overexpressing SH-SY5Y cells, implicating KM-819-mediated reconstitution of the α-synuclein degradative pathway. In addition, KM-819 reconstituted autophagic flux in FAF1-transfected SH-SY5Y cells, also suppressing α-synuclein-induced mitochondrial dysfunction. Moreover, oral administration of KM-819 also interfered with α-synuclein accumulation in the midbrain of mice overexpressing FAF1 via an adeno-associated virus system. Consistently, KM-819 reduced α-synuclein accumulation in both the hippocampus and the midbrain of human A53T α-synuclein transgenic mice. Collectively, these data imply that KM-819 may have therapeutic potential for patients with PD.
Collapse
Affiliation(s)
- Bok-Seok Kim
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Jin-A Song
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Ki-Hong Jang
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Taeik Jang
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Bumjun Jung
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | | | | | - Eunhee Kim
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| |
Collapse
|
37
|
Cui M, Yoshimori T, Nakamura S. Autophagy system as a potential therapeutic target for neurodegenerative diseases. Neurochem Int 2022; 155:105308. [PMID: 35181396 DOI: 10.1016/j.neuint.2022.105308] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 02/13/2022] [Indexed: 12/19/2022]
Abstract
Autophagy is an evolutionally conserved process by which cytoplasmic contents including protein aggregates and damaged organelles such as mitochondria and lysosomes, are sequestered by double-membrane structure, autophagosomes, and delivered to the lysosomes for degradation. Recently, considerable efforts have been made to reveal the role of autophagy in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Huntington's disease. Impairment of autophagy aggravates the accumulation of misfolded protein and damaged organelles in neurons, while sufficient autophagic activity reduces such accumulation in nervous system and ameliorates the pathology. Here we summarize recent progress regarding the role of autophagy in several neurodegenerative diseases and the potential autophagy-associated therapies for them.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan.
| |
Collapse
|
38
|
Gouda NA, Elkamhawy A, Cho J. Emerging Therapeutic Strategies for Parkinson’s Disease and Future Prospects: A 2021 Update. Biomedicines 2022; 10:biomedicines10020371. [PMID: 35203580 PMCID: PMC8962417 DOI: 10.3390/biomedicines10020371] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder pathologically distinguished by degeneration of dopaminergic neurons in the substantia nigra pars compacta. Muscle rigidity, tremor, and bradykinesia are all clinical motor hallmarks of PD. Several pathways have been implicated in PD etiology, including mitochondrial dysfunction, impaired protein clearance, and neuroinflammation, but how these factors interact remains incompletely understood. Although many breakthroughs in PD therapy have been accomplished, there is currently no cure for PD, only trials to alleviate the related motor symptoms. To reduce or stop the clinical progression and mobility impairment, a disease-modifying approach that can directly target the etiology rather than offering symptomatic alleviation remains a major unmet clinical need in the management of PD. In this review, we briefly introduce current treatments and pathophysiology of PD. In addition, we address the novel innovative therapeutic targets for PD therapy, including α-synuclein, autophagy, neurodegeneration, neuroinflammation, and others. Several immunomodulatory approaches and stem cell research currently in clinical trials with PD patients are also discussed. Moreover, preclinical studies and clinical trials evaluating the efficacy of novel and repurposed therapeutic agents and their pragmatic applications with encouraging outcomes are summarized. Finally, molecular biomarkers under active investigation are presented as potentially valuable tools for early PD diagnosis.
Collapse
Affiliation(s)
- Noha A. Gouda
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (A.E.)
| | - Ahmed Elkamhawy
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (A.E.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Jungsook Cho
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (A.E.)
