1
|
Wu Y, Chen Y, Tian X, Shao G, Lin Q, Sun A. Ubiquitination regulates autophagy in cancer: simple modifications, promising targets. J Transl Med 2024; 22:985. [PMID: 39482684 PMCID: PMC11526641 DOI: 10.1186/s12967-024-05565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 11/03/2024] Open
Abstract
Autophagy is an important lysosomal degradation process that digests and recycles bio-molecules, protein or lipid aggregates, organelles, and invaded pathogens. Autophagy plays crucial roles in regulation of metabolic and oxidative stress and multiple pathological processes. In cancer, the role of autophagy is dual and paradoxical. Ubiquitination has been identified as a key regulator of autophagy that can influence various steps in the autophagic process, with autophagy-related proteins being targeted for ubiquitination, thus impacting cancer progression and the effectiveness of therapeutic interventions. This review will concentrate on mechanisms underlying autophagy, ubiquitination, and their interactions in cancer, as well as explore the use of drugs that target the ubiquitin-proteasome system (UPS) and ubiquitination process in autophagy as part of cancer therapy.
Collapse
Affiliation(s)
- Yihui Wu
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yifei Chen
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianyan Tian
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Genbao Shao
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiong Lin
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Aiqin Sun
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
2
|
Rajendran D, Oon CE. Navigating therapeutic prospects by modulating autophagy in colorectal cancer. Life Sci 2024; 358:123121. [PMID: 39389340 DOI: 10.1016/j.lfs.2024.123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Colorectal cancer (CRC) remains a leading cause of death globally despite the improvements in cancer treatment. Autophagy is an evolutionarily conserved lysosomal-dependent degradation pathway that is critical in maintaining cellular homeostasis. However, in cancer, autophagy may have conflicting functions in preventing early tumour formation versus the maintenance of advanced-stage tumours. Defective autophagy has a broad and dynamic effect not just on cancer cells, but also on the tumour microenvironment which influences tumour progression and response to treatment. To add to the layer of complexity, somatic mutations in CRC including tumour protein p53 (TP53), v-raf murine sarcoma viral oncogene homolog B1 (BRAF), Kirsten rat sarcoma viral oncogene homolog (KRAS), and phosphatase and tensin homolog (PTEN) can render chemoresistance by promoting a pro-survival advantage through autophagy. Recent studies have also reported autophagy-related cell deaths that are distinct from classical autophagy by employing parts of the autophagic machinery, which impacts strategies for autophagy regulation in cancer therapy. This review discusses the molecular processes of autophagy in the evolution of CRC and its role in the tumour microenvironment, as well as prospective therapeutic methods based on autophagy suppression or promotion. It also highlights clinical trials using autophagy modulators for treating CRC, underscoring the importance of autophagy regulation in CRC therapy.
Collapse
Affiliation(s)
- Deepa Rajendran
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| |
Collapse
|
3
|
Niharika, Garg M. Understanding the autophagic functions in cancer stem cell maintenance and therapy resistance. Expert Rev Mol Med 2024; 26:e23. [PMID: 39375840 PMCID: PMC11488345 DOI: 10.1017/erm.2024.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 06/25/2024] [Indexed: 10/09/2024]
Abstract
Complex tumour ecosystem comprising tumour cells and its associated tumour microenvironment (TME) constantly influence the tumoural behaviour and ultimately impact therapy failure, disease progression, recurrence and poor overall survival of patients. Crosstalk between tumour cells and TME amplifies the complexity by creating metabolic changes such as hypoxic environment and nutrient fluctuations. These changes in TME initiate stem cell-like programmes in cancer cells, contribute to tumoural heterogeneity and increase tumour robustness. Recent studies demonstrate the multifaceted role of autophagy in promoting fibroblast production, stemness, cancer cell survival during longer periods of dormancy, eventual growth of metastatic disease and disease resistance. Recent ongoing studies examine autophagy/mitophagy as a powerful survival strategy in response to environmental stress including nutrient deprivation, hypoxia and environmental stress in TME. It prevents irreversible senescence, promotes dormant stem-like state, induces epithelial-mesenchymal transition and increases migratory and invasive potential of tumour cells. The present review discusses various theories and mechanisms behind the autophagy-dependent induction of cancer stem cell (CSC) phenotype. Given the role of autophagic functions in CSC aggressiveness and therapeutic resistance, various mechanisms and studies based on suppressing cellular plasticity by blocking autophagy as a powerful therapeutic strategy to kill tumour cells are discussed.
Collapse
Affiliation(s)
- Niharika
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
4
|
Kudo Y, Nakamura K, Tsuzuki H, Hirota K, Kawai M, Takaya D, Fukuzawa K, Honma T, Yoshino Y, Nakamura M, Shiota M, Fujimoto N, Ikari A, Endo S. Docosahexaenoic acid enhances the treatment efficacy for castration-resistant prostate cancer by inhibiting autophagy through Atg4B inhibition. Arch Biochem Biophys 2024; 760:110135. [PMID: 39181384 DOI: 10.1016/j.abb.2024.110135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Autophagy induction in cancer is involved in cancer progression and the acquisition of resistance to anticancer agents. Therefore, autophagy is considered a potential therapeutic target in cancer therapy. In this study, we found that long-chain fatty acids (LCFAs) have inhibitory effects on Atg4B, which is essential for autophagosome formation, through screening based on the pharmacophore of 21f, a recently developed Atg4B inhibitor. Among these fatty acids, docosahexaenoic acid (DHA), a polyunsaturated fatty acid, exhibited the most potent Atg4B inhibitory activity. DHA inhibited autophagy induced by androgen receptor signaling inhibitors (ARSI) in LNCaP and 22Rv1 prostate cancer cells and significantly increased apoptotic cell death. Furthermore, we investigated the effect of DHA on resistance to ARSI by establishing darolutamide-resistant prostate cancer 22Rv1 (22Rv1/Dar) cells, which had developed resistance to darolutamide, a novel ARSI. At baseline, 22Rv1/Dar cells showed a higher autophagy level than parental 22Rv1 cells. DHA significantly suppressed Dar-induced autophagy and sensitized 22Rv1/Dar cells by inducing apoptotic cell death through mitochondrial dysfunction. These results suggest that DHA supplementation may improve prostate cancer therapy with ARSI.
Collapse
Affiliation(s)
- Yudai Kudo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Kana Nakamura
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Honoka Tsuzuki
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Kotaro Hirota
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Mina Kawai
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Daisuke Takaya
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Kaori Fukuzawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Teruki Honma
- Center for Biosystems Dynamics Research, RIKEN, Kanagawa, 230-0045, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Mitsuhiro Nakamura
- Laboratories of Drug Informatics, Department of Pharmacy Practice and Science, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Fukuoka, 807-8555, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Satoshi Endo
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, 501-1194, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
5
|
Chen X, Bao Y, Sun G, Wang X, Zhu J. UNC13B regulates the sensitivity of Wilms' tumor cells to doxorubicin by modulating lysosomes. Oncol Lett 2024; 28:446. [PMID: 39091580 PMCID: PMC11292464 DOI: 10.3892/ol.2024.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Wilms' tumor is a malignant neoplasm where current medical advancements have significantly improved survival rates; however, challenges persist such as the resistance of the tumor to chemotherapy drugs like doxorubicin. This necessitates higher dosages, leading to decreased sensitivity. However, using high doses of doxorubicin can have late effects on the heart. Unc-13 homolog B (UNC13B) may be involved in the drug resistance in several tumors, yet its role in modulating drug sensitivity in Wilms' tumor remains unexplored. UNC13B levels were quantified using reverse transcription-qPCR and Western blotting. The half-maximal inhibitory concentration for doxorubicin, vincristine, and actinomycin-D was determined using CCK-8 assays. Cell cycle and apoptosis were analyzed using flow cytometry, and lysosomal changes were observed using Lyso-Tracker staining. The present study initially evaluated UNC13B expression levels in the Wilms' tumor 17.94 cell line. Additionally, through short hairpin RNA-mediated knockdown, changes in doxorubicin sensitivity in 17.94 Wilms' tumor cells were assessed. Concurrently, preliminary investigations into the role of UNC13B in regulating lysosomes was performed, revealing a significant positive association between UNC13B levels and lysosome formation in the 17.94 cell line. Lysosomes likely serve a role in the sensitivity of Wilms' tumor cell lines to drugs. Elevated UNC13B expression was observed in the 17.94 Wilms' tumor cell line compared to normal kidney cells. UNC13B knockdown also resulted in increased apoptosis levels upon doxorubicin treatment. Immunofluorescence revealed UNC13B localization within cellular vesicles, and its knockdown significantly decreased lysosome levels. Overall, the findings of the present study demonstrate that UNC13B regulates the sensitivity of the Wilms' tumor 17.94 cell line to doxorubicin by modulating lysosome formation within cells. The results suggest that UNC13B is likely an enriched target involved in lysosomal regulation in certain tumors, offering a new approach for optimizing chemotherapy in Wilms' tumor and other cancers with high UNC13B expression.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neonatology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yingying Bao
- Department of Neonatology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ge Sun
- Department of Neonatology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Jiajun Zhu
- Department of Neonatology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
6
|
Tyrna P, Procyk G, Szeleszczuk Ł, Młynarczuk-Biały I. Different Strategies to Overcome Resistance to Proteasome Inhibitors-A Summary 20 Years after Their Introduction. Int J Mol Sci 2024; 25:8949. [PMID: 39201634 PMCID: PMC11354503 DOI: 10.3390/ijms25168949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Proteasome inhibitors (PIs), bortezomib, carfilzomib, and ixazomib, are the first-line treatment for multiple myeloma (MM). They inhibit cytosolic protein degradation in cells, which leads to the accumulation of misfolded and malfunctioned proteins in the cytosol and endoplasmic reticulum, resulting in cell death. Despite being a breakthrough in MM therapy, malignant cells develop resistance to PIs via different mechanisms. Understanding these mechanisms drives research toward new anticancer agents to overcome PI resistance. In this review, we summarize the mechanism of action of PIs and how MM cells adapt to these drugs to develop resistance. Finally, we explore these mechanisms to present strategies to interfere with PI resistance. The strategies include new inhibitors of the ubiquitin-proteasome system, drug efflux inhibitors, autophagy disruption, targeting stress response mechanisms, affecting survival and cell cycle regulators, bone marrow microenvironment modulation, and immunotherapy. We list potential pharmacological targets examined in in vitro, in vivo, and clinical studies. Some of these strategies have already provided clinicians with new anti-MM medications, such as panobinostat and selinexor. We hope that further exploration of the subject will broaden the range of therapeutic options and improve patient outcomes.
Collapse
Affiliation(s)
- Paweł Tyrna
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland;
| | - Izabela Młynarczuk-Biały
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
7
|
Meena D, Jha S. Autophagy in glioblastoma: A mechanistic perspective. Int J Cancer 2024; 155:605-617. [PMID: 38716809 DOI: 10.1002/ijc.34991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 06/20/2024]
Abstract
Glioblastoma (GBM) is one of the most lethal malignancies in humans. Even after surgical resection and aggressive radio- or chemotherapies, patients with GBM can survive for less than 14 months. Extreme inter-tumor and intra-tumor heterogeneity of GBM poses a challenge for resolving recalcitrant GBM pathophysiology. GBM tumor microenvironment (TME) exhibits diverse heterogeneity in cellular composition and processes contributing to tumor progression and therapeutic resistance. Autophagy is such a cellular process; that demonstrates a cell-specific and TME context-dependent role in GBM progression, leading to either the promotion or suppression of GBM progression. Autophagy can regulate GBM cell function directly via regulation of survival, migration, and invasion, or indirectly by affecting GBM TME composition such as immune cell population, tumor metabolism, and glioma stem cells. This review comprehensively investigates the role of autophagy in GBM pathophysiology.