- Correspondence:
| |
Collapse
|
39
|
Yang C, Su C, Iyaswamy A, Krishnamoorthi SK, Zhu Z, Yang S, Tong BC, Liu J, Sreenivasmurthy SG, Guan X, Kan Y, Wu AJ, Huang AS, Tan J, Cheung K, Song J, Li M. Celastrol enhances transcription factor EB (TFEB)-mediated autophagy and mitigates Tau pathology: Implications for Alzheimer’s disease therapy. Acta Pharm Sin B 2022; 12:1707-1722. [PMID: 35847498 PMCID: PMC9279716 DOI: 10.1016/j.apsb.2022.01.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD), characterized by the accumulation of protein aggregates including phosphorylated Tau aggregates, is the most common neurodegenerative disorder with limited therapeutic agents. Autophagy plays a critical role in the degradation of phosphorylated Tau aggregates, and transcription factor EB (TFEB) is a master regulator of autophagy and lysosomal biogenesis. Thus, small-molecule autophagy enhancers targeting TFEB hold promise for AD therapy. Here, we found that celastrol, an active ingredient isolated from the root extracts of Tripterygium wilfordii (Lei Gong Teng in Chinese) enhanced TFEB-mediated autophagy and lysosomal biogenesis in vitro and in mouse brains. Importantly, celastrol reduced phosphorylated Tau aggregates and attenuated memory dysfunction and cognitive deficits in P301S Tau and 3xTg mice, two commonly used AD animal models. Mechanistical studies suggest that TFEB-mediated autophagy-lysosomal pathway is responsible for phosphorylated Tau degradation in response to celastrol. Overall, our findings indicate that Celastrol is a novel TFEB activator that promotes the degradation of phosphorylated Tau aggregates and improves memory in AD animal models. Therefore, Celastrol shows potential as a novel agent for the treatment and/or prevention of AD and other tauopathies.
Collapse
|
40
|
Rai SN, Tiwari N, Singh P, Mishra D, Singh AK, Hooshmandi E, Vamanu E, Singh MP. Therapeutic Potential of Vital Transcription Factors in Alzheimer's and Parkinson's Disease With Particular Emphasis on Transcription Factor EB Mediated Autophagy. Front Neurosci 2022; 15:777347. [PMID: 34970114 PMCID: PMC8712758 DOI: 10.3389/fnins.2021.777347] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an important cellular self-digestion and recycling pathway that helps in maintaining cellular homeostasis. Dysregulation at various steps of the autophagic and endolysosomal pathway has been reported in several neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington disease (HD) and is cited as a critically important feature for central nervous system (CNS) proteostasis. Recently, another molecular target, namely transcription factor EB (TFEB) has been explored globally to treat neurodegenerative disorders. This TFEB, is a key regulator of autophagy and lysosomal biogenesis pathway. Multiple research studies suggested therapeutic potential by targeting TFEB to treat human diseases involving autophagy-lysosomal dysfunction, especially neurodegenerative disorders. A common observation involving all neurodegenerative disorders is their poor efficacy in clearing and recycle toxic aggregated proteins and damaged cellular organelles due to impairment in the autophagy pathway. This dysfunction in autophagy characterized by the accumulation of toxic protein aggregates leads to a progressive loss in structural integrity/functionality of neurons and may even result in neuronal death. In recent years TFEB, a key regulator of autophagy and lysosomal biogenesis, has received considerable attention. It has emerged as a potential therapeutic target in numerous neurodegenerative disorders like AD and PD. In various neurobiology studies involving animal models, TFEB has been found to ameliorate neurotoxicity and rescue neurodegeneration. Since TFEB is a master transcriptional regulator of autophagy and lysosomal biogenesis pathway and plays a crucial role in defining autophagy activation. Studies have been done to understand the mechanisms for TFEB dysfunction, which may yield insights into how TFEB might be targeted and used for the therapeutic strategy to develop a treatment process with extensive application to neurodegenerative disorders. In this review, we explore the role of different transcription factor-based targeted therapy by some natural compounds for AD and PD with special emphasis on TFEB.
Collapse
Affiliation(s)
| | - Neeraj Tiwari
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, India
| | - Payal Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - Divya Mishra
- Centre of Bioinformatics, University of Allahabad, Prayagraj, India
| | - Anurag Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, Bucharest, Romania
| | - Mohan P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| |
Collapse
|
41
|
Ghafarkhani M, Avci CB, Rahbarghazi R, Karimi A, Sadeghizadeh M, Zarebkohan A, Bani F. Mild hyperthermia induced by gold nanorods acts as a dual-edge blade in the fate of SH-SY5Y cells via autophagy. Sci Rep 2021; 11:23984. [PMID: 34907215 PMCID: PMC8671444 DOI: 10.1038/s41598-021-02697-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Unraveling unwanted side effects of nanotechnology-based therapies like photothermal therapy (PTT) is vital in translational nanomedicine. Herein, we monitored the relationship between autophagic response at the transcriptional level by using a PCR array and tumor formation ability by colony formation assay in the human neuroblastoma cell line, SH-SY5Y, 48 h after being exposed to two different mild hyperthermia (43 and 48 °C) induced by PTT. In this regard, the promotion of apoptosis and autophagy were evaluated using immunofluorescence imaging and flow cytometry analyses. Protein levels of Ki-67, P62, and LC3 were measured using ELISA. Our results showed that of 86 genes associated with autophagy, the expression of 54 genes was changed in response to PTT. Also, we showed that chaperone-mediated autophagy (CMA) and macroautophagy are stimulated in PTT. Importantly, the results of this study also showed significant changes in genes related to the crosstalk between autophagy, dormancy, and metastatic activity of treated cells. Our findings illustrated that PTT enhances the aggressiveness of cancer cells at 43 °C, in contrast to 48 °C by the regulation of autophagy-dependent manner.
Collapse
Affiliation(s)
- Maryam Ghafarkhani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 516661-4733, Tabriz, Iran
| | - Cigir Biray Avci
- Department of Medical Biology, Medical Faculty, Ege University, Bornova, 35100, Izmir, Turkey
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Sadeghizadeh
- Department of Nanobiotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 516661-4733, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farhad Bani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 516661-4733, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
42
|
Zhang K, Zhu S, Li J, Jiang T, Feng L, Pei J, Wang G, Ouyang L, Liu B. Targeting autophagy using small-molecule compounds to improve potential therapy of Parkinson's disease. Acta Pharm Sin B 2021; 11:3015-3034. [PMID: 34729301 PMCID: PMC8546670 DOI: 10.1016/j.apsb.2021.02.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/28/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD), known as one of the most universal neurodegenerative diseases, is a serious threat to the health of the elderly. The current treatment has been demonstrated to relieve symptoms, and the discovery of new small-molecule compounds has been regarded as a promising strategy. Of note, the homeostasis of the autolysosome pathway (ALP) is closely associated with PD, and impaired autophagy may cause the death of neurons and thereby accelerating the progress of PD. Thus, pharmacological targeting autophagy with small-molecule compounds has been drawn a rising attention so far. In this review, we focus on summarizing several autophagy-associated targets, such as AMPK, mTORC1, ULK1, IMPase, LRRK2, beclin-1, TFEB, GCase, ERRα, C-Abelson, and as well as their relevant small-molecule compounds in PD models, which will shed light on a clue on exploiting more potential targeted small-molecule drugs tracking PD treatment in the near future.
Collapse
Key Words
- 3-MA, 3-methyladenine
- 5-HT2A, Serotonin 2A
- 5-HT2C, serotonin 2C
- A2A, adenosine 2A
- AADC, aromatic amino acid decarboxylase
- ALP, autophagy-lysosomal pathway
- AMPK, 5ʹAMP-activated protein kinase
- ATG, autophagy related protein
- ATP13A2, ATPase cation transporting 13A2
- ATTEC, autophagosome-tethering compound
- AUC, the area under the curve
- AUTAC, autophagy targeting chimera