Collapse
Affiliation(s)
- Durgesh Meena
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
8
|
Kovale L, Singh MK, Kim J, Ha J. Role of Autophagy and AMPK in Cancer Stem Cells: Therapeutic Opportunities and Obstacles in Cancer. Int J Mol Sci 2024; 25:8647. [PMID: 39201332 PMCID: PMC11354724 DOI: 10.3390/ijms25168647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Cancer stem cells represent a resilient subset within the tumor microenvironment capable of differentiation, regeneration, and resistance to chemotherapeutic agents, often using dormancy as a shield. Their unique properties, including drug resistance and metastatic potential, pose challenges for effective targeting. These cells exploit certain metabolic processes for their maintenance and survival. One of these processes is autophagy, which generally helps in energy homeostasis but when hijacked by CSCs can help maintain their stemness. Thus, it is often referred as an Achilles heel in CSCs, as certain cancers tend to depend on autophagy for survival. Autophagy, while crucial for maintaining stemness in cancer stem cells (CSCs), can also serve as a vulnerability in certain contexts, making it a complex target for therapy. Regulators of autophagy like AMPK (5' adenosine monophosphate-activated protein kinase) also play a crucial role in maintaining CSCs stemness by helping CSCs in metabolic reprogramming in harsh environments. The purpose of this review is to elucidate the interplay between autophagy and AMPK in CSCs, highlighting the challenges in targeting autophagy and discussing therapeutic strategies to overcome these limitations. This review focuses on previous research on autophagy and its regulators in cancer biology, particularly in CSCs, addresses the remaining unanswered questions, and potential targets for therapy are also brought to attention.
Collapse
Affiliation(s)
- Lochana Kovale
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Joungmok Kim
- Department of Oral Biochemistry and Molecular Biology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| |
Collapse
|
9
|
Alimohammadi M, Rahimzadeh P, Khorrami R, Bonyadi M, Daneshi S, Nabavi N, Raesi R, Farani MR, Dehkhoda F, Taheriazam A, Hashemi M. A comprehensive review of the PTEN/PI3K/Akt axis in multiple myeloma: From molecular interactions to potential therapeutic targets. Pathol Res Pract 2024; 260:155401. [PMID: 38936094 DOI: 10.1016/j.prp.2024.155401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) signaling pathways contribute to the development of several cancers, including multiple myeloma (MM). PTEN is a tumor suppressor that influences the PI3K/Akt/mTOR pathway, which in turn impacts vital cellular processes like growth, survival, and treatment resistance. The current study aims to present the role of PTEN and PI3K/Akt/mTOR signaling in the development of MM and its response to treatment. In addition, the molecular interactions in MM that underpin the PI3K/Akt/mTOR pathway and address potential implications for the development of successful treatment plans are also discussed in detail. We investigate their relationship to both upstream and downstream regulators, highlighting new developments in combined therapies that target the PTEN/PI3K/Akt axis to overcome drug resistance, including the use of PI3K and mitogen-activated protein kinase (MAPK) inhibitors. We also emphasize that PTEN/PI3K/Akt pathway elements may be used in MM diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Farshid Dehkhoda
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| |
Collapse
|
10
|
Tong J, Wang Q, Gao Z, Liu Y, Lu C. VMP1: a multifaceted regulator of cellular homeostasis with implications in disease pathology. Front Cell Dev Biol 2024; 12:1436420. [PMID: 39100095 PMCID: PMC11294092 DOI: 10.3389/fcell.2024.1436420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Vacuole membrane protein 1 (VMP1) is an integral membrane protein that plays a pivotal role in cellular processes, particularly in the regulation of autophagy. Autophagy, a self-degradative mechanism, is essential for maintaining cellular homeostasis by degradation and recycling damaged organelles and proteins. VMP1 involved in the autophagic processes include the formation of autophagosomes and the subsequent fusion with lysosomes. Moreover, VMP1 modulates endoplasmic reticulum (ER) calcium levels, which is significant for various cellular functions, including protein folding and cellular signaling. Recent studies have also linked VMP1 to the cellular response against viral infections and lipid droplet (LD). Dysregulation of VMP1 has been observed in several pathological conditions, including neurodegenerative diseases such as Parkinson's disease (PD), pancreatitis, hepatitis, and tumorogenesis, underscoring its potential as a therapeutic target. This review aims to provide an overview of VMP1's multifaceted roles and its implications in disease pathology.
Collapse
Affiliation(s)
- Jia Tong
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Biological Psychiatry (Xinxiang Medical University), The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory for Non-Invasive Neural Modulation, Department of Physiology and Pathology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qianqian Wang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ziyan Gao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yang Liu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chengbiao Lu
- Henan International Joint Laboratory for Non-Invasive Neural Modulation, Department of Physiology and Pathology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
11
|
Fukui T, Yabumoto M, Nishida M, Hirokawa S, Sato R, Kurisu T, Nakai M, Hassan MA, Kishimoto K. Amino acid deprivation in cancer cells with compensatory autophagy induction increases sensitivity to autophagy inhibitors. Mol Cell Oncol 2024; 11:2377404. [PMID: 39021618 PMCID: PMC11253891 DOI: 10.1080/23723556.2024.2377404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Inhibition of autophagy is an important strategy in cancer therapy. However, prolonged inhibition of certain autophagies in established cancer cells may increase therapeutic resistance, though the underlying mechanisms of its induction and enhancement remain unclear. This study sought to elucidate the mechanisms of therapeutic resistance through repeated autophagy inhibition and amino acid deprivation (AD) in an in vitro model of in vivo chronic nutrient deprivation associated with cancer cell treatment. In the human cervical cancer cell line HeLa and human breast cancer cell line MCF-7, initial extracellular AD induced the immediate expression of endosomal microautophagy (eMI). However, repeated inhibition of eMI with U18666A and extracellular AD induced macroautophagy (MA) to compensate for reduced eMI, simultaneously decreasing cytotoxicity. Here, hyperphosphorylated JNK was transformed into a hypophosphorylated state, suggesting conversion of the cell death signal to a survival signal. In a nutrient medium, cell death could not be induced by MA inhibition. However, since LAT1 inhibitors induce intracellular AD, combining them with MA and eMI inhibitors successfully promoted cell death in resistant cells. Our study identified a novel therapeuic approach for promoting cell death and addressing therapeutic resistance in cancers under autophagy-inhibitor treatment.
Collapse
Affiliation(s)
- Takahito Fukui
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Manami Yabumoto
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Misuzu Nishida
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Shiori Hirokawa
- Graduate School of Environment and Energy Engineering, Waseda University, Tokyo, Japan
| | - Riho Sato
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Taichi Kurisu
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Miyu Nakai
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Md. Abul Hassan
- Faculty of Bioscience and Bioindustry, Tokushima University Graduate School of Advanced Technology and Science, Tokushima, Japan
| | - Koji Kishimoto
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Technology, Industrial and Social Sciences, Tokushima, Japan
| |
Collapse
|
12
|
Liu Y, Meng Y, Zhang J, Gu L, Shen S, Zhu Y, Wang J. Pharmacology Progresses and Applications of Chloroquine in Cancer Therapy. Int J Nanomedicine 2024; 19:6777-6809. [PMID: 38983131 PMCID: PMC11232884 DOI: 10.2147/ijn.s458910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 07/11/2024] Open
Abstract
Chloroquine is a common antimalarial drug and is listed in the World Health Organization Standard List of Essential Medicines because of its safety, low cost and ease of use. Besides its antimalarial property, chloroquine also was used in anti-inflammatory and antivirus, especially in antitumor therapy. A mount of data showed that chloroquine mainly relied on autophagy inhibition to exert its antitumor effects. However, recently, more and more researches have revealed that chloroquine acts through other mechanisms that are autophagy-independent. Nevertheless, the current reviews lacked a comprehensive summary of the antitumor mechanism and combined pharmacotherapy of chloroquine. So here we focused on the antitumor properties of chloroquine, summarized the pharmacological mechanisms of antitumor progression of chloroquine dependent or independent of autophagy inhibition. Moreover, we also discussed the side effects and possible application developments of chloroquine. This review provided a more systematic and cutting-edge knowledge involved in the anti-tumor mechanisms and combined pharmacotherapy of chloroquine in hope of carrying out more in-depth exploration of chloroquine and obtaining more clinical applications.
Collapse
Affiliation(s)
- Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Department of Pharmacological Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| |
Collapse
|
13
|
Jin F, Jiang X, Ni X, Yu S, Wu F, Shi X, Mao D, Wang H, Shi Q, Liu Y, Xu Q. Alpha-Hederin induces incomplete autophagic injury in non-small cell lung cancer by interfering with the lysosomal acidification. Sci Rep 2024; 14:13258. [PMID: 38858422 PMCID: PMC11164981 DOI: 10.1038/s41598-024-63348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
Lung cancer is the most common oncological disease worldwide, with non-small cell lung cancer accounting for approximately 85% of lung cancer cases. α-Hederin is a monodesmosidic triterpenoid saponin isolated from the leaves of Hedera helix L. or Nigella sativa and has been extensively studied for its antitumor activity against a variety of tumor cells. It has been suggested that α-Hederin is a potential regulator of autophagy and has high promise for application. However, the specific mechanism and characteristics of α-Hederin in regulating autophagy are not well understood. In this study, we confirmed the potential of α-Hederin application in lung cancer treatment and comprehensively explored the mechanism and characteristics of α-Hederin in regulating autophagy in lung cancer cells. Our results suggest that α-Hederin is an incomplete autophagy inducer that targets mTOR to activate the classical autophagic pathway, inhibits lysosomal acidification without significantly affecting the processes of autophagosome transport, lysosome biogenesis, autophagosome and lysosome fusion, and finally leads to impaired autophagic flux and triggers autophagic damage in NSCLC.
Collapse
Affiliation(s)
- Feng Jin
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Xiaomin Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China
| | - Xiaochen Ni
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Shilong Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
- Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, 225001, China
| | - Feng Wu
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Xinlin Shi
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Defang Mao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Haibo Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China
| | - Qingtong Shi
- Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Yanqing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, China
| | - Qin Xu
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
14
|
Tryggestad SS, Roseth IA, Aass KR, Ørning NEH, Mjelle R, Hella H, Standal T. Toll-like receptor signaling in multiple myeloma cells promotes the expression of pro-survival genes B-cell lymphoma 2 and MYC and modulates the expression of B-cell maturation antigen. Front Immunol 2024; 15:1393906. [PMID: 38911853 PMCID: PMC11190062 DOI: 10.3389/fimmu.2024.1393906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
Infections are common in plasma cell cancer multiple myeloma (MM) due to disease-related immune deficiencies and cancer treatment. Myeloma cells express Toll-like receptors (TLRs), and TLR activation has been shown to induce proliferative and pro-survival signals in cancer cells. MM is a complex and heterogeneous disease, and expression levels of TLRs as well as downstream signaling components are likely to differ between patients. Here, we show that in a large cohort of patients, TLR1, TLR4, TLR6, TLR9, and TLR10 are the most highly expressed in primary CD138+ cells. Using an MM cell line expressing TLR4 and TLR9 as a model, we demonstrate that TLR4 and TLR9 activation promoted the expression of well-established pro-survival and oncogenes in MM such as MYC, IRF4, NFKB, and BCL2. TLR4 and TLR9 activation inhibited the efficacy of proteasome inhibitors bortezomib and carfilzomib, drugs used in the treatment of MM. Inhibiting the autophagosome-lysosome protein degradation pathway by hydroxychloroquine (HCQ) diminished the protective effect of TLR activation on proteasome inhibitor-induced cytotoxicity. We also found that TLR signaling downregulated the expression of TNFRSF17, the gene encoding for B-cell maturation antigen (BCMA). MYC, BCL2, and BCL2L1 were upregulated in approximately 50% of primary cells, while the response to TLR signaling in terms of TNFRSF17 expression was dichotomous, as an equal fraction of patients showed upregulation and downregulation of the gene. While proteasome inhibitors are part of first-line MM treatment, several of the new anti-MM immune therapeutic drugs target BCMA. Thus, TLR activation may render MM cells less responsive to commonly used anti-myeloma drugs.
Collapse
Affiliation(s)
- Synne Stokke Tryggestad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid Aass Roseth
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristin Roseth Aass
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nadia Elise Helene Ørning
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robin Mjelle
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pathology, St. Olavs University Hospital, Trondheim, Norway
| | - Hanne Hella
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
15
|
Zhao G, Wang Y, Fan Z, Xiong J, Ertas YN, Ashammakhi N, Wang J, Ma T. Nanomaterials in crossroad of autophagy control in human cancers: Amplification of cell death mechanisms. Cancer Lett 2024; 591:216860. [PMID: 38583650 DOI: 10.1016/j.canlet.2024.216860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Cancer is the result of genetic abnormalities that cause normal cells to grow into neoplastic cells. Cancer is characterized by several distinct features, such as uncontrolled cell growth, extensive spreading to other parts of the body, and the ability to resist treatment. The scientists have stressed the development of nanostructures as novel therapeutic options in suppressing cancer, in response to the emergence of resistance to standard medicines. One of the specific mechanisms with dysregulation during cancer is autophagy. Nanomaterials have the ability to specifically carry medications and genes, and they can also enhance the responsiveness of tumor cells to standard therapy while promoting drug sensitivity. The primary mechanism in this process relies on autophagosomes and their fusion with lysosomes to break down the components of the cytoplasm. While autophagy was initially described as a form of cellular demise, it has been demonstrated to play a crucial role in controlling metastasis, proliferation, and treatment resistance in human malignancies. The pharmacokinetic profile of autophagy modulators is poor, despite their development for use in cancer therapy. Consequently, nanoparticles have been developed for the purpose of delivering medications and autophagy modulators selectively and specifically to the cancer process. Furthermore, several categories of nanoparticles have demonstrated the ability to regulate autophagy, which plays a crucial role in defining the biological characteristics and response to therapy of tumor cells.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, 100000, China
| | - Zhongru Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jian Xiong
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye; Department of Biomedical Engineering, Erciyes University, Kayseri, 39039, Türkiye.
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Jianfeng Wang
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Ting Ma
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
16
|
Dowaidar M. Guidelines for the role of autophagy in drug delivery vectors uptake pathways. Heliyon 2024; 10:e30238. [PMID: 38707383 PMCID: PMC11066435 DOI: 10.1016/j.heliyon.2024.e30238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
The process of autophagy refers to the intracellular absorption of cytoplasm (such as proteins, nucleic acids, tiny molecules, complete organelles, and so on) into the lysosome, followed by the breakdown of that cytoplasm. The majority of cellular proteins are degraded by a process called autophagy, which is both a naturally occurring activity and one that may be induced by cellular stress. Autophagy is a system that can save cells' integrity in stressful situations by restoring metabolic basics and getting rid of subcellular junk. This happens as a component of an endurance response. This mechanism may have an effect on disease, in addition to its contribution to the homeostasis of individual cells and tissues as well as the control of development in higher species. The main aim of this study is to discuss the guidelines for the role of autophagy in drug delivery vector uptake pathways. In this paper, we discuss the meaning and concept of autophagy, the mechanism of autophagy, the role of autophagy in drug delivery vectors, autophagy-modulating drugs, nanostructures for delivery systems of autophagy modulators, etc. Later in this paper, we talk about how to deliver chemotherapeutics, siRNA, and autophagy inducers and inhibitors. We also talk about how hard it is to make a drug delivery system that takes nanocarriers' roles as autophagy modulators into account.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
17
|
Li T, Xiao P, Qiu D, Yang A, Chen Q, Lin J, Liu Y, Chen J, Zeng Z. NCX1/Ca 2+ promotes autophagy and decreases bortezomib activity in multiple myeloma through non-canonical NFκB signaling pathway. Cell Commun Signal 2024; 22:258. [PMID: 38711131 PMCID: PMC11075190 DOI: 10.1186/s12964-024-01628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/21/2024] [Indexed: 05/08/2024] Open
Abstract
Although bortezomib (BTZ) is the cornerstone of anti-multiple myeloma (MM) therapy, the inevitable primary and secondary drug resistance still seriously affects the prognosis of patients. New treatment strategies are in need. Sodium-calcium exchanger 1 (NCX1) is a calcium-permeable ion transporter on the membrane, and our previous studies showed that low NCX1 confers inferior viability in MM cells and suppressed osteoclast differentiation. However, the effect of NCX1 on BTZ sensitivity of MM and its possible mechanism remain unclear. In this study, we investigated the effect of NCX1 on BTZ sensitivity in MM, focusing on cellular processes of autophagy and cell viability. Our results provide evidence that NCX1 expression correlates with MM disease progression and low NCX1 expression increases BTZ sensitivity. NCX1/Ca2+ triggered autophagic flux through non-canonical NFκB pathway in MM cells, leading to attenuated the sensitivity of BTZ. Knockdown or inhibition of NCX1 could potentiate the anti-MM activity of BTZ in vitro and vivo, and inhibition of autophagy sensitized NCX1-overexpressing MM cells to BTZ. In general, this work implicates NCX1 as a potential therapeutic target in MM with BTZ resistance and provides novel mechanistic insights into its vital role in combating BTZ resistance.
Collapse
Affiliation(s)
- Tingting Li
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, Fuzhou, China
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Pingping Xiao
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Dongbiao Qiu
- Department of Blood Transfusion, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Apeng Yang
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, Fuzhou, China
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qingjiao Chen
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, Fuzhou, China
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Junfang Lin
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, Fuzhou, China
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Junmin Chen
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Laboratory Medicine, Fuzhou, China.
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Zhiyong Zeng
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Laboratory Medicine, Fuzhou, China.
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
18
|
Yanar S, Bal Albayrak MG, Kasap M, Akpinar G. From Androgen Dependence to Independence in Prostate Cancer: Unraveling Therapeutic Potential and Proteomic Landscape of Hydroxychloroquine as an Autophagy Inhibitor. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:246-255. [PMID: 38722704 DOI: 10.1089/omi.2024.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Prostate cancer is a major planetary health challenge wherein new ways of thinking drug discovery and therapeutics innovation are much needed. Numerous studies have shown that autophagy inhibition holds a significant role as an adjunctive intervention in prostate cancer. Hydroxychloroquine (HCQ) has gained considerable attention due to its established role as an autophagy inhibitor across diverse cancer types, but its proteomics landscape and systems biology in prostate cancer are currently lacking in the literature. This study reports the proteomic responses to HCQ in prostate cancer cells, namely, androgen-dependent LNCaP and androgen-independent PC3 cells. Differentially expressed proteins and proteome in HCQ-treated cells were determined by label-free quantification with nano-high-performance liquid chromatography and tandem mass spectrometry (nHPLC-MS/MS), and harnessing bioinformatics tools. In PC3 cells, there was a marked shift toward metabolic reprogramming, highlighted by an upregulation of mitochondrial proteins in oxidative phosphorylation and tricarboxylic acid cycle, suggesting an adaptive mechanism to maintain energy production under therapeutic stress. In contrast, LNCaP cells prioritized proteostasis and cell cycle regulation, indicating a more conservative adaptation strategy. To the best of our knowledge, this study is the first to demonstrate the differential responses of prostate cancer cells to autophagy inhibition by HCQ, suggesting that a combination therapy approach, targeting distinct pathways in androgen-independent and androgen-dependent cells, could represent a promising treatment strategy. Moreover, the varied proteomic responses observed between these cell lines underscore the importance of personalized medicine in cancer therapy. Future translational and clinical research on HCQ and prostate cancer are called for.
Collapse
Affiliation(s)
- Sevinc Yanar
- Department of Histology and Embryology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | | | - Murat Kasap
- Department of Medical Biology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| |
Collapse
|
19
|
Yeşilaltay A, Muz D, Erdal B. Oncolytic Myxoma virus Increases Autophagy in Multiple Myeloma. Turk J Haematol 2024; 41:16-25. [PMID: 38258554 PMCID: PMC10918390 DOI: 10.4274/tjh.galenos.2024.2023.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/23/2024] [Indexed: 01/24/2024] Open
Abstract
Objective Multiple myeloma, which affects plasma cells, is the second most common hematological malignancy. Despite the development of new drugs and treatment protocols, patient survival has not reached the desired level. In this study, we investigated the effects of Myxoma virus (MYXV), an oncolytic virus, on autophagy in myeloma cells. Materials and Methods We analyzed protein expressions of ATG-5, p62, Beclin-1, LC3B, and the apoptosis marker Bcl-2 as autophagy markers in human U-266 and mouse MOPC-315 myeloma cell lines subjected to different doses of MYXV. In addition, autophagic images of myeloma cells were investigated using transmission electron microscopy (TEM). Results In the first 24 h, which is the early stage of autophagy, ATG-5 and Beclin-1 expression levels were increased in the U-266 and MOPC-315 cell lines in the groups that had received MYXV at a multiplicity of infection of 15. At 48 h, a significant increase was detected in the expression of LC3B, which is a late indicator. Autophagosomes were observed in myeloma cells by TEM. Conclusion MYXV shows an antimyeloma effect by increasing autophagy in myeloma cells.
Collapse
Affiliation(s)
- Alpay Yeşilaltay
- Başkent University İstanbul Hospital, Department of Hematology, İstanbul, Türkiye
| | - Dilek Muz
- Tekirdağ Namık Kemal University Faculty of Veterinary Medicine, Department of Virology, Tekirdağ, Türkiye
| | - Berna Erdal
- Tekirdağ Namık Kemal University Faculty of Medicine, Department of Microbiology, Tekirdağ, Türkiye
| |
Collapse
|
20
|
Pakjoo M, Ahmadi SE, Zahedi M, Jaafari N, Khademi R, Amini A, Safa M. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors. Cell Commun Signal 2024; 22:105. [PMID: 38331801 PMCID: PMC10851565 DOI: 10.1186/s12964-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ATMP department, Breast cancer research center, Motamed cancer institute, ACECR, P.O. BOX:15179/64311, Tehran, Iran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Pangarkar M, Wagh U, Pathak A. Autophagy indicators in oral squamous cell carcinoma. Pathology 2024; 56:59-64. [PMID: 37981514 DOI: 10.1016/j.pathol.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 08/25/2023] [Indexed: 11/21/2023]
Abstract
Autophagy plays an important role in maintaining cellular homeostasis. Dysregulation of autophagy has been linked to a number of diseases, including cancer. We retrospectively evaluated immunohistochemical expression of the autophagy markers LC3B and p62 and the autophagy regulator mTOR as an indicator of autophagy in 100 surgically resected primary oral squamous cell carcinoma (OSCC) samples and sought associations with various clinicopathological factors. The expression of all three proteins was significantly higher in malignant squamous cells than in benign squamous cells in the free mucosal margin adjacent to the OSCC. Male sex, higher tumour (T) stage, node (N) stage and tumour, node, metastasis (TNM) stage were significantly associated with high marker expression; age and histological grade showed no significant association. LC3B, p62 and mTOR expression were positively correlated with one another in OSCCs, and the correlation was significant for LC3B and mTOR as well as for LC3B and p62. Disease-free survival showed an inverse correlation with high mTOR expression. Our data suggest that autophagy inhibitors and mTOR inhibitors may have a therapeutic role in the treatment of OSCCs.