- Autophagy
- BAF, bafilomycinA1
- BBB, blood−brain barrier
- CL, clearance rate
- CMA, chaperone-mediated autophagy
- CNS, central nervous system
- COMT, catechol-O-methyltransferase
- DA, dopamine
- DAT, dopamine transporter
- DJ-1, Parkinson protein 7
- DR, dopamine receptor
- ER, endoplasmic reticulum
- ERRα, estrogen-related receptor alpha
- F, oral bioavailability
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- GBA, glucocerebrosidase β acid
- GWAS, genome-wide association study
- HDAC6, histone deacetylase 6
- HSC70, heat shock cognate 71 kDa protein
- HSPA8, heat shock 70 kDa protein 8
- IMPase, inositol monophosphatase
- IPPase, inositol polyphosphate 1-phosphatase
- KI, knockin
- LAMP2A, lysosome-associated membrane protein 2 A
- LC3, light chain 3
- LIMP-2, lysosomal integrated membrane protein-2
- LRRK2, leucine-rich repeat sequence kinase 2
- LRS, leucyl-tRNA synthetase
- LUHMES, lund human mesencephalic
- Lamp2a, type 2A lysosomal-associated membrane protein
- MAO-B, monoamine oxidase B
- MPP+, 1-methyl-4-phenylpyridinium
- MPTP, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine
- MYCBP2, MYC-binding protein 2
- NMDA, N-methyl-d-aspartic acid
- ONRs, orphan nuclear receptors
- PD therapy
- PD, Parkinson's disease
- PDE4, phosphodiesterase 4
- PI3K, phosphatidylinositol 3-kinase
- PI3P, phosphatidylinositol 3-phosphate
- PINK1, PTEN-induced kinase 1
- PLC, phospholipase C
- PREP, prolyl oligopeptidase
- Parkin, parkin RBR E3 ubiquitin−protein ligase
- Parkinson's disease (PD)
- ROS, reactive oxygen species
- SAR, structure–activity relationship
- SAS, solvent accessible surface
- SN, substantia nigra
- SNCA, α-synuclein gene
- SYT11, synaptotagmin 11
- Small-molecule compound
- TFEB, transcription factor EB
- TSC2, tuberous sclerosis complex 2
- Target
- ULK1, UNC-51-like kinase 1
- UPS, ubiquitin−proteasome system
- mAChR, muscarinic acetylcholine receptor
- mTOR, the mammalian target of rapamycin
- α-syn, α-synuclein
Collapse
|
43
|
Tang Q, Gao P, Arzberger T, Höllerhage M, Herms J, Höglinger G, Koeglsperger T. Alpha-Synuclein defects autophagy by impairing SNAP29-mediated autophagosome-lysosome fusion. Cell Death Dis 2021; 12:854. [PMID: 34535638 PMCID: PMC8448865 DOI: 10.1038/s41419-021-04138-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Dopaminergic (DA) cell death in Parkinson's disease (PD) is associated with the gradual appearance of neuronal protein aggregates termed Lewy bodies (LBs) that are comprised of vesicular membrane structures and dysmorphic organelles in conjunction with the protein alpha-Synuclein (α-Syn). Although the exact mechanism of neuronal aggregate formation and death remains elusive, recent research suggests α-Syn-mediated alterations in the lysosomal degradation of aggregated proteins and organelles - a process termed autophagy. Here, we used a combination of molecular biology and immunochemistry to investigate the effect of α-Syn on autophagy turnover in cultured human DA neurons and in human post-mortem brain tissue. We found α-Syn overexpression to reduce autophagy turnover by compromising the fusion of autophagosomes with lysosomes, thus leading to a decrease in the formation of autolysosomes. In accord with a compensatory increase in the plasma membrane fusion of autophagosomes, α-Syn enhanced the number of extracellular vesicles (EV) and the abundance of autophagy-associated proteins in these EVs. Mechanistically, α-Syn decreased the abundance of the v-SNARE protein SNAP29, a member of the SNARE complex mediating autophagolysosome fusion. In line, SNAP29 knockdown mimicked the effect of α-Syn on autophagy whereas SNAP29 co-expression reversed the α-Syn-induced changes on autophagy turnover and EV release and ameliorated DA neuronal cell death. In accord with our results from cultured neurons, we found a stage-dependent reduction of SNAP29 in SNc DA neurons from human post-mortem brain tissue of Lewy body pathology (LBP) cases. In summary, our results thus demonstrate a previously unknown effect of α-Syn on intracellular autophagy-associated SNARE proteins and, as a consequence, a reduced autolysosome fusion. As such, our findings will therefore support the investigation of autophagy-associated pathological changes in PD.