Collapse
Affiliation(s)
| | - Uttara Wagh
- National Cancer Institute, Nagpur, Maharashtra, India
| | - Anand Pathak
- National Cancer Institute, Nagpur, Maharashtra, India
| |
Collapse
|
22
|
Tang P, Yu Z, Sun H, Liu L, Gong L, Fang T, Sun X, Xie S, An G, Xu Z, Qiu L, Hao M. CRIP1 involves the pathogenesis of multiple myeloma via dual-regulation of proteasome and autophagy. EBioMedicine 2024; 100:104961. [PMID: 38199044 PMCID: PMC10825369 DOI: 10.1016/j.ebiom.2023.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable hematological malignancy of the plasma cells. The maintenance of protein homeostasis is critical for MM cell survival. Elevated levels of paraproteins in MM cells are cleared by proteasomes or lysosomes, which are independent but inter-connected with each other. Proteasome inhibitors (PIs) work as a backbone agent and successfully improved the outcome of patients; however, the increasing activity of autophagy suppresses the sensitivity to PIs treatment. METHODS The transcription levels of CRIP1 were explored in plasma cells obtained from healthy donors, patients with newly diagnosed multiple myeloma (NDMM), and relapsed/refractory multiple myeloma (RRMM) using Gene expression omnibus datasets. Doxycycline-inducible CRIP1-shRNA and CRIP1 overexpressed MM cell lines were constructed to explore the role of CRIP1 in MM pathogenesis. Proliferation, invasion, migration, proteasome activity and autophagy were examined in MM cells with different CRIP1 levels. Co-immunoprecipitation (Co-IP) with Tandem affinity purification/Mass spectrum (TAP/MS) was performed to identify the binding proteins of CRIP1. The mouse xenograft model was used to determine the role of CRIP1 in the proliferation and drug-resistance of MM cells. FINDINGS High CRIP1 expression was associated with unfavorable clinical outcomes in patients with MM and served as a biomarker for RRMM with shorter overall survival. In vitro and in vivo studies showed that CRIP1 plays a critical role in protein homeostasis via the dual regulation of the activities of proteasome and autophagy in MM cells. A combined analysis of RNA-seq, Co-IP and TAP/MS demonstrated that CRIP1 promotes proteasome inhibitors resistance in MM cells by simultaneously binding to de-ubiquitinase USP7 and proteasome coactivator PA200. CRIP1 promoted proteasome activity and autophagosome maturation by facilitating the dequbiquitination and stabilization of PA200. INTERPRETATION Our findings clarified the pivotal roles of the CRIP1/USP7/PA200 complex in ubiquitin-dependent proteasome degradation and autophagy maturation involved in the pathogenesis of MM. FUNDING A full list of funding sources can be found in the acknowledgements section.
Collapse
Affiliation(s)
- Peixia Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Lixin Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiyue Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shiyi Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhenshu Xu
- Hematology Department Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fuzhou, Fujian, China.
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China; Gobroad Healthcare Group, Beijing, China.
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| |
Collapse
|
23
|
Agalakova NI. Chloroquine and Chemotherapeutic Compounds in Experimental Cancer Treatment. Int J Mol Sci 2024; 25:945. [PMID: 38256019 PMCID: PMC10815352 DOI: 10.3390/ijms25020945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Chloroquine (CQ) and its derivate hydroxychloroquine (HCQ), the compounds with recognized ability to suppress autophagy, have been tested in experimental works and in clinical trials as adjuvant therapy for the treatment of tumors of different origin to increase the efficacy of cytotoxic agents. Such a strategy can be effective in overcoming the resistance of cancer cells to standard chemotherapy or anti-angiogenic therapy. This review presents the results of the combined application of CQ/HCQ with conventional chemotherapy drugs (doxorubicin, paclitaxel, platinum-based compounds, gemcitabine, tyrosine kinases and PI3K/Akt/mTOR inhibitors, and other agents) for the treatment of different malignancies obtained in experiments on cultured cancer cells, animal xenografts models, and in a few clinical trials. The effects of such an approach on the viability of cancer cells or tumor growth, as well as autophagy-dependent and -independent molecular mechanisms underlying cellular responses of cancer cells to CQ/HCQ, are summarized. Although the majority of experimental in vitro and in vivo studies have shown that CQ/HCQ can effectively sensitize cancer cells to cytotoxic agents and increase the potential of chemotherapy, the results of clinical trials are often inconsistent. Nevertheless, the pharmacological suppression of autophagy remains a promising tool for increasing the efficacy of standard chemotherapy, and the development of more specific inhibitors is required.
Collapse
Affiliation(s)
- Natalia I Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, Saint-Petersburg 194223, Russia
| |
Collapse
|
24
|
Kozalak G, Koşar A. Autophagy-related mechanisms for treatment of multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:838-857. [PMID: 38239705 PMCID: PMC10792488 DOI: 10.20517/cdr.2023.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Multiple myeloma (MM) is a type of hematological cancer that occurs when B cells become malignant. Various drugs such as proteasome inhibitors, immunomodulators, and compounds that cause DNA damage can be used in the treatment of MM. Autophagy, a type 2 cell death mechanism, plays a crucial role in determining the fate of B cells, either promoting their survival or inducing cell death. Therefore, autophagy can either facilitate the progression or hinder the treatment of MM disease. In this review, autophagy mechanisms that may be effective in MM cells were covered and evaluated within the contexts of unfolded protein response (UPR), bone marrow microenvironment (BMME), drug resistance, hypoxia, DNA repair and transcriptional regulation, and apoptosis. The genes that are effective in each mechanism and research efforts on this subject were discussed in detail. Signaling pathways targeted by new drugs to benefit from autophagy in MM disease were covered. The efficacy of drugs that regulate autophagy in MM was examined, and clinical trials on this subject were included. Consequently, among the autophagy mechanisms that are effective in MM, the most suitable ones to be used in the treatment were expressed. The importance of 3D models and microfluidic systems for the discovery of new drugs for autophagy and personalized treatment was emphasized. Ultimately, this review aims to provide a comprehensive overview of MM disease, encompassing autophagy mechanisms, drugs, clinical studies, and further studies.
Collapse
Affiliation(s)
- Gül Kozalak
- Faculty of Engineering and Natural Science, Sabancı University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabancı University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara 06700, Turkey
| |
Collapse
|
25
|
Low LE, Kong CK, Yap WH, Siva SP, Gan SH, Siew WS, Ming LC, Lai-Foenander AS, Chang SK, Lee WL, Wu Y, Khaw KY, Ong YS, Tey BT, Singh SK, Dua K, Chellappan DK, Goh BH. Hydroxychloroquine: Key therapeutic advances and emerging nanotechnological landscape for cancer mitigation. Chem Biol Interact 2023; 386:110750. [PMID: 37839513 DOI: 10.1016/j.cbi.2023.110750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/12/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Hydroxychloroquine (HCQ) is a unique class of medications that has been widely utilized for the treatment of cancer. HCQ plays a dichotomous role by inhibiting autophagy induced by the tumor microenvironment (TME). Preclinical studies support the use of HCQ for anti-cancer therapy, especially in combination with conventional anti-cancer treatments since they sensitize tumor cells to drugs, potentiating the therapeutic activity. However, clinical evidence has suggested poor outcomes for HCQ due to various obstacles, including non-specific distribution, low aqueous solubility and low bioavailability at target sites, transport across tissue barriers, and retinal toxicity. These issues are addressable via the integration of HCQ with nanotechnology to produce HCQ-conjugated nanomedicines. This review aims to discuss the pharmacodynamic, pharmacokinetic and antitumor properties of HCQ. Furthermore, the antitumor performance of the nanoformulated HCQ is also reviewed thoroughly, aiming to serve as a guide for the HCQ-based enhanced treatment of cancers. The nanoencapsulation or nanoconjugation of HCQ with nanoassemblies appears to be a promising method for reducing the toxicity and improving the antitumor efficacy of HCQ.
Collapse
Affiliation(s)
- Liang Ee Low
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Chee Kei Kong
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Wei-Hsum Yap
- School of Biosciences, Taylor's University, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Sangeetaprivya P Siva
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Siew Hua Gan
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Wei Sheng Siew
- School of Biosciences, Taylor's University, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia.
| | - Ashley Sean Lai-Foenander
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia.
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Kooi-Yeong Khaw
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Yong Sze Ong
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), 57000 Bukit Jalil, Kuala Lumpur, Malaysia.
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia.
| |
Collapse
|
26
|
Gustafson DL, Viola LO, Towers CG, Das S, Duval DL, Van Eaton KM. Sensitivity of osteosarcoma cell lines to autophagy inhibition as determined by pharmacologic and genetic manipulation. Vet Comp Oncol 2023; 21:726-738. [PMID: 37724007 PMCID: PMC11470750 DOI: 10.1111/vco.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/05/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023]
Abstract
Pharmacologic inhibition of autophagy can be achieved using lysosomotropic agents such as hydroxychloroquine (HCQ) that interfere with fusion of the autophagosome to the lysosome thus preventing completion of the recycling process. The goal of the present study is to determine the sensitivity of eight canine (cOSA) and four human (hOSA) osteosarcoma tumour cell lines to antiproliferative and cytotoxic effects of lysosomal autophagy inhibitors, and to compare these results to the autophagy-dependence measured using a CRISPR/Cas9 live-cell imaging assay in OSA and other tumour cell lines. Antiproliferative and cytotoxic response to HCQ and Lys05 was determined using live cell imaging and YOYO-1 staining. CRISPR/Cas9 live cell imaging screen was done using species specific guide RNA's and transfection of reagents into cells. Response to autophagy core genes was compared to response to an essential (PCNA) and non-essential (FOXO3A) gene. cOSA and hOSA cell lines showed similar antiproliferative and cytotoxic responses to HCQ and Lys05 with median lethal dose (Dm ) values ranging from 4.6-15.8 μM and 2.1-5.1 μM for measures of anti-proliferative response, respectively. A relationship was observed between antiproliferative responses to HCQ and Lys05 and VPS34 CRISPR score with Dm values correlating with VPS34 response (r = 0.968 and 0.887) in a species independent manner. The results show that a subset of cOSA and hOSA cell lines are autophagy-dependent and sensitive to HCQ at pharmacologically-relevant exposures.
Collapse
Affiliation(s)
- Daniel L. Gustafson
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Developmental Therapeutics Program, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Lindsey O. Viola
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Christina G. Towers
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Sunetra Das
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Dawn L. Duval
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Developmental Therapeutics Program, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Kristen M. Van Eaton
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
27
|
Meng L, Gao J, Mo W, Wang B, Shen H, Cao W, Ding M, Diao W, Chen W, Zhang Q, Shu J, Dai H, Guo H. MIOX inhibits autophagy to regulate the ROS -driven inhibition of STAT3/c-Myc-mediated epithelial-mesenchymal transition in clear cell renal cell carcinoma. Redox Biol 2023; 68:102956. [PMID: 37977044 PMCID: PMC10692917 DOI: 10.1016/j.redox.2023.102956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
The specific mechanism of clear cell renal cell carcinoma (ccRCC) progression, a pathological type that accounts for the highest proportion of RCC, remains unclear. In this study, bioinformatics analysis of scRNA-seq dataset in ccRCC revealed that MIOX was a gene specifically down-regulated in tumor epithelial cells of ccRCC. Analysis of the TCGA database further validated the association between decreased MIOX mRNA levels and ccRCC malignant phenotype and poor prognosis. Immunohistochemistry indicated the down-regulation of MIOX in ccRCC tissues compared to paired adjacent renal tissues, with further down-regulation of MIOX in the primary tumors of patients with primary metastasis compared to those without metastasis. Also, patients with low expression of MIOX showed shorter metastasis-free survival (MFS) compared to those with high MIOX expression. In vitro results showed that overexpression of MIOX in ccRCC cells inhibited the proliferation, migration and invasion and promoted apoptosis. Mechanistically, up-regulation of MIOX inhibited autophagy to elevate the levels of ROS, and thus suppressed STAT3/c-Myc-mediated epithelial-mesenchymal transition in ccRCC cells. In vivo data further confirmed that increased MIOX expression suppressed the growth and proliferation of RCC cells and reduced the ability of RCC cells to form metastases in the lung. This study demonstrates that MIOX is an important regulatory molecule of ccRCC, which is conducive to understanding the potential molecular mechanism of ccRCC progression.
Collapse
Affiliation(s)
- Longxiyu Meng
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jie Gao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wenjing Mo
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Baojun Wang
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Hongwei Shen
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Wenmin Cao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Meng Ding
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wenli Diao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wei Chen
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Qing Zhang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jiaxin Shu
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Huiqi Dai
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
28
|
Ren Z, Song Y, Xian J, Liao Y, Zhan Y, Zhao T, Wang H, Jiang J, Xu M, Jiang Y, Liu X, Wei X, Wang K, Xiao J. Identification of Fangchinoline as a novel autophagy inhibitor with an adjuvant of chemotherapy against lung cancer. Toxicol Appl Pharmacol 2023; 477:116679. [PMID: 37689368 DOI: 10.1016/j.taap.2023.116679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
Autophagy is a fundamental recycling pathway that enhances cellular resilience, promoting survival. However, this survival mechanism can impede anti-cancer treatment strategies designed to induce cell death. In this study, we identified a novel autophagy inhibitor, Fangchinoline (Fan) isolated from the traditional Chinese medicine Stephania tetrandra. We speculated that when Fan blocks autophagy, cancer cells lose substantial self-preservation abilities during treatment. Firstly, we examined in detail the mechanism through which Fan inhibits autophagy. Specifically, Fan induced a significant increase in autophagosomes, as indicated by GFP-LC3 labeling, confirmed by the up-regulation of LC3-II. The autophagy receptor protein p62 was also up-regulated, suggesting a potential inhibition of autophagy flux. We further ruled out the possibility of fusion barriers between lysosomes and autophagosomes, as confirmed by their co-localization in double fluorescence staining. However, the lysosomal acid environment might be compromised, as suggested by the diminished fluorescence of acidity-sensitive dyes in the lysosomes and the corresponding decrease in mature forms of lysosomal cathepsin. To test the anti-cancer potential of Fan, we combined it with Cisplatin (Cis) or Paclitaxel (PTX) for lung cancer cell treatment. This combined treatment demonstrated a synergistically enhanced killing effect. These promising anti-tumor results were also replicated in a xenografted tumor model. The significance of this research lies in the identification of Fan as a potent autophagy inhibitor and its potential to enhance the efficacy of existing anti-cancer drugs. By unraveling the mechanisms of Fan's action on autophagy and demonstrating its synergistic effect in combination therapies, our study provides valuable insights for developing novel strategies to overcome autophagy-mediated resistance in cancer treatment.
Collapse
Affiliation(s)
- Zhenyang Ren
- Research Center for Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Yue Song
- Research Center for Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Jinhuan Xian
- Research Center for Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Yuan Liao
- Research Center for Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Yujuan Zhan
- Research Center for Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Tingxiu Zhao
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Huiqi Wang
- Research Center for Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Junbo Jiang
- Research Center for Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Mansi Xu
- Research Center for Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Xianli Wei
- Department of Medical Instruments, Guangdong Food and Drug Vocational College, Guangzhou 510520, China.
| | - Kun Wang
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Jianyong Xiao
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
29
|
Chen J, Cao W, Huang X, Chen Q, Ye S, Qu J, Liu Y, Guo X, Yao S, Zhang E, He J, Li A, Yang L, Cai Z. TRIM21 enhances bortezomib sensitivity in multiple myeloma by halting prosurvival autophagy. Blood Adv 2023; 7:5752-5770. [PMID: 37083684 PMCID: PMC10561007 DOI: 10.1182/bloodadvances.2022008241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/22/2023] [Accepted: 04/09/2023] [Indexed: 04/22/2023] Open
Abstract
Bortezomib (bort) is an effective therapeutic agent for patients with multiple myeloma (MM); however, most patients develop drug resistance. Autophagy, a highly conserved process that recycles cytosol or entire organelles via lysosomal activity, is essential for the survival, homeostasis, and drug resistance in MM. Growing evidence has highlighted that E3 ligase tripartite motif-containing protein 21 (TRIM21) not only interacts with multiple autophagy regulators but also participates in drug resistance in various cancers. However, to date, the direct substrates and additional roles of TRIM21 in MM remain unexplored. In this study, we demonstrated that low TRIM21 expression is a factor for relapse in MM. TRIM21 knockdown (KD) made MM cells more resistant to bort, whereas TRIM21 overexpression (OE) resulted in increased MM sensitivity to bort. Proteomic and phosphoproteomic studies of TRIM21 KD MM cells showed that bort resistance was associated with increased oxidative stress and elevated prosurvival autophagy. Our results showed that TRIM21 KD MM cell lines induced prosurvival autophagy after bort treatment, suppressing autophagy by 3-methyladenine treatment or by the short hairpin RNA of autophagy-related gene 5 (ATG5)-restored-bort sensitivity. Indeed, ATG5 expression was increased and decreased by TRIM21 KD and OE, respectively. TRIM21 affected autophagy by ubiquitinating ATG5 through K48 for proteasomal degradation. Importantly, we confirmed that TRIM21 could potentiate the antimyeloma effect of bort through in vitro and in vivo experiments. Overall, our findings define the key role of TRIM21 in MM bort resistance and provide a foundation for a novel targeted therapeutic approach.
Collapse
Affiliation(s)
- Jing Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wen Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xi Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingxiao Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuting Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianwei Qu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Guo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shunnan Yao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anqi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Elshami FI, Shereef HA, El-Mehasseb IM, Shaban SY, van Eldik R. Hydroxychloroquine-Loaded Chitosan Nanoparticles Induce Anticancer Activity in A549 Lung Cancer Cells: Design, BSA Binding, Molecular Docking, Mechanistic, and Biological Evaluation. Int J Mol Sci 2023; 24:14103. [PMID: 37762406 PMCID: PMC10531786 DOI: 10.3390/ijms241814103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The current study describes the encapsulation of hydroxychloroquine, widely used in traditional medicine due to its diverse pharmacological and medicinal uses, in chitosan nanoparticles (CNPs). This work aims to combine the HCQ drug with CS NPs to generate a novel nanocomposite with improved characteristics and bioavailability. HCQ@CS NPs are roughly shaped like roadways and have a smooth surface with an average size of 159.3 ± 7.1 nm, a PDI of 0.224 ± 0.101, and a zeta potential of +46.6 ± 0.8 mV. To aid in the development of pharmaceutical systems for use in cancer therapy, the binding mechanism and affinity of the interaction between HCQ and HCQ@CS NPs and BSA were examined using stopped-flow and other spectroscopic approaches, supplemented by molecular docking analysis. HCQ and HCQ@CS NPs binding with BSA is driven by a ground-state complex formation that may be accompanied by a non-radiative energy transfer process, and binding constants indicate that HCQ@CS NPs-BSA was more stable than HCQ-BSA. The stopped-flow analysis demonstrated that, in addition to increasing BSA affinity, the nanoformulation HCQ@CS NPS changes the binding process and may open new routes for interaction. Docking experiments verified the development of the HCQ-BSA complex, with HCQ binding to site I on the BSA structure, primarily with the amino acids, Thr 578, Gln 579, Gln 525, Tyr 400, and Asn 404. Furthermore, the nanoformulation HCQ@CS NPS not only increased cytotoxicity against the A549 lung cancer cell line (IC50 = 28.57 ± 1.72 μg/mL) compared to HCQ (102.21 ± 0.67 μg/mL), but also exhibited higher antibacterial activity against both Gram-positive and Gram-negative bacteria when compared to HCQ and chloramphenicol, which is in agreement with the binding constants. The nanoformulation developed in this study may offer a viable therapy option for A549 lung cancer.
Collapse
Affiliation(s)
- Fawzia I. Elshami
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (F.I.E.); (I.M.E.-M.)
| | - Hadeer A. Shereef
- Clinical Pathology Department, University Hospital, Menoufia University, Shebin El-Kom 32512, Egypt;
| | - Ibrahim M. El-Mehasseb
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (F.I.E.); (I.M.E.-M.)
| | - Shaban Y. Shaban
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (F.I.E.); (I.M.E.-M.)
| | - Rudi van Eldik
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
31
|
Patiño-Escobar B, Talbot A, Wiita AP. Overcoming proteasome inhibitor resistance in the immunotherapy era. Trends Pharmacol Sci 2023; 44:507-518. [PMID: 37344251 DOI: 10.1016/j.tips.2023.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Proteasome inhibitors (PIs) are a fascinating class of small molecules that disrupt protein homeostasis and are highly efficacious in the blood cancer multiple myeloma. However, PIs are not curative, and overcoming PI resistance to extend patient survival remains a major unmet need. Recent strategies to overcome PI resistance, including inhibiting alternative protein homeostasis pathways and targeting the mitochondrion as a nexus of metabolic adaptation to PIs, are gaining momentum. However, these focused approaches may be surpassed or even obviated by quickly emerging immunotherapy strategies that do not selectively target PI resistance mechanisms but are highly efficacious in PI-resistant disease, nonetheless. Informed by insights from these promising areas of research moving in parallel, we propose that pharmacological strategies to enforce immunotherapeutic vulnerabilities in resistant disease may provide a unified outlook to overcome PI resistance in a 'new era' of myeloma treatment.
Collapse
Affiliation(s)
- Bonell Patiño-Escobar
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Alexis Talbot
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; INSERM U976, Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| |
Collapse
|
32
|
Bestion E, Raymond E, Mezouar S, Halfon P. Update on Autophagy Inhibitors in Cancer: Opening up to a Therapeutic Combination with Immune Checkpoint Inhibitors. Cells 2023; 12:1702. [PMID: 37443736 PMCID: PMC10341243 DOI: 10.3390/cells12131702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Autophagy is a highly conserved and natural degradation process that helps maintain cell homeostasis through the elimination of old, worn, and defective cellular components, ensuring proper cell energy intake. The degradative pathway constitutes a protective barrier against diverse human diseases including cancer. Autophagy basal level has been reported to be completely dysregulated during the entire oncogenic process. Autophagy influences not only cancer initiation, development, and maintenance but also regulates cancer response to therapy. Currently, autophagy inhibitor candidates mainly target the early autophagy process without any successful preclinical/clinical development. Lessons learned from autophagy pharmaceutical manipulation as a curative option progressively help to improve drug design and to encounter new targets of interest. Combinatorial strategies with autophagy modulators are supported by abundant evidence, especially dealing with immune checkpoint inhibitors, for which encouraging preclinical results have been recently published. GNS561, a PPT1 inhibitor, is a promising autophagy modulator as it has started a phase 2 clinical trial in liver cancer indication, combined with atezolizumab and bevacizumab, an assessment without precedent in the field. This approach paves a new road, leading to the resurgence of anticancer autophagy inhibitors as an attractive therapeutic target in cancer.