Collapse
Affiliation(s)
- Qilin Tang
- grid.424247.30000 0004 0438 0426Department of Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XDepartment of Neurology, Ludwig Maximilian University, Munich, Germany
| | - Pan Gao
- grid.424247.30000 0004 0438 0426Department of Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966Technical University of Munich, Munich, Germany
| | - Thomas Arzberger
- grid.5252.00000 0004 1936 973XCentre of Neuropathology and Prion Research, Ludwig, Maximilian University, Munich, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - Matthias Höllerhage
- grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School (MHH), Hannover, Germany
| | - Jochen Herms
- grid.424247.30000 0004 0438 0426Department of Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XCentre of Neuropathology and Prion Research, Ludwig, Maximilian University, Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Günter Höglinger
- grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School (MHH), Hannover, Germany ,grid.424247.30000 0004 0438 0426Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Thomas Koeglsperger
- grid.424247.30000 0004 0438 0426Department of Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XDepartment of Neurology, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
44
|
Durairajan SSK, Selvarasu K, Bera MR, Rajaram K, Iyaswamy A, Li M. Alzheimer's Disease and other Tauopathies: Exploring Efficacy of Medicinal Plant-Derived Compounds in Alleviating Tau-Mediated Neurodegeneration. Curr Mol Pharmacol 2021; 15:361-379. [PMID: 34488602 DOI: 10.2174/1874467214666210906125318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/12/2020] [Accepted: 01/27/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD), a major form of dementia, has been reported to affect more than 50 million people worldwide. It is characterized by the presence of amyloid-β (Aβ) plaques and hyperphosphorylated Tau-associated neurofibrillary tangles in the brain. Apart from AD, microtubule (MT)-associated protein Tau is also involved in other neurodegenerative diseases called tauopathies, including Pick's disease, frontotemporal lobar degeneration, progressive supranuclear palsy, and corticobasal degeneration. The recently unsuccessful phase III clinical trials related to Aβ-targeted therapeutic drugs indicated that alternative targets, such as Tau, should be studied to discover more effective and safer drugs. Recent drug discovery approaches to reduce AD-related Tau pathologies are primarily based on blocking Tau aggregation, inhibiting Tau phosphorylation, compensating impaired Tau function with MT-stabilizing agents, and targeting the degradation pathways in neuronal cells to degrade Tau protein aggregates. Owing to several limitations of the currently-available Tau-directed drugs, further studies are required to generate further effective and safer Tau-based disease-modifying drugs. Here, we review the studies that focused on medicinal plant-derived compounds capable of modulating the Tau protein, which is significantly elevated and hyperphosphorylated in AD and other tauopathies. We mainly considered the studies that focused on Tau protein as a therapeutic target. We reviewed several pertinent papers retrieved from PubMed and ScienceDirect using relevant keywords, with a primary focus on the Tau-targeting compounds from medicinal plants. These compounds include indolines, phenolics, flavonoids, coumarins, alkaloids, and iridoids, which have been scientifically proven to be Tau-targeting candidates for the treatment of AD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur. India
| | - Karthikeyan Selvarasu
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur. India
| | - Minu Rani Bera
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur. India
| | - Kaushik Rajaram
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur. India
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR. China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR. China
| |
Collapse
|
45
|
Calcium Signaling Regulates Autophagy and Apoptosis. Cells 2021; 10:cells10082125. [PMID: 34440894 PMCID: PMC8394685 DOI: 10.3390/cells10082125] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Calcium (Ca2+) functions as a second messenger that is critical in regulating fundamental physiological functions such as cell growth/development, cell survival, neuronal development and/or the maintenance of cellular functions. The coordination among various proteins/pumps/Ca2+ channels and Ca2+ storage in various organelles is critical in maintaining cytosolic Ca2+ levels that provide the spatial resolution needed for cellular homeostasis. An important regulatory aspect of Ca2+ homeostasis is a store operated Ca2+ entry (SOCE) mechanism that is activated by the depletion of Ca2+ from internal ER stores and has gained much attention for influencing functions in both excitable and non-excitable cells. Ca2+ has been shown to regulate opposing functions such as autophagy, that promote cell survival; on the other hand, Ca2+ also regulates programmed cell death processes such as apoptosis. The functional significance of the TRP/Orai channels has been elaborately studied; however, information on how they can modulate opposing functions and modulate function in excitable and non-excitable cells is limited. Importantly, perturbations in SOCE have been implicated in a spectrum of pathological neurodegenerative conditions. The critical role of autophagy machinery in the pathogenesis of neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, would presumably unveil avenues for plausible therapeutic interventions for these diseases. We thus review the role of SOCE-regulated Ca2+ signaling in modulating these diverse functions in stem cell, immune regulation and neuromodulation.