Collapse
Affiliation(s)
- Eloïne Bestion
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
| | - Eric Raymond
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
- Department of Medical Oncology, Paris Saint-Joseph Hospital Group, 75014 Paris, France
| | - Soraya Mezouar
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
- Établissement Français du Sang, Provence Alpes Côte d’Azur et Corse, Marseille, France; «Biologie des Groupes Sanguins», Aix Marseille Univ-CNRS-EFS-ADÉS, 13005 Marseille, France
| | - Philippe Halfon
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
| |
Collapse
|
33
|
Yusuf IH, Charbel Issa P, Ahn SJ. Unmet needs and future perspectives in hydroxychloroquine retinopathy. Front Med (Lausanne) 2023; 10:1196815. [PMID: 37359010 PMCID: PMC10288184 DOI: 10.3389/fmed.2023.1196815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Retinopathy is a well-recognized toxic effect of hydroxychloroquine treatment. As hydroxychloroquine retinopathy is potentially a vision-threatening condition, early detection is imperative to minimize vision loss due to drug toxicity. However, early detection of hydroxychloroquine retinopathy is still challenging even with modern retinal imaging techniques. No treatment has been established for this condition, except for drug cessation to minimize further damage. In this perspective article, we aimed to summarize the knowledge gaps and unmet needs in current clinical practice and research in hydroxychloroquine retinopathy. The information presented in this article may help guide the future directions of screening practices and research in hydroxychloroquine retinopathy.
Collapse
Affiliation(s)
- Imran H. Yusuf
- Oxford Eye Hospital and Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Peter Charbel Issa
- Oxford Eye Hospital and Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Seong Joon Ahn
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
34
|
Clavero E, Sanchez-Maldonado JM, Macauda A, Ter Horst R, Sampaio-Marques B, Jurczyszyn A, Clay-Gilmour A, Stein A, Hildebrandt MAT, Weinhold N, Buda G, García-Sanz R, Tomczak W, Vogel U, Jerez A, Zawirska D, Wątek M, Hofmann JN, Landi S, Spinelli JJ, Butrym A, Kumar A, Martínez-López J, Galimberti S, Sarasquete ME, Subocz E, Iskierka-Jażdżewska E, Giles GG, Rybicka-Ramos M, Kruszewski M, Abildgaard N, Verdejo FG, Sánchez Rovira P, da Silva Filho MI, Kadar K, Razny M, Cozen W, Pelosini M, Jurado M, Bhatti P, Dudzinski M, Druzd-Sitek A, Orciuolo E, Li Y, Norman AD, Zaucha JM, Reis RM, Markiewicz M, Rodríguez Sevilla JJ, Andersen V, Jamroziak K, Hemminki K, Berndt SI, Rajkumar V, Mazur G, Kumar SK, Ludovico P, Nagler A, Chanock SJ, Dumontet C, Machiela MJ, Varkonyi J, Camp NJ, Ziv E, Vangsted AJ, Brown EE, Campa D, Vachon CM, Netea MG, Canzian F, Försti A, Sainz J. Polymorphisms within Autophagy-Related Genes as Susceptibility Biomarkers for Multiple Myeloma: A Meta-Analysis of Three Large Cohorts and Functional Characterization. Int J Mol Sci 2023; 24:ijms24108500. [PMID: 37239846 DOI: 10.3390/ijms24108500] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10-9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10-4-5.79 × 10-14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10-4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10-4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10-4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3- B cells, CD5+IgD- cells, IgM- cells, IgD-IgM- cells, and CD4-CD8- PBMCs (p = 4.9 × 10-4-8.6 × 10-4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27- cells (p = 9.3 × 10-4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3-, MCP-2-, and IL20-dependent pathways.
Collapse
Affiliation(s)
- Esther Clavero
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain
| | - José Manuel Sanchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain
- Instituto de Investigación Biosanataria IBs, Granada, 18014 Granada, Spain
| | - Angelica Macauda
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Artur Jurczyszyn
- Plasma Cell Dyscrasias Center, Department of Hematology, Jagiellonian University Medical College, 31-066 Kraków, Poland
| | - Alyssa Clay-Gilmour
- Department of Biostatistics and Epidemiology, Arnold School of Public Health, University of South Carolina, Greenville, SC 29208, USA
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA
| | - Angelika Stein
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michelle A T Hildebrandt
- Department of Lymphoma-Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Niels Weinhold
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gabriele Buda
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa/AOUP, 56126 Pisa, Italy
| | - Ramón García-Sanz
- Diagnostic Laboratory Unit in Hematology, University Hospital of Salamanca, IBSAL, CIBERONC, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Waldemar Tomczak
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-059 Lublin, Poland
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| | - Andrés Jerez
- Department of Hematology, Experimental Hematology Unit, Vall d'Hebron Institute of Oncology (VHIO), University Hospital Vall d'Hebron, 08035 Barcelona, Spain
| | - Daria Zawirska
- Department of Hematology, University Hospital, 30-688 Kraków, Poland
| | - Marzena Wątek
- Holycross Medical Oncology Center, 25-735 Kielce, Poland
- Institute of Hematology and Transfusion Medicine, 00-791 Warsaw, Poland
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stefano Landi
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - John J Spinelli
- Division of Population Oncology, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Alfred Sokolowski Specialist Hospital in Walbrzych Oncology Support Centre for Clinical Trials, 58-309 Walbrzych, Poland
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | | | - Sara Galimberti
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa/AOUP, 56126 Pisa, Italy
| | - María Eugenia Sarasquete
- Diagnostic Laboratory Unit in Hematology, University Hospital of Salamanca, IBSAL, CIBERONC, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Edyta Subocz
- Department of Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland
| | | | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Malwina Rybicka-Ramos
- Department of Hematology, Specialist Hospital No. 1 in Bytom, Academy of Silesia, Faculty of Medicine, 40-055 Katowice, Poland
| | - Marcin Kruszewski
- Department of Hematology, University Hospital No. 2, 85-168 Bydgoszcz, Poland
| | - Niels Abildgaard
- Department of Hematology, Odense University Hospital, DK-5000 Odense, Denmark
| | | | - Pedro Sánchez Rovira
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain
| | - Miguel Inacio da Silva Filho
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | | | - Małgorzata Razny
- Department of Hematology, Rydygier Hospital, 31-826 Cracow, Poland
| | - Wendy Cozen
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, Department of Pathology, School of Medicine, Susan and Henry Samueli College of Health Sciences, Chao Family Comprehensive Cancer Center, University of California at Irvine, Irvine, CA 92697, USA
| | - Matteo Pelosini
- U.O. Dipartimento di Ematologia, Azienda USL Toscana Nord Ovest, 57124 Livorno, Italy
| | - Manuel Jurado
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain
- Instituto de Investigación Biosanataria IBs, Granada, 18014 Granada, Spain
- Department of Medicine, University of Granada, 18012 Granada, Spain
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Marek Dudzinski
- Department of Hematology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Agnieszka Druzd-Sitek
- Department of Lymphoproliferative Diseases, Maria Skłodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Enrico Orciuolo
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa/AOUP, 56126 Pisa, Italy
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Aaron D Norman
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA
- Genetic Epidemiology and Risk Assessment Program, Mayo Clinic Comprehensive Cancer Center, Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA
| | - Jan Maciej Zaucha
- Department of Hematology and Transplantology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal and ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil
| | - Miroslaw Markiewicz
- Department of Hematology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | | | - Vibeke Andersen
- Molecular Diagnostics and Clinical Research Unit, Institute of Regional Health Research, University Hospital of Southern Denmark, DK-6200 Aabenraa, Denmark
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantology and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Kari Hemminki
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vicent Rajkumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Grzegorz Mazur
- Department of Internal Diseases, Occupational Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Shaji K Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charles Dumontet
- UMR INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, 69008 Lyon, France
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Nicola J Camp
- Division of Hematology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA
| | - Annette Juul Vangsted
- Department of Hematology, Rigshospitalet, Copenhagen University, DK-2100 Copenhagen, Denmark
| | - Elizabeth E Brown
- Department of Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Celine M Vachon
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Asta Försti
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain
- Instituto de Investigación Biosanataria IBs, Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain
| |
Collapse
|
35
|
Jain V, Singh MP, Amaravadi RK. Recent advances in targeting autophagy in cancer. Trends Pharmacol Sci 2023; 44:290-302. [PMID: 36931971 PMCID: PMC10106406 DOI: 10.1016/j.tips.2023.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/17/2023]
Abstract
Autophagy is a cellular homeostasis mechanism that fuels the proliferation and survival of advanced cancers by degrading and recycling organelles and proteins. Preclinical studies have identified that within an established tumor, tumor cell autophagy and host cell autophagy conspire to support tumor growth. A growing body of evidence suggests that autophagy inhibition can augment the efficacy of chemotherapy, targeted therapy, or immunotherapy to enhance tumor shrinkage. First-generation autophagy inhibition trials in cancer using the lysosomal inhibitor hydroxychloroquine (HCQ) have produced mixed results but have guided the way for the development of more potent and specific autophagy inhibitors in clinical trials. In this review, we will discuss the role of autophagy in cancer, newly discovered molecular mechanisms of the autophagy pathway, the effects of autophagy modulation in cancer and host cells, and novel autophagy inhibitors that are entering clinical trials.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mahendra Pal Singh
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi K Amaravadi
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Bashiri H, Tabatabaeian H. Autophagy: A Potential Therapeutic Target to Tackle Drug Resistance in Multiple Myeloma. Int J Mol Sci 2023; 24:ijms24076019. [PMID: 37046991 PMCID: PMC10094562 DOI: 10.3390/ijms24076019] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Multiple myeloma (MM) is the second most prevalent hematologic malignancy. In the past few years, the survival of MM patients has increased due to the emergence of novel drugs and combination therapies. Nevertheless, one of the significant obstacles in treating most MM patients is drug resistance, especially for individuals who have experienced relapses or developed resistance to such cutting-edge treatments. One of the critical processes in developing drug resistance in MM is autophagic activity, an intracellular self-digestive process. Several possible strategies of autophagy involvement in the induction of MM-drug resistance have been demonstrated thus far. In multiple myeloma, it has been shown that High mobility group box protein 1 (HMGB1)-dependent autophagy can contribute to drug resistance. Moreover, activation of autophagy via proteasome suppression induces drug resistance. Additionally, the effectiveness of clarithromycin as a supplemental drug in treating MM has been reported recently, in which autophagy blockage is proposed as one of the potential action mechanisms of CAM. Thus, a promising therapeutic approach that targets autophagy to trigger the death of MM cells and improve drug susceptibility could be considered. In this review, autophagy has been addressed as a survival strategy crucial for drug resistance in MM.
Collapse
Affiliation(s)
- Hamed Bashiri
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | | |
Collapse
|
37
|
López-Méndez TB, Sánchez-Álvarez M, Trionfetti F, Pedraz JL, Tripodi M, Cordani M, Strippoli R, González-Valdivieso J. Nanomedicine for autophagy modulation in cancer therapy: a clinical perspective. Cell Biosci 2023; 13:44. [PMID: 36871010 PMCID: PMC9985235 DOI: 10.1186/s13578-023-00986-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
In recent years, progress in nanotechnology provided new tools to treat cancer more effectively. Advances in biomaterials tailored for drug delivery have the potential to overcome the limited selectivity and side effects frequently associated with traditional therapeutic agents. While autophagy is pivotal in determining cell fate and adaptation to different challenges, and despite the fact that it is frequently dysregulated in cancer, antitumor therapeutic strategies leveraging on or targeting this process are scarce. This is due to many reasons, including the very contextual effects of autophagy in cancer, low bioavailability and non-targeted delivery of existing autophagy modulatory compounds. Conjugating the versatile characteristics of nanoparticles with autophagy modulators may render these drugs safer and more effective for cancer treatment. Here, we review current standing questions on the biology of autophagy in tumor progression, and precursory studies and the state-of-the-art in harnessing nanomaterials science to enhance the specificity and therapeutic potential of autophagy modulators.