Collapse
|
46
|
Olubodun-Obadun TG, Ishola IO, Adeyemi OO. Potentials of autophagy enhancing natural products in the treatment of Parkinson disease. Drug Metab Pers Ther 2021; 0:dmdi-2021-0128. [PMID: 34391219 DOI: 10.1515/dmdi-2021-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/11/2021] [Indexed: 11/15/2022]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative movement disorder characterized by motor and non-motor symptoms due to loss of striatal dopaminergic neurons and disruption of degradation signaling leading to the formation of Lewy bodies (aggregation of α-synuclein). Presently, there are no disease modifying therapy for PD despite improvement in the understanding of the disease pathogenesis. However, the drugs currently used in PD management provide symptomatic relieve for motor symptoms without significant improvement in non-motor complications, thus, a public health burden on caregivers and healthcare systems. There is therefore the need to discover disease modifying therapy with strong potential to halt the disease progression. Recent trend has shown that the dysfunction of lysosomal-autophagy pathway is highly implicated in PD pathology, hence, making autophagy a key player owing to its involvement in degradation and clearance of misfolded α-synuclein (a major hallmark in PD pathology). In this review, we described the current drugs/strategy in the management of PD including targeting the autophagy pathway as a novel approach that could serve as potential intervention for PD management. The discovery of small molecules or natural products capable of enhancing autophagy mechanism could be a promising strategy for PD treatment.
Collapse
Affiliation(s)
- Taiwo G Olubodun-Obadun
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| |
Collapse
|
47
|
Olubodun-Obadun TG, Ishola IO, Adeyemi OO. Potentials of autophagy enhancing natural products in the treatment of Parkinson disease. Drug Metab Pers Ther 2021; 37:99-110. [PMID: 35737301 DOI: 10.1515/dmpt-2021-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/11/2021] [Indexed: 06/15/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative movement disorder characterized by motor and non-motor symptoms due to loss of striatal dopaminergic neurons and disruption of degradation signaling leading to the formation of Lewy bodies (aggregation of α-synuclein). Presently, there are no disease modifying therapy for PD despite improvement in the understanding of the disease pathogenesis. However, the drugs currently used in PD management provide symptomatic relieve for motor symptoms without significant improvement in non-motor complications, thus, a public health burden on caregivers and healthcare systems. There is therefore the need to discover disease modifying therapy with strong potential to halt the disease progression. Recent trend has shown that the dysfunction of lysosomal-autophagy pathway is highly implicated in PD pathology, hence, making autophagy a key player owing to its involvement in degradation and clearance of misfolded α-synuclein (a major hallmark in PD pathology). In this review, we described the current drugs/strategy in the management of PD including targeting the autophagy pathway as a novel approach that could serve as potential intervention for PD management. The discovery of small molecules or natural products capable of enhancing autophagy mechanism could be a promising strategy for PD treatment.
Collapse
Affiliation(s)
- Taiwo G Olubodun-Obadun
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| |
Collapse
|
48
|
De Mattos EP, Wentink A, Nussbaum-Krammer C, Hansen C, Bergink S, Melki R, Kampinga HH. Protein Quality Control Pathways at the Crossroad of Synucleinopathies. JOURNAL OF PARKINSONS DISEASE 2021; 10:369-382. [PMID: 31985474 PMCID: PMC7242842 DOI: 10.3233/jpd-191790] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pathophysiology of Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, and many others converge at alpha-synuclein (α-Syn) aggregation. Although it is still not entirely clear what precise biophysical processes act as triggers, cumulative evidence points towards a crucial role for protein quality control (PQC) systems in modulating α-Syn aggregation and toxicity. These encompass distinct cellular strategies that tightly balance protein production, stability, and degradation, ultimately regulating α-Syn levels. Here, we review the main aspects of α-Syn biology, focusing on the cellular PQC components that are at the heart of recognizing and disposing toxic, aggregate-prone α-Syn assemblies: molecular chaperones and the ubiquitin-proteasome system and autophagy-lysosome pathway, respectively. A deeper understanding of these basic protein homeostasis mechanisms might contribute to the development of new therapeutic strategies envisioning the prevention and/or enhanced degradation of α-Syn aggregates.
Collapse
Affiliation(s)
- Eduardo P De Mattos
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Anne Wentink
- Center for Molecular Biology of Heidelberg University (ZMBH), and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carmen Nussbaum-Krammer
- Center for Molecular Biology of Heidelberg University (ZMBH), and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christian Hansen
- Molecular Neurobiology, Department of Experimental Medical Science, Lund, Sweden
| | - Steven Bergink
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ronald Melki
- Institute Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-Aux-Roses Cedex, France
| | - Harm H Kampinga
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
49
|
Limanaqi F, Busceti CL, Celli R, Biagioni F, Fornai F. Autophagy as a gateway for the effects of methamphetamine: From neurotransmitter release and synaptic plasticity to psychiatric and neurodegenerative disorders. Prog Neurobiol 2021; 204:102112. [PMID: 34171442 DOI: 10.1016/j.pneurobio.2021.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
As a major eukaryotic cell clearing machinery, autophagy grants cell proteostasis, which is key for neurotransmitter release, synaptic plasticity, and neuronal survival. In line with this, besides neuropathological events, autophagy dysfunctions are bound to synaptic alterations that occur in mental disorders, and early on, in neurodegenerative diseases. This is also the case of methamphetamine (METH) abuse, which leads to psychiatric disturbances and neurotoxicity. While consistently altering the autophagy machinery, METH produces behavioral and neurotoxic effects through molecular and biochemical events that can be recapitulated by autophagy blockade. These consist of altered physiological dopamine (DA) release, abnormal stimulation of DA and glutamate receptors, as well as oxidative, excitotoxic, and neuroinflammatory events. Recent molecular insights suggest that METH early impairs the autophagy machinery, though its functional significance remains to be investigated. Here we discuss evidence suggesting that alterations of DA transmission and autophagy are intermingled within a chain of events underlying behavioral alterations and neurodegenerative phenomena produced by METH. Understanding how METH alters the autophagy machinery is expected to provide novel insights into the neurobiology of METH addiction sharing some features with psychiatric disorders and parkinsonism.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy
| | | | - Roberta Celli
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy; IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
50
|
Ren H, Zhai W, Lu X, Wang G. The Cross-Links of Endoplasmic Reticulum Stress, Autophagy, and Neurodegeneration in Parkinson's Disease. Front Aging Neurosci 2021; 13:691881. [PMID: 34168552 PMCID: PMC8218021 DOI: 10.3389/fnagi.2021.691881] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, and it is characterized by the selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), as well as the presence of intracellular inclusions with α-synuclein as the main component in surviving DA neurons. Emerging evidence suggests that the imbalance of proteostasis is a key pathogenic factor for PD. Endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and autophagy, two major pathways for maintaining proteostasis, play important roles in PD pathology and are considered as attractive therapeutic targets for PD treatment. However, although ER stress/UPR and autophagy appear to be independent cellular processes, they are closely related to each other. In this review, we focused on the roles and molecular cross-links between ER stress/UPR and autophagy in PD pathology. We systematically reviewed and summarized the most recent advances in regulation of ER stress/UPR and autophagy, and their cross-linking mechanisms. We also reviewed and discussed the mechanisms of the coexisting ER stress/UPR activation and dysregulated autophagy in the lesion regions of PD patients, and the underlying roles and molecular crosslinks between ER stress/UPR activation and the dysregulated autophagy in DA neurodegeneration induced by PD-associated genetic factors and PD-related neurotoxins. Finally, we indicate that the combined regulation of ER stress/UPR and autophagy would be a more effective treatment for PD rather than regulating one of these conditions alone.
Collapse
Affiliation(s)
- Haigang Ren
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Wanqing Zhai
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China
| | - Xiaojun Lu
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China
| | - Guanghui Wang
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|