Collapse
Affiliation(s)
- Tania B López-Méndez
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Miguel Sánchez-Álvarez
- Area of Cell and Developmental Biology. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigaciones Biomédicas Alberto Sols (IIB), Madrid, Spain
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - José L Pedraz
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain. .,Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy. .,National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy.
| | - Juan González-Valdivieso
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA.
| |
Collapse
|
38
|
Rossi AP, Tremblay S, Castro-Rojas CM, Burg AA, Roskin KM, Gehman JM, Rike-Shields A, Alloway RR, Brailey P, Allman D, Hildeman DA, Woodle ES. Effects of invivo CXCR4 Blockade and Proteasome Inhibition on Bone Marrow Plasma Cells in HLA-Sensitized Kidney Transplant Candidates. Am J Transplant 2023:S1600-6135(23)00307-6. [PMID: 36871629 DOI: 10.1016/j.ajt.2023.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
To date, plasma cell (PC)-targeted therapies have been limited by suboptimal PC depletion and antibody rebound. We hypothesized this is partly because of PC residence in protective bone marrow (BM) microenvironments. The purpose of this proof-of-concept study was to examine the effects of the CXCR4 antagonist, plerixafor, on PC BM residence; its safety profile (alone and in combination with a proteasome inhibitor, bortezomib); and the transcriptional effect on BMPCs in HLA-sensitized kidney transplant candidates. Participants were enrolled into 3 groups: group A (n = 4), plerixafor monotherapy; and groups B (n = 4) and C (n = 4), plerixafor and bortezomib combinations. CD34+ stem cell and PC levels increased in the blood after plerixafor treatment. PC recovery from BM aspirates varied depending on the dose of plerixafor and bortezomib. Single-cell RNA sequencing on BMPCs from 3 group C participants pretreatment and posttreatment revealed multiple populations of PCs, with a posttreatment enrichment of oxidative phosphorylation, proteasome assembly, cytoplasmic translation, and autophagy-related genes. Murine studies demonstrated dually inhibiting the proteasome and autophagy resulted in greater BMPC death than did monotherapies. In conclusion, this pilot study revealed anticipated effects of combined plerixafor and bortezomib on BMPCs, an acceptable safety profile, and suggests the potential for autophagy inhibitors in desensitization regimens.
Collapse
Affiliation(s)
- Amy P Rossi
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Simon Tremblay
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Cyd M Castro-Rojas
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ashley A Burg
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Krishna M Roskin
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jenna M Gehman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Adele Rike-Shields
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; The Christ Hospital, Cincinnati, Ohio, USA
| | - Rita R Alloway
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Paul Brailey
- Transplant Immunology Division, Hoxworth Blood Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| | - E Steve Woodle
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
39
|
Jain V, Harper SL, Versace AM, Fingerman D, Brown GS, Bhardwaj M, Crissey MAS, Goldman AR, Ruthel G, Liu Q, Zivkovic A, Stark H, Herlyn M, Gimotty PA, Speicher DW, Amaravadi RK. Targeting UGCG Overcomes Resistance to Lysosomal Autophagy Inhibition. Cancer Discov 2023; 13:454-473. [PMID: 36331284 PMCID: PMC9905280 DOI: 10.1158/2159-8290.cd-22-0535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/10/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Lysosomal autophagy inhibition (LAI) with hydroxychloroquine or DC661 can enhance cancer therapy, but tumor regrowth is common. To elucidate LAI resistance, proteomics and immunoblotting demonstrated that LAI induced lipid metabolism enzymes in multiple cancer cell lines. Lipidomics showed that LAI increased cholesterol, sphingolipids, and glycosphingolipids. These changes were associated with striking levels of GM1+ membrane microdomains (GMM) in plasma membranes and lysosomes. Inhibition of cholesterol/sphingolipid metabolism proteins enhanced LAI cytotoxicity. Targeting UDP-glucose ceramide glucosyltransferase (UGCG) synergistically augmented LAI cytotoxicity. Although UGCG inhibition decreased LAI-induced GMM and augmented cell death, UGCG overexpression led to LAI resistance. Melanoma patients with high UGCG expression had significantly shorter disease-specific survival. The FDA-approved UGCG inhibitor eliglustat combined with LAI significantly inhibited tumor growth and improved survival in syngeneic tumors and a therapy-resistant patient-derived xenograft. These findings nominate UGCG as a new cancer target, and clinical trials testing UGCG inhibition in combination with LAI are warranted. SIGNIFICANCE We discovered UGCG-dependent lipid remodeling drives resistance to LAI. Targeting UGCG with a drug approved for a lysosomal storage disorder enhanced LAI antitumor activity without toxicity. LAI and UGCG inhibition could be tested clinically in multiple cancers. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Amanda M. Versace
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Monika Bhardwaj
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary Ann S. Crissey
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Qin Liu
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225, Düsseldorf, Germany
| | - Holgar Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225, Düsseldorf, Germany
| | | | - Phyllis A. Gimotty
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David W. Speicher
- The Wistar Institute, Philadelphia, PA 19104, USA
- Corresponding authors: Ravi K. Amaravadi, MD, University of Pennsylvania, 852 BRB 2/3, 421 Curie Blvd, Philadelphia, PA 19104, Tel: 215-796-5159, ; David W. Speicher, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, Tel: 215-898-3972,
| | - Ravi K. Amaravadi
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding authors: Ravi K. Amaravadi, MD, University of Pennsylvania, 852 BRB 2/3, 421 Curie Blvd, Philadelphia, PA 19104, Tel: 215-796-5159, ; David W. Speicher, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, Tel: 215-898-3972,
| |
Collapse
|
40
|
Yang T, Zhang Y, Chen J, Sun L. Crosstalk between autophagy and immune cell infiltration in the tumor microenvironment. Front Med (Lausanne) 2023; 10:1125692. [PMID: 36814780 PMCID: PMC9939467 DOI: 10.3389/fmed.2023.1125692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Autophagy is a conserved process for self-degradation and provides cells with a rescue mechanism to respond to circumstances such as stress and starvation. The role of autophagy in cancer is extremely complex and often paradoxical. Most of the related published studies on tumors are always focused on cancer cells. However, present studies gradually noticed the significance of autophagy in the tumor microenvironment. These studies demonstrate that autophagy and immunity work synergistically to affect tumor progression, indicating that autophagy could become a potential target for cancer immunotherapy. Therefore, it is crucial to clarify the correlation between autophagy and various tumor-infiltrating immune cells in the tumor microenvironment. The context-dependent role of autophagy is critical in the design of therapeutic strategies for cancer.
Collapse
|
41
|
Kilgas S, Ramadan K. Inhibitors of the ATPase p97/VCP: From basic research to clinical applications. Cell Chem Biol 2023; 30:3-21. [PMID: 36640759 DOI: 10.1016/j.chembiol.2022.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/13/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Protein homeostasis deficiencies underlie various cancers and neurodegenerative diseases. The ubiquitin-proteasome system (UPS) and autophagy are responsible for most of the protein degradation in mammalian cells and, therefore, represent attractive targets for cancer therapy and that of neurodegenerative diseases. The ATPase p97, also known as VCP, is a central component of the UPS that extracts and disassembles its substrates from various cellular locations and also regulates different steps in autophagy. Several UPS- and autophagy-targeting drugs are in clinical trials. In this review, we focus on the development of various p97 inhibitors, including the ATPase inhibitors CB-5083 and CB-5339, which reached clinical trials by demonstrating effective anti-tumor activity across various tumor models, providing an effective alternative to targeting protein degradation for cancer therapy. Here, we provide an overview of how different p97 inhibitors have evolved over time both as basic research tools and effective UPS-targeting cancer therapies in the clinic.
Collapse
Affiliation(s)
- Susan Kilgas
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Kristijan Ramadan
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
42
|
Leng H, Zhang H, Li L, Zhang S, Wang Y, Chavda SJ, Galas-Filipowicz D, Lou H, Ersek A, Morris EV, Sezgin E, Lee YH, Li Y, Lechuga-Vieco AV, Tian M, Mi JQ, Yong K, Zhong Q, Edwards CM, Simon AK, Horwood NJ. Modulating glycosphingolipid metabolism and autophagy improves outcomes in pre-clinical models of myeloma bone disease. Nat Commun 2022; 13:7868. [PMID: 36550101 PMCID: PMC9780346 DOI: 10.1038/s41467-022-35358-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Patients with multiple myeloma, an incurable malignancy of plasma cells, frequently develop osteolytic bone lesions that severely impact quality of life and clinical outcomes. Eliglustat, a U.S. Food and Drug Administration-approved glucosylceramide synthase inhibitor, reduced osteoclast-driven bone loss in preclinical in vivo models of myeloma. In combination with zoledronic acid, a bisphosphonate that treats myeloma bone disease, eliglustat provided further protection from bone loss. Autophagic degradation of TRAF3, a key step for osteoclast differentiation, was inhibited by eliglustat as evidenced by TRAF3 lysosomal and cytoplasmic accumulation. Eliglustat blocked autophagy by altering glycosphingolipid composition whilst restoration of missing glycosphingolipids rescued autophagy markers and TRAF3 degradation thus restoring osteoclastogenesis in bone marrow cells from myeloma patients. This work delineates both the mechanism by which glucosylceramide synthase inhibition prevents autophagic degradation of TRAF3 to reduce osteoclastogenesis as well as highlighting the clinical translational potential of eliglustat for the treatment of myeloma bone disease.
Collapse
Affiliation(s)
- Houfu Leng
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Hanlin Zhang
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Linsen Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Shuhao Zhang
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15217, USA
| | - Yanping Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | - Selina J Chavda
- Department of Hematology, UCL Cancer Institute, University College London, London, UK
| | | | - Hantao Lou
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Adel Ersek
- Norwich Medical School, University of East Anglia, James Watson Road, Norwich, NR4 7UQ, UK
| | - Emma V Morris
- Nuffield Department of Surgical Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institute, Solna, Sweden
- MRC Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, Oxford, OX3 9DS, UK
| | - Yi-Hsuan Lee
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
- Norwich Medical School, University of East Anglia, James Watson Road, Norwich, NR4 7UQ, UK
| | - Yunsen Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | | | - Mei Tian
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, P.R. China
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Kwee Yong
- Department of Hematology, UCL Cancer Institute, University College London, London, UK
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Claire M Edwards
- Nuffield Department of Surgical Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
| | - Nicole J Horwood
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
- Norwich Medical School, University of East Anglia, James Watson Road, Norwich, NR4 7UQ, UK.
| |
Collapse
|
43
|
Khan R, Panja S, Ding L, Tang S, Tang W, Kapoor E, Bennett RG, Oupický D. Polymeric Chloroquine as an Effective Antimigration Agent in the Treatment of Pancreatic Cancer. Mol Pharm 2022; 19:4631-4643. [PMID: 36346968 DOI: 10.1021/acs.molpharmaceut.2c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydroxychloroquine (HCQ) has been the subject of multiple recent preclinical and clinical studies for its beneficial use in the combination treatments of different types of cancers. Polymeric HCQ (PCQ), a macromolecular multivalent version of HCQ, has been shown to be effective in various cancer models both in vitro and in vivo as an inhibitor of cancer cell migration and experimental lung metastasis. Here, we present detailed in vitro studies that show that low concentrations of PCQ can efficiently inhibit cancer cell migration and colony formation orders of magnitude more effectively compared to HCQ. After intraperitoneal administration of PCQ in vivo, high levels of tumor accumulation and penetration are observed, combined with strong antimetastatic activity in an orthotopic pancreatic cancer model. These studies support the idea that PCQ may be effectively used at low doses as an adjuvant in the therapy of pancreatic cancer. In conjunction with previously published literature, these studies further undergird the potential of PCQ as an anticancer agent.
Collapse
Affiliation(s)
- Rubayat Khan
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Ekta Kapoor
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Robert G Bennett
- Department of Internal Medicine and Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
44
|
LncRNA MEG3 promotes the sensitivity of bortezomib by inhibiting autophagy in multiple myeloma. Leuk Res 2022; 123:106967. [DOI: 10.1016/j.leukres.2022.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/17/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
45
|
Niemann B, Puleo A, Stout C, Markel J, Boone BA. Biologic Functions of Hydroxychloroquine in Disease: From COVID-19 to Cancer. Pharmaceutics 2022; 14:pharmaceutics14122551. [PMID: 36559044 PMCID: PMC9787624 DOI: 10.3390/pharmaceutics14122551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
Chloroquine (CQ) and Hydroxychloroquine (HCQ), initially utilized in the treatment of malaria, have now developed a long list of applications. Despite their clinical relevance, their mechanisms of action are not clearly defined. Major pathways by which these agents are proposed to function include alkalinization of lysosomes and endosomes, downregulation of C-X-C chemokine receptor type 4 (CXCR4) expression, high-mobility group box 1 protein (HMGB1) inhibition, alteration of intracellular calcium, and prevention of thrombus formation. However, there is conflicting data present in the literature. This is likely the result of the complex overlapping pathways between these mechanisms of action that have not previously been highlighted. In fact, prior research has focused on very specific portions of particular pathways without describing these in the context of the extensive CQ/HCQ literature. This review summarizes the detailed data regarding CQ/HCQ's mechanisms of action while also providing insight into the overarching themes. Furthermore, this review provides clinical context to the application of these diverse drugs including their role in malaria, autoimmune disorders, cardiovascular disease, thrombus formation, malignancies, and viral infections.
Collapse
Affiliation(s)
- Britney Niemann
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA
- Correspondence: ; Tel.: +1-304-293-1254
| | - Amanda Puleo
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA
| | - Conley Stout
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA
| | - Justin Markel
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA
| | - Brian A. Boone
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
46
|
Wang G, Fan F, Sun C, Hu Y. Looking into Endoplasmic Reticulum Stress: The Key to Drug-Resistance of Multiple Myeloma? Cancers (Basel) 2022; 14:5340. [PMID: 36358759 PMCID: PMC9654020 DOI: 10.3390/cancers14215340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 09/22/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, resulting from the clonal proliferation of malignant plasma cells within the bone marrow. Despite significant advances that have been made with novel drugs over the past two decades, MM patients often develop therapy resistance, especially to bortezomib, the first-in-class proteasome inhibitor that was approved for treatment of MM. As highly secretory monoclonal protein-producing cells, MM cells are characterized by uploaded endoplasmic reticulum stress (ERS), and rely heavily on the ERS response for survival. Great efforts have been made to illustrate how MM cells adapt to therapeutic stresses through modulating the ERS response. In this review, we summarize current knowledge on the mechanisms by which ERS response pathways influence MM cell fate and response to treatment. Moreover, based on promising results obtained in preclinical studies, we discuss the prospect of applying ERS modulators to overcome drug resistance in MM.
Collapse
Affiliation(s)
- Guangqi Wang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
| | - Fengjuan Fan
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
| | - Chunyan Sun
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
47
|
Luo M, Ye L, Chang R, Ye Y, Zhang Z, Liu C, Li S, Jing Y, Ruan H, Zhang G, He Y, Liu Y, Xue Y, Chen X, Guo AY, Liu H, Han L. Multi-omics characterization of autophagy-related molecular features for therapeutic targeting of autophagy. Nat Commun 2022; 13:6345. [PMID: 36289218 PMCID: PMC9606020 DOI: 10.1038/s41467-022-33946-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/07/2022] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a major contributor to anti-cancer therapy resistance. Many efforts have been made to understand and overcome autophagy-mediated therapy resistance, but these efforts have been unsuccessful in clinical applications. In this study, we establish an autophagy signature to estimate tumor autophagy status. We then classify approximately 10,000 tumor samples across 33 cancer types from The Cancer Genome Atlas into autophagy score-high and autophagy score-low groups. We characterize the associations between multi-dimensional molecular features and tumor autophagy, and further analyse the effects of autophagy status on drug response. In contrast to the conventional view that the induction of autophagy serves as a key resistance mechanism during cancer therapy, our analysis reveals that autophagy induction may also sensitize cancer cells to anti-cancer drugs. We further experimentally validate this phenomenon for several anti-cancer drugs in vitro and in vivo, and reveal that autophagy inducers potentially sensitizes tumor cells to etoposide through downregulating the expression level of DDIT4. Our study provides a comprehensive landscape of molecular alterations associated with tumor autophagy and highlights an opportunity to leverage multi-omics analysis to utilize multiple drug sensitivity induced by autophagy.
Collapse
Affiliation(s)
- Mei Luo
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lin Ye
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruimin Chang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Chunjie Liu
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shengli Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ying Jing
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hang Ruan
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Guanxiong Zhang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi He
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaoming Liu
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yu Xue
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - An-Yuan Guo
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Hong Liu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
48
|
Chen T, Zeng C, Li Z, Wang J, Sun F, Huang J, Lu S, Zhu J, Zhang Y, Sun X, Zhen Z. Investigation of chemoresistance to first-line chemotherapy and its possible association with autophagy in high-risk neuroblastoma. Front Oncol 2022; 12:1019106. [PMID: 36338726 PMCID: PMC9632338 DOI: 10.3389/fonc.2022.1019106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
High-risk neuroblastoma (NB) is sensitive to chemotherapy but susceptible to chemoresistance. In this study, we aimed to analyze the incidence of chemoresistance in high-risk NB patients and to explore the role of autophagy in NB chemoresistance. We retrospectively analyzed the incidence of changing the chemotherapy regimen due to disease stabilization or disease progression during induction chemotherapy in high-risk NB patients, which was expressed as the chemoresistance rate. The autophagy levels were probed in tumor cells exposed to first-line chemotherapy agents. The sensitivity of tumor cells to chemotherapy agents and apoptosis rate were observed after inhibiting autophagy by transfection of shRNA or chloroquine (CQ). This study included 247 patients with high-risk NB. The chemoresistance rates of patients treated with cyclophosphamide + adriamycin + vincristine (CAV) alternating with etoposide + cisplatin (EP) (Group 1) and CAV alternating with etoposide + ifosfamide + cisplatin (VIP) (Group 2) was 61.5% and 39.9% (P = 0.0009), respectively. Group 2 had better survival rates than group 1. After exposure to cisplatin, cyclophosphamide, and etoposide, the autophagy-related proteins LC3-I, LC3-II, and Beclin-1 were upregulated, and the incidence of autophagy vesicle formation and the expression of P62 were increased. Chemotherapeutic agents combined with CQ significantly increased the chemotherapeutic sensitivity of tumor cells and increased the cell apoptosis. The downregulated expression of Beclin-1 increased the sensitivity of tumor cells to chemotherapeutics. Our results suggest that increasing the chemotherapy intensity can overcome resistance to NB. Inhibition of autophagy is beneficial to increase the sensitivity of NB to chemotherapy agents.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chenggong Zeng
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhuoran Li
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Juan Wang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Feifei Sun
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Junting Huang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Suying Lu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jia Zhu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yizhuo Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiaofei Sun
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zijun Zhen
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- *Correspondence: Zijun Zhen,
| |
Collapse
|
49
|
Autophagy in Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14205072. [PMID: 36291856 PMCID: PMC9600546 DOI: 10.3390/cancers14205072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Autophagy is a dynamic and tightly regulated process that seems to have dual effects in cancer. In some contexts, it can induce carcinogenesis and promote cancer cell survival, whereas in others, it acts preventing tumor cell growth and tumor progression. Thus, autophagy functions seem to strictly depend on cancer ontogenesis, progression, and type. Here, we will dive into the current knowledge of autophagy in hematological malignancies and will highlight the main genetic components involved in each cancer type. Abstract Autophagy is a highly conserved metabolic pathway via which unwanted intracellular materials, such as unfolded proteins or damaged organelles, are digested. It is activated in response to conditions of oxidative stress or starvation, and is essential for the maintenance of cellular homeostasis and other vital functions, such as differentiation, cell death, and the cell cycle. Therefore, autophagy plays an important role in the initiation and progression of tumors, including hematological malignancies, where damaged autophagy during hematopoiesis can cause malignant transformation and increase cell proliferation. Over the last decade, the importance of autophagy in response to standard pharmacological treatment of hematological tumors has been observed, revealing completely opposite roles depending on the tumor type and stage. Thus, autophagy can promote tumor survival by attenuating the cellular damage caused by drugs and/or stabilizing oncogenic proteins, but can also have an antitumoral effect due to autophagic cell death. Therefore, autophagy-based strategies must depend on the context to create specific and safe combination therapies that could contribute to improved clinical outcomes. In this review, we describe the process of autophagy and its role on hematopoiesis, and we highlight recent research investigating its role as a potential therapeutic target in hematological malignancies. The findings suggest that genetic variants within autophagy-related genes modulate the risk of developing hemopathies, as well as patient survival.
Collapse
|
50
|
Jahangiri B, Saei AK, Obi PO, Asghari N, Lorzadeh S, Hekmatirad S, Rahmati M, Velayatipour F, Asghari MH, Saleem A, Moosavi MA. Exosomes, autophagy and ER stress pathways in human diseases: Cross-regulation and therapeutic approaches. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166484. [PMID: 35811032 DOI: 10.1016/j.bbadis.2022.166484] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/01/2022] [Accepted: 07/03/2022] [Indexed: 02/08/2023]
Abstract
Exosomal release pathway and autophagy together maintain homeostasis and survival of cells under stressful conditions. Autophagy is a catabolic process through which cell entities, such as malformed biomacromolecules and damaged organelles, are degraded and recycled via the lysosomal-dependent pathway. Exosomes, a sub-type of extracellular vesicles (EVs) formed by the inward budding of multivesicular bodies (MVBs), are mostly involved in mediating communication between cells. The unfolded protein response (UPR) is an adaptive response that is activated to sustain survival in the cells faced with the endoplasmic reticulum (ER) stress through a complex network that involves protein synthesis, exosomes secretion and autophagy. Disruption of the critical crosstalk between EVs, UPR and autophagy may be implicated in various human diseases, including cancers and neurodegenerative diseases, yet the molecular mechanism(s) behind the coordination of these communication pathways remains obscure. Here, we review the available information on the mechanisms that control autophagy, ER stress and EV pathways, with the view that a better understanding of their crosstalk and balance may improve our knowledge on the pathogenesis and treatment of human diseases, where these pathways are dysregulated.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Patience O Obi
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada
| | - Narjes Asghari
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Velayatipour
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Mohammad Hosseni Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ayesha Saleem
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran.
| |
Collapse
|